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Part 1: Dualities



de Vries duality

Theorem (Stone duality).
Stone is dually equivalent to BA.

Can Stone duality be extended to a larger class of spaces, e.g.,
compact Hausdorff spaces?

There have been many positive answers to this question.

The one of interest to us is that of de Vries, 1962.

We will take another route to arrive at de Vries duality.

Our approach is based on the duality used in modal logic.
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Continuous relations

Let X be a Stone space and R ⊆ X2 a binary relation.

R is called continuous if

1 R[x] is a closed set for each x ∈ X, where

R[x] = {y ∈ X : xRy}.

2 U ∈ Clop(X)⇒ R−1[U] ∈ Clop(X), where

R−1[U] = {x ∈ X : R[x] ∩ U 6= ∅}.

In other words, R−1 : Clop(X)→ Clop(X) is well defined.

Theorem (Esakia, 1974) R is continuous iff ρ : X → VX defined
by ρ(x) = R[x] is a well-defined continuous map, where VX is the
Vietoris space.
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Jónsson-Tarski duality

A modal space is a pair (X,R), where X is a Stone space and R is
a continuous relation.

If (X,R) is a modal space, then (Clop(X),R−1) is a modal
algebra.

If (B,♦) is a modal algebra, then (XB,RB) is a modal space,
where XB is the Stone dual of B and RB is defined by

xRBy iff (a ∈ y⇒ ♦a ∈ x).

Theorem (Jónsson-Tarski representation)
Every modal algebra (B,♦) is isomorphic to (Clop(XB),R−1

B ).

This can be extended to a categorical duality.



Jónsson-Tarski duality

A modal space is a pair (X,R), where X is a Stone space and R is
a continuous relation.

If (X,R) is a modal space, then (Clop(X),R−1) is a modal
algebra.

If (B,♦) is a modal algebra, then (XB,RB) is a modal space,
where XB is the Stone dual of B and RB is defined by

xRBy iff (a ∈ y⇒ ♦a ∈ x).

Theorem (Jónsson-Tarski representation)
Every modal algebra (B,♦) is isomorphic to (Clop(XB),R−1

B ).

This can be extended to a categorical duality.



Jónsson-Tarski duality

A modal space is a pair (X,R), where X is a Stone space and R is
a continuous relation.

If (X,R) is a modal space, then (Clop(X),R−1) is a modal
algebra.

If (B,♦) is a modal algebra, then (XB,RB) is a modal space,
where XB is the Stone dual of B and RB is defined by

xRBy iff (a ∈ y⇒ ♦a ∈ x).

Theorem (Jónsson-Tarski representation)
Every modal algebra (B,♦) is isomorphic to (Clop(XB),R−1

B ).

This can be extended to a categorical duality.



Jónsson-Tarski duality

A modal space is a pair (X,R), where X is a Stone space and R is
a continuous relation.

If (X,R) is a modal space, then (Clop(X),R−1) is a modal
algebra.

If (B,♦) is a modal algebra, then (XB,RB) is a modal space,
where XB is the Stone dual of B and RB is defined by

xRBy iff (a ∈ y⇒ ♦a ∈ x).

Theorem (Jónsson-Tarski representation)
Every modal algebra (B,♦) is isomorphic to (Clop(XB),R−1

B ).

This can be extended to a categorical duality.



Jónsson-Tarski duality

A modal space is a pair (X,R), where X is a Stone space and R is
a continuous relation.

If (X,R) is a modal space, then (Clop(X),R−1) is a modal
algebra.

If (B,♦) is a modal algebra, then (XB,RB) is a modal space,
where XB is the Stone dual of B and RB is defined by

xRBy iff (a ∈ y⇒ ♦a ∈ x).

Theorem (Jónsson-Tarski representation)
Every modal algebra (B,♦) is isomorphic to (Clop(XB),R−1

B ).

This can be extended to a categorical duality.



Continuous relations

Continuous relations are not symmetric.

