Model-completions of (co-)Heyting algebras

Luck Darnière
(with Markus Junker)

Tolo 6, Tbilissi, 2-6 July 2018

1 - Model-completion

Theorem (Pitts 1992)
$I P C_{2}$ is interpretable in IPC 1.

```
Theorem (Pitts 1992)
For every propositionnal formula }\varphi(\overline{p},v)\mathrm{ there are propositionnal formulae
\varphiR}(\overline{p})\mathrm{ and }\mp@subsup{\varphi}{L}{}(\overline{p})\mathrm{ such that, for any formula }\psi(\overline{p},\overline{q})\mathrm{ not containing v
```


Theorem (Ghilardi - Zawadowski 1997)

The theary of Hayting alrehras has a madel completion

Theorem (Pitts 1992)

$I P C_{2}$ is interpretable in IPC 1.

Theorem (Pitts 1992)

For every propositionnal formula $\varphi(\bar{p}, v)$ there are propositionnal formulae $\varphi_{R}(\bar{p})$ and $\varphi_{L}(\bar{p})$ such that, for any formula $\psi(\bar{p}, \bar{q})$ not containing v,

$$
\varphi \vdash_{\psi} \Longleftrightarrow \varphi_{R} \vdash \varphi \quad \psi \vdash \varphi \Longleftrightarrow \psi \vdash \phi_{L}
$$

Theorem (Pitts 1992)

$I P C_{2}$ is interpretable in IPC ${ }_{1}$.

Theorem (Pitts 1992)

For every propositionnal formula $\varphi(\bar{p}, v)$ there are propositionnal formulae $\varphi_{R}(\bar{p})$ and $\varphi_{L}(\bar{p})$ such that, for any formula $\psi(\bar{p}, \bar{q})$ not containing v,

$$
\varphi \vdash_{\psi} \Longleftrightarrow \varphi_{R} \vdash \varphi \quad \psi \vdash \varphi \Longleftrightarrow \psi \vdash \phi_{L} .
$$

Theorem (Ghilardi - Zawadowski 1997)

The theory of Heyting algebras has a model-completion.

Question: Which (theory of) varieties \mathcal{H} of Heyting algebras have a model-completion?

Remark: A necessary condition is is that \mathcal{H} has the amalgamation property.

Theorem (Maksimova 1977)

Exactly 8 varieties $\mathcal{H}_{1}, \ldots, \mathcal{H}_{8}$ of Heyting algebras have the amalgation property.

Theorem (Maksimova 1977)

Exactly 8 varieties $\mathcal{H}_{1}, \ldots, \mathcal{H}_{8}$ of Heyting algebras have the amalgation property.

Theorem (Ghilardi - Zawadowski 1997)

Each of the 8 eight varieties of Heyting algeras which has the amalgamation property, has a model-completion.

Proof based on Pitts + Maksimova + some model-theoretic non-sense.

Theorem (Maksimova 1977)

Exactly 8 varieties $\mathcal{H}_{1}, \ldots, \mathcal{H}_{8}$ of Heyting algebras have the amalgation property.

Theorem (Ghilardi - Zawadowski 1997)

Each of the 8 eight varieties of Heyting algeras which has the amalgamation property, has a model-completion.

Proof based on Pitts + Maksimova + some model-theoretic non-sense.
End of the story!

Theorem (Maksimova 1977)

Exactly 8 varieties $\mathcal{H}_{1}, \ldots, \mathcal{H}_{8}$ of Heyting algebras have the amalgation property.

Theorem (Ghilardi - Zawadowski 1997)

Each of the 8 eight varieties of Heyting algeras which has the amalgamation property, has a model-completion.

Proof based on Pitts + Maksimova + some model-theoretic non-sense.
End of the story!

Question: What are these model-completions? Can we give a (meaningfull) axiomatisation of them? Is there a model-theoretic proof?

From now on and for $i=1,2, \ldots, 8$ let \mathcal{H}_{i}^{*} be the variety of coHA dual

Question: What are these model-completions? Can we give a (meaningfull) axiomatisation of them? Is there a model-theoretic proof?

