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The goal of this talk is to supply a semantic proof of Ruitenburg
Theorem.

Ruitenburg Theorem is one of the most surprising results concerning
intuitionistic propositional calculus (IPC ).

It says the following:

take a formula A(x , y) of (IPC ) and consider the sequence

{Ai (x , y) }i≥1 so defined:

A1 :≡ A, . . . , Ai+1 :≡ A(Ai/x , y) (1)

then, taking equivalence classes under provable bi-implication in
(IPC ), the sequence { [Ai (x , y)] }i≥1 is ultimately periodic with
period 2.

The latter means that there is N such that

`IPC AN+2 ↔ AN . (2)
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An interesting consequence of this result is that least (and greatest)
fixpoints of monotonic formulae are definable in (IPC ) [Mardaev93].

Ruitenburg Theorem was shown in [Ruitenburg84] via a, rather
involved, purely syntactic proof.

The proof has been recently formalized inside the proof assistant coq
by T. Litak
https://git8.cs.fau.de/redmine/projects/ruitenburg1984

We supply a semantic proof, using duality and bounded bisimulations
machinery.
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1 Warming: the Classical Logic Case

2 The Role of Dualities

3 Duality for Heyting algebras

4 Ruitenburg Theorem via Duality
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The Algebraic Reformulation

In classical propositional calculus (CPC ), Ruitenburg Theorem holds with
index 1 and period 2, namely given a formula A(x , y), we have that

`CPC A3 ↔ A (3)

The first step is to re-interpret this statement in the category of finitely
presented Boolean algebras (actually, finitely generated free algebras would
suffice).
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The Algebraic Reformulation

We let FB(z) be the free Boolean algebra over the finite set z : its
elements are equivalence classes of formulae A(z).

A morphism µ : FB(x1, . . . , xn) −→ FB(z) associates with the equivalence
class of B(x1, . . . , xn) in FB(x1, . . . , xn) the equivalence class of
B(A1/x1, . . . ,An/xn) in FB(z) (for some tuple A1, . . . ,An: we say that µ
is induced by this tuple).

Composition is substitution: if µ is induced by A1(z), . . . ,An(z) and ν is
induced by C1(x1, . . . , xn), . . . ,Cm(x1, . . . , xn), then

µ ◦ ν : FB(y1, . . . , ym) −→ FB(x1, . . . , xn) −→ FB(z)

is induced by the m-tuple
C1(A1/x1, . . . ,An/xn), . . . ,Cm(A1/x1, . . . ,An/xn).
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The Algebraic Reformulation

Consider the map µA : FB(x , y) −→ FB(x , y) induced by the tuple A, y ;
then, the statement (3) is equivalent to

µ3A = µA . (4)

This raises the question: which endomorphisms of FB(x , y) are of the
kind µA for some A(x , y)? The answer is simple: they are the maps such
that the triangle

FB(x , y) FB(x , y)-
µ

FB(y)

ι
�

�
�	

ι
@
@
@R

commutes, where ι is the ‘inclusion’ map induced by the tuple y .
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The Algebraic Reformulation

Let us denote by A[x ] the algebra of polynomials over A, i.e. the
coproduct of the Boolean algebra A with the free algebra on one generator
(thus FB(x , y) is equal to FB(y)[x ]).

A slight generalization of statement (4) now reads as follows:

let A be a finitely presented Boolean algebra and let the map
µ : A[x ] −→ A[x ] commute with the coproduct injection
ι : A −→ A[x ]

A[x ] A[x ]-
µ

A

ι
�

�
�	

ι
@
@
@R

Then we have
µ3 = µ . (5)
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Dualization

The latter is a purely categorical statement, so that we can re-interpret it
in dual categories.

Finitely presented Boolean algebras are dual to finite sets; the duality
functor maps coproducts into products and the free Boolean algebra on
one generator to the two-elements set 2 = { 0, 1 }.

Thus statement (5) now becomes the following trivial exercise:

Let T be a finite set and let the function f : T × 2 −→ T × 2
commute with the product projection π0 : T × 2 −→ T

T × 2 T × 2-f

T

π0
@
@
@R

π0
�

�
�	

Then we have
f 3 = f . (6)
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Duality ingredients

It is clear that the above procedure can be always pursued if a duality
theorem is available.

The dualities we need are specific for finitely presented algebras. These
might be (at least partially) different from dualities for the category of all
algebras.

We may view an arbitrary algebra as a Lindenbaum algebra of a theory (in
the given logic); in this sense, a finitely presented algebra is the
Lindenbaum algebra of a finitely axiomatized theory.
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Duality ingredients

The dual of an algebra/theory is the space of its models (in the Boolean
case, the dual of B is the set Hom[B, 2] of the homomorphisms of B into
the truth value algebra - this is nothing but the set of models of B, viewed
as a theory).