While for U ∈ Clop(X) we have R−1[U] ∈ Clop(X),

we may not have R[U] ∈ Clop(X), where

R[U] = {x ∈ X : R−1[x] ∩ U 6= ∅}.

However, continuous relations satisfy the following symmetric
condition.

For each closed set F both R[F] and R−1[F] are closed.



Continuous relations

Continuous relations are not symmetric.

While for U ∈ Clop(X) we have R−1[U] ∈ Clop(X),

we may not have R[U] ∈ Clop(X), where

R[U] = {x ∈ X : R−1[x] ∩ U 6= ∅}.

However, continuous relations satisfy the following symmetric
condition.

For each closed set F both R[F] and R−1[F] are closed.



Continuous relations

Continuous relations are not symmetric.

While for U ∈ Clop(X) we have R−1[U] ∈ Clop(X),

we may not have R[U] ∈ Clop(X), where

R[U] = {x ∈ X : R−1[x] ∩ U 6= ∅}.

However, continuous relations satisfy the following symmetric
condition.

For each closed set F both R[F] and R−1[F] are closed.



Continuous relations

Continuous relations are not symmetric.

While for U ∈ Clop(X) we have R−1[U] ∈ Clop(X),

we may not have R[U] ∈ Clop(X), where

R[U] = {x ∈ X : R−1[x] ∩ U 6= ∅}.

However, continuous relations satisfy the following symmetric
condition.

For each closed set F both R[F] and R−1[F] are closed.



Continuous relations

Continuous relations are not symmetric.

While for U ∈ Clop(X) we have R−1[U] ∈ Clop(X),

we may not have R[U] ∈ Clop(X), where

R[U] = {x ∈ X : R−1[x] ∩ U 6= ∅}.

However, continuous relations satisfy the following symmetric
condition.

For each closed set F both R[F] and R−1[F] are closed.



Closed relations

Let X be a compact Hausdorff space.

A binary relation R on X is called closed if R[F] and R−1[F] are
closed for each closed set F.

Theorem. The following are equivalent:

1 R is closed.
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Let X be a Stone space with a closed relation R.

Then R−1[U] may not be clopen for clopen U.

So R−1 may not be a map on Clop(X).

Define a binary relation ≺ on Clop(X) by

U ≺ V iff U ⊆ R−1[V].

Alternatively,
U ≺ V iff R[U] ⊆ V.

Then (Clop(X),≺) is a Boolean algebra with a binary relation.
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Subordinations

Definition. A subordination or a strong inclusion on a Boolean
algebra B is a binary relation ≺ satisfying

(S1) 0 ≺ a ≺ 1 for each a ∈ B;

(S2) a ≺ b, c implies a ≺ b ∧ c;
(S3) a, b ≺ c implies a ∨ b ≺ c;
(S4) a ≤ b ≺ c ≤ d implies a ≺ d.

(Clop(X),≺) is a Boolean algebra with a subordination.
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Boolean algebras with subordinations

An alternative approach to subordinations was developed by
Celani (2001) in terms of quasi-modal operators and by Düntch
and Vakarelov (2004) in terms of pre-contact relations.

One can develop a duality similar to Jónsson-Tarski duality
between Stone spaces with closed relations and Boolean
algebras with subordinations.

Let X be a Stone space with a closed relation R.

Then (Clop(X),≺) is a Boolean algebra with a subordination.
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Let XB be the dual of B.

Define
xRBy provided �x ⊆ y.

Then RB is a closed relation on XB.
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Modal-like duality

Theorem (Celani, 2001, Dimov and Vakarelov, 2006) Every
Boolean algebra with a subordination (B,≺) is isomorphic to
(Clop(X),≺) for some Stone space with a closed relation.

This correspondence can be extended to dualities of appropriate
categories (G.B., N.B, S.S., Y.V., 2014).
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Sahlqvist theory is a powerful tool in modal logic.

Every Sahlqvist modal formula has a first order-correspondent
on relational structures.