From now on and for $i=1,2, \ldots, 8$ let \mathcal{H}_{i}^{*} be the variety of coHA dual (opposite? reverse?) to \mathcal{H}_{i} :

$$
L \in \mathcal{H}_{i}^{*} \Longleftrightarrow L^{*} \in \mathcal{H}_{i}
$$

$\mathcal{L}_{\text {lat }}=\{\mathbf{0}, \mathbf{1}, \vee, \wedge\}$.
$\mathcal{L}_{\text {HA }}=\mathcal{L}_{\text {lat }} \cup\{\rightarrow\}$ and $\mathcal{L}_{\text {HA }^{*}}=\mathcal{L}_{\text {lat }} \cup\{-\}$.

From HA to coHA (and way back) without pain In a coHA, $a-b:=\min \{c \mid a \leqslant b \vee c\}$.

Let E be a poset and a an element of E.

$:=E$, with the opposite order.

From HA to coHA (and way back) without pain
In a coHA, $a-b:=\min \{c \mid a \leqslant b \vee c\}$.
Let E be a poset and a an element of E.

- $E^{*}:=E$, with the opposite order.
- $a^{*}:=a$, but seen as an element of E^{*}.

$$
b \leqslant a \Longleftrightarrow a^{*} \leqslant b^{*}
$$

From HA to coHA (and way back) without pain
In a coHA, $a-b:=\min \{c \mid a \leqslant b \vee c\}$.
Let E be a poset and a an element of E.

- $E^{*}:=E$, with the opposite order.
- $a^{*}:=a$, but seen as an element of E^{*}.

$$
b \leqslant a \Longleftrightarrow a^{*} \leqslant b^{*}
$$

If E is a lattice:

$$
a \wedge b=\left(a^{*} \vee b^{*}\right)^{*} \quad a \vee b=\left(a^{*} \wedge b^{*}\right)^{*}
$$

From HA to coHA (and way back) without pain
In a coHA, $a-b:=\min \{c \mid a \leqslant b \vee c\}$.
Let E be a poset and a an element of E.

- $E^{*}:=E$, with the opposite order.
- $a^{*}:=a$, but seen as an element of E^{*}.

$$
b \leqslant a \Longleftrightarrow a^{*} \leqslant b^{*}
$$

If E is a lattice:

$$
a \wedge b=\left(a^{*} \vee b^{*}\right)^{*} \quad a \vee b=\left(a^{*} \wedge b^{*}\right)^{*}
$$

If E is a coHA:

$$
a-b=\left(b^{*} \rightarrow a^{*}\right)^{*}
$$

What means "much smaller"?
Given two subsets S, T of a topological space X,

$$
T \ll S \Longleftrightarrow T \subseteq S \text { and } \overline{S \backslash T}=\bar{S}
$$

What means "much smaller"?
Given two subsets S, T of a topological space X,

$$
T \ll S \Longleftrightarrow T \subseteq S \text { and } \overline{S \backslash T}=\bar{S} .
$$

Given two elements a, b of a (distributive and bounded) lattice L,

$$
b \ll a \Longleftrightarrow P(b) \ll P(a)
$$

whith $P(a):=\left\{\mathfrak{p} \in \operatorname{Spec}^{\uparrow}(X) \mid a \in \mathfrak{p}\right\}$.

What means "much smaller"?
Given two subsets S, T of a topological space X,

$$
T \ll S \Longleftrightarrow T \subseteq S \text { and } \overline{S \backslash T}=\bar{S}
$$

Given two elements a, b of a (distributive and bounded) lattice L,

$$
b \ll a \Longleftrightarrow P(b) \ll P(a)
$$

whith $P(a):=\left\{\mathfrak{p} \in \operatorname{Spec}^{\uparrow}(X) \mid a \in \mathfrak{p}\right\}$.

Remark: This is a strict order on $L \backslash\{\mathbf{0}\}$ (not on $L: \mathbf{0} \ll \mathbf{0}$).

What means "much smaller"?
Given two subsets S, T of a topological space X,

$$
T \ll S \Longleftrightarrow T \subseteq S \text { and } \overline{S \backslash T}=\bar{S}
$$

Given two elements a, b of a (distributive and bounded) lattice L,

$$
b \ll a \Longleftrightarrow P(b) \ll P(a)
$$

whith $P(a):=\left\{\mathfrak{p} \in \operatorname{Spec}^{\uparrow}(X) \mid a \in \mathfrak{p}\right\}$.