In the Boolean case, if B is finitely presented, then B is finite and there is
no need to put any further structure of the set Hom[B, 2] to recover B.

However, going beyond the classical case, the situation becomes more
involved: models must be structured!
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Duality ingredients

Such structure is often introduced via bisimulations and bounded
bisimulations (the latter are needed only for the non-locally finite case).

There is however a deep difference between bounded and unbounded
bisimulations: unbounded bisimulation has to be ascribed to a geometric
structure (typically, a sheaf structure), whereas bounded bisimulation
retains specific combinatorial features related to definability aspects.

Most logical problems are analyzed in G.-Zawadowski book “Sheaf, games
and model completions” taking into account the role of both aspects (the
geometric and the combinatorial aspects).
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Duality ingredients

The typical example is uniform interpolation for (IPC ). The employed
strategy is the following:

existence of uniform interpolants is shown to be equivalent to
existence of images in the dual of the category of finitely presented
algebras (algebraization step);

as models are structured as sheaves, if such images exists, they must
be sheaf-theoretic images;

sheaf theoretic images are in fact ‘definable’ because they are closed
under bounded (sufficiently high bounded!) bisimulation.
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Duality ingredients

A similar strategy has been used for many other questions, for positive and
negative results (definability of dual difference operators, regularity of epis,
characterization of projectivity, effectiveness of equivalence relations, etc.).

The geometric overview of the problems usually does not solve them
(especially if they are non trivial), but indicates what one has to look for
and how combinatorial arguments should finally be employed.

We are applying the same strategy for Ruitenburg Theorem: dual
morphisms are seen as natural transformations, 2-periodicity is verified for
them and finally made uniform using bounded bisimulation ranks.
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The geometric component

We recall the duality for finitely presented Heyting algebras given in
G.-Zawadowski book.

We restrict to duality for Heyting algebras freely generated by a finite
distributive lattice: this is a bit more than what we need (finitely generated
free case would suffice), but this is easy to describe in a uniform way.

Recall that a finite distributive lattice is isomorphic to the set of downward
closed subsets ↓ L of a finite poset (L,≤).
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The geometric component

As geometric environment, we consider the category P0 of finite rooted
posets (with p-morphisms) and the category of sheaves over them with the
canonical (Grothendieck) topology.

A poset (P,≤) is rooted iff it has a greatest element ρP .

f : Q −→ P is a p-morphism iff it is order-preserving and moreover
satisfies the following condition forall q ∈ Q, p ∈ P

p ≤ f (q) ⇒ ∃q′ ∈ Q (q′ ≤ q & f (q′) = p) .

A presheaf is a contravariant functor

F : Pop
0 −→ Set

into the category of sets.
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canonical (Grothendieck) topology.
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The geometric component

We do not need the sheaf structure for our application to Ruitenburg
Theorem: all presheaves we shall consider will be sheaves, but the only
relevant algebraic structure we use are products - and products are the
same for sheaves and presheaves.

The typical (pre)sheaf we use is the sheaf of L-evaluations

hL ' Hom(−, L)

(the Hom is taken into the category of posets) for a finite poset (L,≤): in
case L is the powerset of a finite set ordered by reverse inclusion, this is
the sheaf of finite Kripke models (over a finite propositional language).

The easy but crucial fact we use is that product in presheaves (and
sheaves) is pointwise: i.e. [F × G ](P) ' F (P)× G (P), etc.
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The combinatorial component

It can be shown that, in the case of the sheaf of finite Kripke models,
subsheaves correspond to sets of models closed under bisimulations.

It is well-known that there are sets of models closed under bisimulation
that do not correspond to sets of models of any given formula.

Thus, for definability issues (i.e. for a full duality), we need another
ingredient, of a more combinatorial nature: bounded bisimulations.

Bounded bisimulations can be introduced either via a recursive definition
of via Ehrenfeucht-Fraissé games.
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Games and Bounded Bisimulations

Let u : P −→ L and v : Q −→ L be two L-evaluations.

The game we are interested in has two players, Player 1 and Player 2.

Player 1 can choose either a point in P or a point in Q and Player 2 must
answer by choosing a point in the other poset; the only rule of the game is
that, if 〈p ∈ P, q ∈ Q〉 is the last move played so far, then in the
successive move the two players can only choose points 〈p′, q′〉 such that
p′ ≤ p and q′ ≤ q.

If 〈p1, q1〉, . . . , 〈pi , qi 〉, . . . are the points chosen in the game, Player 2
wins iff for every i = 1, 2, . . . , we have that u(pi ) = v(qi ).
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Games and Bounded Bisimulations

We say that

- u ∼∞ v iff Player 2 has a winning strategy in the above
game with infinitely many moves;

- u ∼n v (for n > 0) iff Player 2 has a winning strategy in the
above game with n moves, i.e. he has a winning strategy
provided we stipulate that the game terminates after n
moves;

- u ∼0 v iff u(ρ(P)) = v(ρ(Q)) (recall that ρ(P), ρ(Q) denote
the roots of P,Q).