1 R is reflexive iff �p→ p is valid.
2 R is symmetric iff p→ �♦p is valid.
3 R is transitive iff �p→ ��p is valid.
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Consider the following axioms on BAs with subordination:
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(S6) a ≺ b implies ¬b ≺ ¬a;

(S7) a ≺ b implies there is c ∈ B with a ≺ c ≺ b;
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Sahlqvist theory for subordinations

Theorem. (Celani, 2001, Düntch and Vakarelov, 2004) Let
(X,R) be the dual of (B,≺). Then

1 R is reflexive iff ≺ satisfies (S5).
2 R is symmetric iff ≺ satisfies (S6).
3 R is transitive iff ≺ satisfies (S7).

So if (B,≺) validates (S1)-(S7), then in its dual (X,R) the
relation R is a closed equivalence relation.

Sahlqvist correspondence for similar languages were studied by
(Balbiani and Kikot, 2012) and (Santoli, 2016).
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Gleason cover

Closed equivalence relations are connected to Gleason covers.

Definition. An onto continuous map π : X → Y between
compact Hausdorff spaces is called irreducible if the image of a
proper closed set is proper.

The Gleason cover of a compact Hausdorff space Y is a pair
(X, π), where X is an extremally disconnected (ED) Stone space
and π : X → Y is an irreducible map.
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where
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U ∨ V = Int(Cl(U ∪ V)),

¬U = Int(X − U).
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the corresponding Gleason space (X,R).

This establishes a one-to-one correspondence between compact
Hausdorff spaces and Gleason spaces.

In fact, this correspondence can be extended to a categorical
duality.
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Theorem. Let (B,≺) satisfy (S1)-(S7) and (X,R) be its dual.

Then R is irreducible iff (B,≺) satisfies (S8).



Irreducible equivalnce relations

Consider the following axiom on BA’s with subordination:

(S8) a 6= 0 implies there is b 6= 0 with b ≺ a.

(S8) is equivalent to a =
∨
{b : b ≺ a}.

Theorem. Let (B,≺) satisfy (S1)-(S7) and (X,R) be its dual.

Then R is irreducible iff (B,≺) satisfies (S8).



Irreducible equivalnce relations

Consider the following axiom on BA’s with subordination:

(S8) a 6= 0 implies there is b 6= 0 with b ≺ a.

(S8) is equivalent to a =
∨
{b : b ≺ a}.

Theorem. Let (B,≺) satisfy (S1)-(S7) and (X,R) be its dual.

Then R is irreducible iff (B,≺) satisfies (S8).



Irreducible equivalnce relations

Consider the following axiom on BA’s with subordination:

(S8) a 6= 0 implies there is b 6= 0 with b ≺ a.

(S8) is equivalent to a =
∨
{b : b ≺ a}.

Theorem. Let (B,≺) satisfy (S1)-(S7) and (X,R) be its dual.

Then R is irreducible iff (B,≺) satisfies (S8).



Irreducible equivalnce relations

Consider the following axiom on BA’s with subordination:

(S8) a 6= 0 implies there is b 6= 0 with b ≺ a.

(S8) is equivalent to a =
∨
{b : b ≺ a}.

Theorem. Let (B,≺) satisfy (S1)-(S7) and (X,R) be its dual.

Then R is irreducible iff (B,≺) satisfies (S8).



Gleason spaces

Let (X,R) be a Gleason space.

Then (Clop(X),≺) satisfies (S1)-(S8).

Moreover, since X is also ED, Clop(X) is complete.



Gleason spaces

Let (X,R) be a Gleason space.

Then (Clop(X),≺) satisfies (S1)-(S8).

Moreover, since X is also ED, Clop(X) is complete.



Gleason spaces

Let (X,R) be a Gleason space.

Then (Clop(X),≺) satisfies (S1)-(S8).

Moreover, since X is also ED, Clop(X) is complete.



de Vries algebras

Definition (de Vries, 1962) A binary relation ≺ on a Boolean
algebra is called is a compingent relation or a de Vries
subordination if it satisfies (S1)-(S8).