Remark: If a is \vee-irreducible then $b \ll a$ iff $b<a$.

What means "much smaller"?

Given two subsets S, T of a topological space X,

$$
T \ll S \Longleftrightarrow T \subseteq S \text { and } \overline{S \backslash T}=\bar{S}
$$

Given two elements a, b of a (distributive and bounded) lattice L,

$$
b \ll a \Longleftrightarrow P(b) \ll P(a)
$$

whith $P(a):=\left\{\mathfrak{p} \in \operatorname{Spec}^{\uparrow}(X) \mid a \in \mathfrak{p}\right\}$.

Remark: If L is a coHA then $P(a-b)=\overline{P(a) \backslash P(b)}$ hence

$$
b \ll a \Longleftrightarrow b \leqslant a \text { and } a-b=a
$$

is quantifier-free definable in L.
$\mathcal{H}_{1}^{*}=$ variety of all co-Heyting algebras.
Density D1 For every a, c such that $c \ll a \neq \mathbf{0}$ there exists a non zero element b such that:

$$
c \ll b \ll a
$$

$\mathcal{H}_{1}^{*}=$ variety of all co-Heyting algebras.
Density D1 For every a, c such that $c \ll a \neq \mathbf{0}$ there exists a non zero element b such that:

$$
c \ll b \ll a
$$

Splitting S1 For every a, b_{1}, b_{2} such that $b_{1} \vee b_{2} \ll a \neq \mathbf{0}$ there exists non zero elements $a_{1} \geqslant b_{1}$ and $a_{2} \geqslant b_{2}$ such that:

$$
\begin{gathered}
a-a_{2}=a_{1} \\
a-a_{1}=a_{2} \\
a_{1} \wedge a_{2}=b_{1} \wedge b_{2}
\end{gathered}
$$

$\mathcal{H}_{1}^{*}=$ variety of all co-Heyting algebras.
Density D1 For every a, c such that $c \ll a \neq \mathbf{0}$ there exists a non zero element b such that:

$$
c \ll b \ll a
$$

Splitting S1 For every a, b_{1}, b_{2} such that $b_{1} \vee b_{2} \ll a \neq \mathbf{0}$ there exists non zero elements $a_{1} \geqslant b_{1}$ and $a_{2} \geqslant b_{2}$ such that:

$$
\begin{gathered}
a-a_{2}=a_{1} \\
a-a_{1}=a_{2} \\
a_{1} \wedge a_{2}=b_{1} \wedge b_{2}
\end{gathered}
$$

$\mathcal{H}_{1}^{*}=$ variety of all co-Heyting algebras.
Density D1 For every a, c such that $c \ll a \neq \mathbf{0}$ there exists a non zero element b such that:

$$
c \ll b \ll a
$$

Splitting S1 For every a, b_{1}, b_{2} such that $b_{1} \vee b_{2} \ll a \neq \mathbf{0}$ there exists non zero elements $a_{1} \geqslant b_{1}$ and $a_{2} \geqslant b_{2}$ such that:

$$
\begin{gathered}
a-a_{2}=a_{1} \\
a-a_{1}=a_{2} \\
a_{1} \wedge a_{2}=b_{1} \wedge b_{2}
\end{gathered}
$$

- $\mathcal{H}_{2}^{*}=\mathcal{H}_{1}^{*}+[(\mathbf{1}-x) \wedge(\mathbf{1}-(\mathbf{1}-x))=\mathbf{0}]$.

This is the dual (opposite? reverse?) of the variety of the logic of the weak excluded middle $(\neg x \vee \neg \neg x=1)$.

Density D2 Same as D1.
Splitting S2 Same as S 1 with the additional assumption that

$$
b_{1} \wedge b_{2} \wedge(\mathbf{1}-(\mathbf{1}-a))=\mathbf{0}
$$

- $\mathcal{H}_{2}^{*}=\mathcal{H}_{1}^{*}+[(\mathbf{1}-x) \wedge(\mathbf{1}-(\mathbf{1}-x))=\mathbf{0}]$.

This is the dual (opposite? reverse?) of the variety of the logic of the weak excluded middle ($\neg x \vee \neg \neg x=1$).