We shall use the notation [v ]n for the equivalence class of an L-valuation v
via the equivalence relation ∼n.
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The Duality Statement

We say that a natural transformation ψ : hL −→ hL′ has b-index n iff for
every v : P −→ L and v ′ : P ′ −→ L, we have that v ∼n v ′ implies
ψ(v) ∼0 ψ(v ′).

Theorem

The category of Heyting algebras freely generated by a finite bounded
distributive lattice is dual to the subcategory of (pre)sheaves having as
objects the evaluations sheaves and as arrows the natural transformations
having a b-index.
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The Duality Statement

The way of reading the above Theorem is the following.

A sub(pre)sheaf S of hL has b-index n if v ∈ S(P) and v ∼n u imply
v ∈ S(Q) (P,Q are the domains of v , u).

A sub(pre)sheaf S is definable iff it has a b-index. Such a sub(pre)sheaf
corresponds to the set of finite models of a propositional formula.

A natural transformation f has a b-index iff the inverse image along f of a
definable sub(pre)sheaf is definable. Such a map is the dual of a
substitution.
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Restating the Theorem

Considering that h2 is the dual of the free algebra on one generator (2 is
the 2-element chain), what we need to show is the following.

All natural transformations from hL × h2 into itself, commuting over the
first projection π0 and having a b-index, are ultimately periodic with
period 2.

Spelling this out, this means the following. Fix a natural transformation
ψ = 〈π0, χ〉 : hL × h2 −→ hL × h2 having a b-index such that the diagram

hL × h2 hL × h2-ψ

hL

π0
@
@
@R

π0
�

�
�	

commutes; we have to find an N such that ψN+2 = ψN .
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A first approximation

It is useful, as a general strategy, to preliminarly study what happens
keeping only the geometric structure (i.e. ignoring games and definability):

Lemma

Let ψ = 〈π0, χ〉 : hL × h2 −→ hL × h2 be a natural transformation. Then
for all rooted finite poset P there is NP such that ψNP+2(P) = ψNP (P)

The proof is a moderate complication of what happens in the classical
logic case (one can take NP to be the height of P).
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Ranks

Now the big jump: we must show that N does not depend on P in case ψ
has a b-index.

As usual, for such problems, one needs an appropriate notion of rank.
Ranks were used by various authors (Fine, Visser, G., etc.), the variant we
use here is explained below. First, we need some definitions.

Call (v , u) ∈ hL×2(P) 2-periodic (or just periodic) iff we have
ψ2(v , u) = (v , u); a point q ∈ P is similarly said periodic in (v , u) iff
(v , u)q is periodic (here (v , u)q is (v , u) restricted to the points below q).
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Ranks

Let ψ = 〈π0, χ〉 have b-index n ≥ 1. and let (v , u) ∈ hL(P) be given. The
type of a periodic point p ∈ P is the pair of equivalence classes

〈[(vp, up)]n−1, [ψ(vp, up)]n−1〉. (7)

The rank of a point p (that we shall denote by rk(p)) is the cardinality of
the set of distinct types of the periodic points q ≤ p.

Since ∼n−1 is an equivalence relation with finitely many equivalence
classes, the rank cannot exceed a positive (computable) number R(L, n).

Clearly we have rk(p) ≥ rk(q) in case p ≥ q. Notice that an application of
ψ does not decrease the rank of a point: this is because the pairs (7)
coming from a periodic point just get swapped after applying ψ.

A non-periodic point p ∈ P has minimal rank iff we have rk(p) = rk(q) for
all non-periodic q ≤ p.
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The final step

The first trick is to show that the periodicity number NP of the above
Lemma can be taken to depend not on the height of a finite poset, but on
the height of v(ρP) in the (fixed) finite poset L. Thus one can make an
induction on this height.

The base of the induction is the classical logic case. So, one can suppose
that, in a given L× 2-evaluation (v , u), all points whose v -values have
L-height less than the induction parameter l become periodic after
applying our ψ a sufficiently number of times, namely Nl -times.
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The final step

After such iterations, suppose that p has v -value of L-height l , but it is
not yet periodic. We let r be the minimum rank of points q ≤ p which are
not periodic.

It is shown that after two more iterations, all points p0 ≤ p having rank r
become periodic or increase their rank, thus causing the overall minimum
rank below p to increase.

This means that after at most 2(R − r) ≤ 2R iterations of ψ, all points
below p (p itself included!) become periodic (here R := R(n, L), see
above).
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A question

The whole argument gives 2 · |L| · R as convergence rate (which is far from
optimal, unfortunately).

QUESTION: is it possible to refine the above arguments and get a better
bound, still within a semantic approach?
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THANKS FOR ATTENTION !
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