In other words, a compingent relation is a subordination
satisfying (S5)-(S8).

A de Vries algebra is a pair (B,≺), where B is a complete
Boolean algebra and ≺ is a compingent relation.
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de Vries duality now follows as a corollary.

Corollary (de Vries, 1962) The category KHaus of compact
Hausdorff spaces is dual to the category DeV of de Vries
algebras.
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Part 2: Logical calculi



Language

We will consider formulas in the following language:

p | > | ϕ ∧ ϕ | ¬ϕ | ϕ ϕ

On a BA with subordination we define

a b =

{
1 if a ≺ b
0 otherwise

Similar semantics was considered by Esakia (1985).

A two sorted language to reason about pre-contact algebras was
investigated by Balbiani, Tinchev and Vakarelov (2007).
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A strict implication on a Boolean algebra B is a binary operation
 : B× B→ B satisfying
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(I2) (a ∨ b) c = (a c) ∧ (b c);
(I3) a (b ∧ c) = (a b) ∧ (a c).

Axioms (I1)-(I3) correspond to (S1)-(S4).

(I2)-(I3) imply (S4).
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(I6) a b = 1 implies ∃c : a c = 1 and c b = 1;

(I7) a 6= 0 implies ∃b 6= 0 : b a = 1.

(I4)-(I7) correspond to (S5)-(S8)
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Discriminator variety

This variety is semi-simple and its subdirectly irreducible
(simple) algebras are those where has values in {0,1}.

Corollary 1. (G.B., N.B., Santoli, Venema, 2017) The variety of
strict implication algebras satisfying (I4) is generated by BAs
with subordinations satisfying (S5).

Corollary 2. (G.B., N.B., Santoli, Venema, 2017) The variety of
strict implication algebras satisfying (I4) and (I5) is generated
by BAs with subordinations satisfying (S5) and (S6).



Discriminator variety

This variety is semi-simple and its subdirectly irreducible
(simple) algebras are those where has values in {0,1}.

Corollary 1. (G.B., N.B., Santoli, Venema, 2017) The variety of
strict implication algebras satisfying (I4) is generated by BAs
with subordinations satisfying (S5).

Corollary 2. (G.B., N.B., Santoli, Venema, 2017) The variety of
strict implication algebras satisfying (I4) and (I5) is generated
by BAs with subordinations satisfying (S5) and (S6).



Discriminator variety

This variety is semi-simple and its subdirectly irreducible
(simple) algebras are those where has values in {0,1}.

Corollary 1. (G.B., N.B., Santoli, Venema, 2017) The variety of
strict implication algebras satisfying (I4) is generated by BAs
with subordinations satisfying (S5).

Corollary 2. (G.B., N.B., Santoli, Venema, 2017) The variety of
strict implication algebras satisfying (I4) and (I5) is generated
by BAs with subordinations satisfying (S5) and (S6).



Completeness

What about (I6) and (I7)?

(I6) a b = 1 implies ∃c : a c = 1 and c b = 1;

(I7) a 6= 0 implies ∃b 6= 0 : b a = 1.

These are ∀∃-statements.
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Non-standard rules

A class of structures is called inductive if it is closed under
directed limits.

Theorem. (Chang-Łos-Suszko) A first-order definable class of
structures is axiomatized by ∀∃-statements iff it is an inductive
class.

Such classes are called Π2-classes.
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A non-standard rule is one of the form:

(ρ)
F(ϕ̄, p̄)→ χ

G(ϕ̄)→ χ

where χ is a formula variable, and F,G are formulas, each
involving formula variables ϕ̄, and with F involving a fresh tuple
p̄ of proposition letters.