Density D2 Same as D1.
Splitting S2 Same as S1 with the additional assumption that

$$
b_{1} \wedge b_{2} \wedge(\mathbf{1}-(\mathbf{1}-a))=\mathbf{0}
$$

- $\mathcal{H}_{3}^{*}=\mathcal{H}_{1}^{*}+[(((\mathbf{1}-x) \wedge x)-y) \wedge y=\mathbf{0}]$

This is the dual of the second slice of Hosoi: a coHA $L \in \mathcal{H}_{3}^{*}$ iff every $\mathfrak{p} \in$ Spec $^{\uparrow} L$ is minimal or maximal.

Density D3 For every a such that $a=\mathbf{1}-(\mathbf{1}-a) \neq \mathbf{0}$ there exists a non zero element b such that $b \ll a$.
Splitting S3 Same as S1.

- $\mathcal{H}_{2}^{*}=\mathcal{H}_{1}^{*}+[(\mathbf{1}-x) \wedge(\mathbf{1}-(\mathbf{1}-x))=\mathbf{0}]$.

This is the dual (opposite? reverse?) of the variety of the logic of the weak excluded middle ($\neg x \vee \neg \neg x=1$).

Density D2 Same as D1.
Splitting S2 Same as S1 with the additional assumption that

$$
b_{1} \wedge b_{2} \wedge(\mathbf{1}-(\mathbf{1}-a))=\mathbf{0}
$$

- $\mathcal{H}_{3}^{*}=\mathcal{H}_{1}^{*}+[(((\mathbf{1}-x) \wedge x)-y) \wedge y=\mathbf{0}]$

This is the dual of the second slice of Hosoi: a coHA $L \in \mathcal{H}_{3}^{*}$ iff every $\mathfrak{p} \in$ Spec $^{\uparrow} L$ is minimal or maximal.

Density D3 For every a such that $a=\mathbf{1}-(\mathbf{1}-a) \neq \mathbf{0}$ there exists a non zero element b such that $b \ll a$.
Splitting S3 Same as S1.

- And so on for $\mathcal{H}_{4}^{*}, \ldots, \mathcal{H}_{8}^{*}$.

Theorem (Darnière - Junker 2011-18)

For $i=1,2, \ldots, 8$:
(1) Every coHA existentially closed in \mathcal{H}_{i}^{*} satisfies $D_{i}+S_{i}$.
(2) For every $L_{0}, L_{1}, L \in \mathcal{H}_{i}^{*}$ such that $L_{0} \subseteq L_{1}$ and $L_{0} \subseteq L$, if L_{1} is finite and if L satisfies $D_{i}+S_{i}$, there exist an $\mathcal{L}_{\mathrm{HA}^{*}-e m b e d d i n g ~ o f ~}^{L_{1}}$ into L over L_{0}.

Theorem (Darnière - Junker 2011-18)

For $i=1,2, \ldots, 8$:
(1) Every coHA existentially closed in \mathcal{H}_{i}^{*} satisfies $D_{i}+S_{i}$.
(2) For every $L_{0}, L_{1}, L \in \mathcal{H}_{i}^{*}$ such that $L_{0} \subseteq L_{1}$ and $L_{0} \subseteq L$, if L_{1} is finite and if L satisfies $D_{i}+S_{i}$, there exist an $\mathcal{L}_{\mathrm{HA}^{*}-e m b e d d i n g ~ o f ~}^{L_{1}}$ into L over L_{0}.

Fact: \mathcal{H}_{1}^{*} and \mathcal{H}_{2}^{*} are not locally finite, but every other \mathcal{H}_{i}^{*} is.

Corollary

For $i=3,4, \ldots, 8, \mathcal{H}_{i}^{*}$ has a model-completion, which is axiomatized by $D_{i}+S_{i}$ and the axioms of \mathcal{H}_{i}^{*}.

2 - Dimension theory

Let $<$ be strict order on a set E, and $x \in E$. The foundation rank of x in E for $<$ is defined as follows:

$$
\operatorname{rk}(x,<) \geqslant n \Longleftrightarrow \exists x_{0}<x_{1}<\cdots<x_{n}=x
$$

Then $\mathrm{rk}(x,<)=n \Longleftrightarrow \mathrm{rk}(x,<) \geqslant n$ and $\mathrm{rk}(x,<) \nsupseteq n+1$.

Let $<$ be strict order on a set E, and $x \in E$. The foundation rank of x in E for $<$ is defined as follows:

$$
\operatorname{rk}(x,<) \geqslant n \Longleftrightarrow \exists x_{0}<x_{1}<\cdots<x_{n}=x
$$

Then $\operatorname{rk}(x,<)=n \Longleftrightarrow \operatorname{rk}(x,<) \geqslant n$ and $\operatorname{rk}(x,<) \nsupseteq n+1$.
The cofoundation rank $\operatorname{cork}(x,<)=\operatorname{rk}(x,>)$.

Let $<$ be strict order on a set E, and $x \in E$. The foundation rank of x in E for $<$ is defined as follows:

$$
\operatorname{rk}(x,<) \geqslant n \Longleftrightarrow \exists x_{0}<x_{1}<\cdots<x_{n}=x
$$

Then $\operatorname{rk}(x,<)=n \Longleftrightarrow \operatorname{rk}(x,<) \geqslant n$ and $\operatorname{rk}(x,<) \nsupseteq n+1$.
The cofoundation rank $\operatorname{cork}(x,<)=\operatorname{rk}(x,>)$.
Examples:

- $\operatorname{rk}(x,<)=0$ iff x in minimal in E.
- $\operatorname{cork}(x,<)=0$ iff x is maximal in E.

For every a in a distributive bounded lattice L,

$$
\operatorname{dim}_{L} a:=\max \{\operatorname{cork}(\mathfrak{p}, \subset) \mid \mathfrak{p} \in P(a)\} .
$$

(Reminder: $P(a)=\{\mathfrak{p} \in \operatorname{Spec} L \mid a \in \mathfrak{p}\}$.) By convention $\operatorname{dim} \mathbf{0}=-\infty$.

For every a in a distributive bounded lattice L,

$$
\operatorname{dim}_{L} a:=\max \{\operatorname{cork}(\mathfrak{p}, \subset) \mid \mathfrak{p} \in P(a)\} .
$$

(Reminder: $P(a)=\{\mathfrak{p} \in \operatorname{Spec} L \mid a \in \mathfrak{p}\}$.)
By convention $\operatorname{dim} \mathbf{0}=-\infty$.

Proposition

For every $a, b \in L, \operatorname{dim}_{L}(a \vee b)=\max \left(\operatorname{dim}_{L} a, \operatorname{dim}_{L} b\right)$.
Proof: $P(a \vee b)=P(a) \cup P(b)$.

The finite case
If L is finite:

- Every $a \in L$ is the join of finitely many \vee-irreducible elements.
- For every $c \in \mathcal{I}^{\vee}(L)$, $\operatorname{dim} c$ is the foundation rank of c in $\mathcal{I}^{\vee}(L)$.

$\operatorname{dim} 2$
$\operatorname{dim} 1$
$\operatorname{dim} 0$

Remark: dim_{L} a strongly depends on L.

$$
\operatorname{dim}_{L_{2}} \mathbf{1}=1 \quad \operatorname{dim}_{B_{2}} \varphi(\mathbf{1})=0
$$

Remark: dim_{L} a strongly depends on L.

Remark: dim_{L} a strongly depends on L.

Proposition

If $\varphi: L_{0} \rightarrow L_{1}$ is an $\mathcal{L}_{\mathrm{HA}^{*}}$-embedding then $\operatorname{dim}_{L_{0}} a \leqslant \operatorname{dim}_{L_{1}} \varphi(a)$.

The geometric case
$k=$ algebraically closed field. $S=$ an algebraic variety ($=$ Zariski-closed subset of k^{n}).

$$
\operatorname{dim} S=\max \{\operatorname{cork}(\mathfrak{p}, \subset) \mid \mathfrak{p} \in P(\operatorname{Ann}(S))\}
$$

where $\operatorname{Ann}(S)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right] \mid f=0\right.$ on $\left.S\right\}$, and $P(\operatorname{Ann}(S))=\left\{\mathfrak{p} \in \operatorname{Spec} k\left[X_{1}, \ldots, X_{n}\right] \mid \operatorname{Ann}(S) \subseteq \mathfrak{p}\right\}$.