With the rule (ρ), we associate the first-order formula Φρ,
defined as:

Φρ := ∀ā, b ∈ B
(

G(ā) � b ⇒ ∃c̄ : F(ā, c̄) � b
)
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Completeness

Theorem. (G. B., N. B., Santoli, Venema, 2017)
Let L be obtained by adding non-standard rules {ρi}i∈I to
(I1)-(I5). Then L is sound and complete wrt the class of
algebras satisfying {Φρi}i∈I.

Key ingredient: Lindenbaum-Tarski like construction.

Corollary.

(I1)-(I5) + (ρ6), (ρ7) is sound and complete with respect to
compingent algebras.

What about topological completeness?
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Completeness

Given a compingent algebra (B,≺) we take the MacNeille
completion B of B.

We define C on B by:

aC b if there exist c, d ∈ B such that a ≤ c ≺ d ≤ b

Theorem.

Compingent algebras are closed under MacNeille
completions.

Theorem. Let (B,≺) be a component algebra and let X be its de
Vries dual. Then (RO(X),≺) is isomorphic to (B,C)
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Completeness

Corollary (G. B., N. B., Santoli, Venema, 2017)

1 (I1)-(I5) + (ρ6), (ρ7) is sound and complete wrt de Vries
algebras.

2 (I1)-(I5) + (ρ6), (ρ7) is sound and complete wrt Gleason
spaces.

3 (I1)-(I5) + (ρ6), (ρ7) is sound and complete wrt compact
Hausdorff spaces.
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Thank you!



Completeness of Stone spaces

Consider

(S9) ∀a, b(a b = 1⇒ ∃c ∈ B :
c c = 1 & a c = 1 & c b = 1).

and the corresponding non-standard rule

(ρ9)
(ϕ p) ∧ (p ψ) ∧ (p p)→ χ

(ϕ ψ)→ χ

A de Vries algebra (B,≺) validates (ρ9) iff its dual compact
Hausdorff space X is a Stone space.

Compingent algebras validating (S9) are closed under
MacNeille completions.



Completeness of Stone spaces

Consider

(S9) ∀a, b(a b = 1⇒ ∃c ∈ B :
c c = 1 & a c = 1 & c b = 1).

and the corresponding non-standard rule

(ρ9)
(ϕ p) ∧ (p ψ) ∧ (p p)→ χ

(ϕ ψ)→ χ

A de Vries algebra (B,≺) validates (ρ9) iff its dual compact
Hausdorff space X is a Stone space.

Compingent algebras validating (S9) are closed under
MacNeille completions.



Completeness of Stone spaces

Consider

(S9) ∀a, b(a b = 1⇒ ∃c ∈ B :
c c = 1 & a c = 1 & c b = 1).

and the corresponding non-standard rule

(ρ9)
(ϕ p) ∧ (p ψ) ∧ (p p)→ χ

(ϕ ψ)→ χ

A de Vries algebra (B,≺) validates (ρ9) iff its dual compact
Hausdorff space X is a Stone space.

Compingent algebras validating (S9) are closed under
MacNeille completions.



Completeness of Stone spaces

Consider

(S9) ∀a, b(a b = 1⇒ ∃c ∈ B :
c c = 1 & a c = 1 & c b = 1).

and the corresponding non-standard rule

(ρ9)
(ϕ p) ∧ (p ψ) ∧ (p p)→ χ

(ϕ ψ)→ χ

A de Vries algebra (B,≺) validates (ρ9) iff its dual compact
Hausdorff space X is a Stone space.

Compingent algebras validating (S9) are closed under
MacNeille completions.
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Propositional logic for Quasi-Priestley spaces

(B,≺) satisfies (S1)-(S5) + (S9) iff its dual (X,R) is a
Quasi-Priestley space.

Corollary
1 (I1)-(I5) + (ρ9) is sound and complete wrt BAs with

subordinations satisfying (S5) and (S9).
2 (I1)-(I5) + (ρ9) is sound and complete wrt Quasi-Priestley

spaces.

Thus our simple propositional calculus could be used to reason
about Quasi-Priestley spaces (J. Haenen’s Master’s thesis, 2018).
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