The geometric case
$k=$ algebraically closed field.
$S=$ an algebraic variety ($=$ Zariski-closed subset of k^{n}).

$$
\operatorname{dim} S=\max \{\operatorname{cork}(\mathfrak{p}, \subset) \mid \mathfrak{p} \in P(\operatorname{Ann}(S))\}
$$

where $\operatorname{Ann}(S)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right] \mid f=0\right.$ on $\left.S\right\}$, and $P(\operatorname{Ann}(S))=\left\{\mathfrak{p} \in \operatorname{Spec} k\left[X_{1}, \ldots, X_{n}\right] \mid \operatorname{Ann}(S) \subseteq \mathfrak{p}\right\}$.

Theorem (\simeq Hilbert's Nullstellensatz)

$$
\operatorname{Spec} k\left[X_{1}, \ldots, X_{n}\right] \underset{\text { homeo. }}{\sim} \operatorname{Spec} L\left(k^{n}\right)
$$

where $L\left(k^{n}\right)=\left\{\right.$ Zariski-closed subsets of $\left.k^{n}\right\}$.
As a consequence, $\operatorname{dim} S=\operatorname{dim}_{L\left(k^{n}\right)} S$.

Fact: For non-empty $S, T \in L\left(k^{n}\right), T \ll S \Rightarrow \operatorname{dim} T<\operatorname{dim} S$.

Proposition

For every non-zero elements a, b of a distributive bounded lattice L,

$$
b \ll a \Rightarrow \operatorname{dim} b<\operatorname{dim} a .
$$

Fact: For non-empty $S, T \in L\left(k^{n}\right), T \ll S \Rightarrow \operatorname{dim} T<\operatorname{dim} S$.

Proposition

For every non-zero elements a, b of a distributive bounded lattice L,

$$
b \ll a \Rightarrow \operatorname{dim} b<\operatorname{dim} a .
$$

Hence $\exists a_{0} \ll \cdots \ll a_{n}=a$ in $L \backslash\{\mathbf{0}\} \Rightarrow \operatorname{dim}_{L} a \geqslant n$. That is

$$
\operatorname{dim} a \geqslant \operatorname{rk}(a, \ll) .
$$

Fact: For non-empty $S, T \in L\left(k^{n}\right), T \ll S \Rightarrow \operatorname{dim} T<\operatorname{dim} S$.

Proposition

For every non-zero elements a, b of a distributive bounded lattice L,

$$
b \ll a \Rightarrow \operatorname{dim} b<\operatorname{dim} a .
$$

Hence $\exists a_{0} \ll \cdots \ll a_{n}=a$ in $L \backslash\{\mathbf{0}\} \Rightarrow \operatorname{dim}_{L} a \geqslant n$. That is

$$
\operatorname{dim} a \geqslant \operatorname{rk}(a, \ll) .
$$

Proposition

If L is a coHA then $\operatorname{dim}_{L} a=\operatorname{rk}(a, \ll)$ for every $a \in L \backslash\{\mathbf{0}\}$. As a consequence "dim $a=n$ " is first-order definable in $\mathcal{L}_{\mathrm{HA}^{*}}$.

Codimension

For every non-zero element of a distributive bounded lattice L,

$$
\operatorname{codim}_{L} a:=\min \{\operatorname{rk}(\mathfrak{p}, \subset) \mid \mathfrak{p} \in P(a)\} .
$$

By convention codim $0=+\infty$.

- Similar properties as dim.
- Much better if L is a coHA

Codimension

For every non-zero element of a distributive bounded lattice L,

$$
\operatorname{codim}_{\llcorner } a:=\min \{\operatorname{rk}(\mathfrak{p}, \subset) \mid \mathfrak{p} \in P(a)\} .
$$

By convention codim $0=+\infty$.
In a nutshell:

- Similar properties as dim.
- Much better if L is a coHA.

For every a, b in a coHA L let

$$
\delta(a, b):=2^{-\operatorname{codim} a \Delta b}
$$

where $a \Delta b=(a-b) \vee\left(b_{a}\right)=\left(a^{*} \leftrightarrow b^{*}\right)^{*}$.

Proposition

(1) δ is a pseudometric on L. It is an ultrametric iff every non-zero element has finite codimension in L.
(2) Every $\mathcal{L}_{\mathrm{HA}^{*}}$-morphism is 1 -lipshitzian.
(3) $\mathcal{L}_{\mathrm{HA}^{*} \text {-operations are uniformly continuous, hence extend uniquely to }}$ the Cauchy-completion \widehat{L} of L (so \widehat{L} is still a coHA).

Theorem (Darnière - Junker 2010)

For every positive integer d,

$$
d L:=\left\{a \in L \mid \operatorname{codim}_{L} a \geqslant d\right\}
$$

is a principal ideal of L.
The family $(L / d L)_{d<\omega}$ forms a projective system, whose projective limits coincides with the Cauchy-completion \hat{L} of L.

Remark: If $L / d L$ is finite for every d, this implies that \hat{L} is also the profinite completion of L.

A pseudometric space is precompact if its Cauchy-completion is compact.

Theorem (Darniere - Junker 2010)

For every variety \mathcal{H}^{*} of $\mathrm{coH} A$, the following are equivalent.
(1) \mathcal{H}^{*} has the finite model property.
(2) Every L free in \mathcal{H}^{*} is Hausdorff.
(3) Every L finitely presented in \mathcal{H}^{*} is precompact Hausdorff.

More on this in Codimension and pseudometric in co-Heyting algebras, Algebra Universalis 64 (2010), no. 3-4.

3 - Model-completion of coHA of dimension $\leqslant d$
$\operatorname{dim} L:=\operatorname{dim}_{L} \mathbf{1}$.
$\mathcal{D}(d):=\{\operatorname{coHA} L \mid \operatorname{dim} L \leqslant d\}$.
Remark: This is the dual (opposite? reverse?) of the $(d+1)$-slice of Hosoi (1967).

Proposition (Hosoi 1967 + Ono 1971)

$\mathcal{D}(d)$ is a variety of coHA's.

Axiomatisation: $\mathcal{D}(d)=\mathcal{H}_{1}^{*}+\left[\Delta_{d}=0\right]$ where $\Delta_{n}=\Delta_{n}\left(x_{0}, \ldots, x_{d}\right)$ is defined inductively by $\Delta_{-1}=\mathbf{1}$ and for $d \geqslant 0$

$$
\Delta_{d}=\left(\Delta_{d-1}-x_{d}\right) \wedge x_{d}
$$

The point is that $(a-b) \wedge b \ll a$ in every coHA.

Examples:

- $\mathcal{D}(-1)=\mathcal{H}_{1}^{*}+[\mathbf{1}=\mathbf{0}]$ is the trivial variety \mathcal{H}_{8}^{*}

Examples:

- $\mathcal{D}(-1)=\mathcal{H}_{1}^{*}+[\mathbf{1}=\mathbf{0}]$ is the trivial variety \mathcal{H}_{8}^{*}.
- $\mathcal{D}(0)=\mathcal{H}_{1}^{*}+[(\mathbf{1}-x) \wedge x=\mathbf{0}]$ is the variety \mathcal{H}_{7}^{*} of Boolean algebras.

Examples:

- $\mathcal{D}(-1)=\mathcal{H}_{1}^{*}+[\mathbf{1}=\mathbf{0}]$ is the trivial variety \mathcal{H}_{8}^{*}.
- $\mathcal{D}(0)=\mathcal{H}_{1}^{*}+[(\mathbf{1}-x) \wedge x=\mathbf{0}]$ is the variety \mathcal{H}_{7}^{*} of Boolean algebras.
- $\mathcal{D}(1)$ is the variety \mathcal{H}_{3}^{*}.

Examples:

- $\mathcal{D}(-1)=\mathcal{H}_{1}^{*}+[\mathbf{1}=\mathbf{0}]$ is the trivial variety \mathcal{H}_{8}^{*}.
- $\mathcal{D}(0)=\mathcal{H}_{1}^{*}+[(\mathbf{1}-x) \wedge x=\mathbf{0}]$ is the variety \mathcal{H}_{7}^{*} of Boolean algebras.
- $\mathcal{D}(1)$ is the variety \mathcal{H}_{3}^{*}.
- For $n \geqslant 2, \mathcal{D}(n)$ doesn't have the amalgamation property, hence doesn't have a model-completion... in $\mathcal{L}_{\mathrm{HA}^{*}}$!
$\mathcal{L}_{\mathrm{SC}_{d}}=\mathcal{L}_{\mathrm{HA}^{*}} \cup\left\{\mathrm{C}^{i}\right\}_{0 \leqslant i \leqslant d}$ where each C^{i} is a unary function symbol. For every a in an $\mathcal{L}_{\mathrm{SC}_{d}}$-structure let

$$
\text { sc-dim } a=\min \left\{e \leqslant d \mid a=\underset{0 \leqslant i \leqslant e}{W} \mathrm{C}^{i}(a)\right\} .
$$

Remark: Contrary to dim, sc-dim is automatically preserved by $\mathcal{L}_{\mathrm{SC}_{d}}$-embedding.

For every $S \in L\left(k^{d}\right)$, let $\mathrm{C}^{i}(S)=$ the pure i-dimensionnal component of S. The expansion of L by these functions C^{i} is our guiding example of d-scaled lattice.

A d-subscaled lattice is an $\mathcal{L}_{\mathrm{SC}_{d}}$-expansion L of a coHA satisfying the following axioms.
$\mathrm{SC}_{1} \underset{0 \leqslant i \leqslant d}{W} \mathrm{C}^{i}(a)=a$
$\mathrm{SC}_{2} \forall I \subseteq\{0, \ldots, d\}, \forall k:$

$$
\mathrm{C}^{k}\left(\underset{i \in I}{W} \mathrm{C}^{i}(a)\right)=\left\{\begin{array}{cl}
0 & \text { if } k \notin I \\
\mathrm{C}^{k}(a) & \text { if } k \in I
\end{array}\right.
$$

$\mathrm{SC}_{3} \forall k \geqslant \max (\mathrm{sc}-\operatorname{dim}(a), \operatorname{sc}-\operatorname{dim}(b))$,

$$
\mathrm{C}^{k}(a \vee b)=\mathrm{C}^{k}(a) \vee \mathrm{C}^{k}(b)
$$

$\mathrm{SC}_{4} \forall i \neq j, \quad \operatorname{sc-dim}\left(\mathrm{C}^{i}(a) \wedge \mathrm{C}^{j}(b)\right)<\min (i, j)$ $\mathrm{SC}_{5} \forall k \geqslant \operatorname{sc-dim}(b), \quad \mathrm{C}^{k}(a)-b=\mathrm{C}^{k}(a)-\mathrm{C}^{k}(b)$

In particular, by SC_{1} : sc- $\operatorname{dim} b<a \Rightarrow \mathrm{C}^{k}(a)-b=\mathrm{C}^{k}(a)$.
$\mathrm{SC}_{6} b \ll a \neq \mathbf{0} \Rightarrow \operatorname{sc}-\operatorname{dim} b<\mathrm{sc}-\operatorname{dim} a$.
Because of SC_{6}, the class of all d-subscaled is not a variety.

Theorem (Darnière 2010-18)

Every finitely generated d-subscaled lattice is finite.
Key of the proof: sc-dim $(a-b) \wedge b<\operatorname{sc-dim} a$.

Theorem (Darnière 2010-18)

Every finitely generated d-subscaled lattice is finite.
Key of the proof: sc-dim $(a-b) \wedge b<\operatorname{sc-dim} a$.
SC_{6} implies that $\operatorname{dim}_{L} a \leqslant$ sc-dim a for every a in a d-subscaled lattice L. When equality holds L is called a d-scaled lattice.

Theorem

The theory of d-subscaled lattices has a model-completion, axiomatised by the axioms of d-scaled lattices and the following conditions.
Catenarity For every $r<q<p$ and every non-zero elements $c \ll a$, if $c=\mathrm{C}^{r}(c)$ and $a=\mathrm{C}^{p}(a)$, there exist an element $b=\mathrm{C}^{q}(b)$ such that $c \ll b \ll a$.
Splitting For every elements b_{1}, b_{2}, a, if $b_{1} \vee b_{2} \ll a \neq \mathbf{0}$, there exist non-zero elements $a_{1} \geqslant b_{1}$ and $a_{2} \geqslant b_{2}$ such that:

$$
\left\{\begin{array}{l}
a_{1}=a-a_{2} \\
a_{2}=a-a_{1} \\
a_{1} \wedge a_{2}=b_{1} \wedge b_{2}
\end{array}\right.
$$

For yet another model-completion result based on a Density and a Splitting axiom, see Carai and Ghilardi: Existentially Closed Brouwerian Semilattices, arXiv 1702.08352

Thank you!

