Reflection calculus and conservativity spectra

Lev D. Beklemishev

Steklov Mathematical Institute of RAS, Moscow

Topological methods in Logic VI
Tbilisi, July 1-7, 2018

Strictly positive modal formulas

The language of modal logic extends that of propositional calculus by a family of unary connectives $\left\{\diamond_{i}: i \in I\right\}$.
Strictly positive modal formulas are defined by the grammar:

$$
A::=p|\top|(A \wedge A) \mid \diamond_{i} A, \quad i \in I .
$$

We are interested in the implications $A \rightarrow B$ where A and B are strictly positive.

Strictly positive logics

- Strictly positive fragment of a modal logic L is the set of all implications $A \rightarrow B$ such that A and B are strictly positive and $L \vdash A \rightarrow B$.
- Strictly positive logics are consequence relations on the set of strictly positive modal formulas.

Strictly positive logics

- Strictly positive fragment of a modal logic L is the set of all implications $A \rightarrow B$ such that A and B are strictly positive and $L \vdash A \rightarrow B$.
- Strictly positive logics are consequence relations on the set of strictly positive modal formulas.

Basic strictly positive logic

We derive sequents of the form $A \vdash B$ with A, B s.p.
K^{+}: the s.p. fragment of K
(1) $A \vdash A ; \quad A \vdash T ; \quad$ from $A \vdash B$ and $B \vdash C$ infer $A \vdash C$;
(2) $A \wedge B \vdash A, B ; \quad$ from $A \vdash B$ and $A \vdash C$ infer $A \vdash B \wedge C$;
(3) from $A \vdash B$ infer $\diamond A \vdash \diamond B$.

Fact. K^{+}is closed under substitution and positive replacement: - if $A(p) \vdash B(p)$ then $A(C) \vdash B(C)$; - if $A \vdash B$ then $C(A) \vdash C(B)$.

Basic strictly positive logic

We derive sequents of the form $A \vdash B$ with A, B s.p.
K^{+}: the s.p. fragment of K
(1) $A \vdash A ; \quad A \vdash T ; \quad$ from $A \vdash B$ and $B \vdash C$ infer $A \vdash C$;
(2) $A \wedge B \vdash A, B ; \quad$ from $A \vdash B$ and $A \vdash C$ infer $A \vdash B \wedge C$;
(3) from $A \vdash B$ infer $\diamond A \vdash \diamond B$.

Fact. K^{+}is closed under substitution and positive replacement:

- if $A(p) \vdash B(p)$ then $A(C) \vdash B(C)$;
- if $A \vdash B$ then $C(A) \vdash C(B)$.

Normal strictly positive logics

A normal s.p. logic is a set of sequents closed under the rules of \mathbf{K}^{+} and the substitution rule.

Other standard logics:
(4) $\diamond \diamond A \vdash \diamond A$;
(T) $A \vdash \diamond A$;
(5) $\diamond A \wedge \diamond B \vdash \diamond(A \wedge \diamond B)$.

Semilattices with monotone operators

We consider lower semilattices with top equipped with a family of unary operators $\mathfrak{A}=\left(A ; \wedge, 1,\left\{\diamond_{i}: i \in I\right\}\right)$ where each \diamond_{i} is a monotone operator.

An operator $R: \mathfrak{A} \rightarrow \mathfrak{A}$ is:

- monotone if $x \leq y$ implies $R(x) \leq R(y)$;
- semi-idempotent if $R(R(x)) \leq R(x)$;
- closure if R is m ., s.i. and $x \leq R(x)$.

We call such structures SLO.

Algebraic semantics

We identify s.p. formulas and SLO terms. Then each sequent $A \vdash B$ represents an inequality (i.e. the identity $A \wedge B=A$):

- $A \vdash B$ holds in \mathfrak{A} if $\mathfrak{A} \vDash \forall \vec{x}(A(\vec{x}) \leq B(\vec{x}))$.

Facts:

- $A \vdash B$ is provable in K^{+}iff $A \vdash B$ holds in all SLO \mathfrak{A}.
- Varieties of SLO $=$ normal strictly positive logics.

Gödel's 2nd Incompleteness Theorem

A theory T is Gödelian if

- Natural numbers and operations + and are definable in T;
- T proves basic properties of these operations (contains EA);
- There is an algorithm (and a Σ_{1}-formula) recognizing the axioms of T.

$$
\operatorname{Con}(T)=' T \text { is consistent } '
$$

K. Gödel (1931): If a Gödelian theory T is consistent, then $\operatorname{Con}(T)$ is true but unprovable in T.

Semilattice of Gödelian theories

Def. $\mathfrak{G}_{\text {EA }}$ is the set of all Gödelian extensions of EA mod $=$ EA.
$S \leq_{\text {EA }} T \Longleftrightarrow \mathrm{EA} \vdash \forall x\left(\square_{T}(x) \rightarrow \square_{S}(x)\right)$;
$S=$ EA $T \Longleftrightarrow\left(S \leq_{\text {EA }} T\right.$ and $\left.T \leq_{\text {EA }} S\right)$.
Then $\left(\mathfrak{G}_{\mathrm{EA}}, \wedge_{\mathrm{EA}}, 1_{\mathrm{EA}}\right)$ is a lower semilattice with $1_{\mathrm{EA}}=\mathrm{EA}$ and $S \wedge_{E A} T:=S \cup T$
(defined by the disjunction of the Σ_{1}-definitions of S and T)

Reflection principles

Let T be a Gödelian theory.

- Reflection principles $R_{n}(T)$ for T are arithmetical sentences expressing "every Σ_{n}-sentence provable in T is true".
$R_{n}(T)$ can be seen as a relativization of the consistency assertion $\operatorname{Con}(T)=R_{0}(T)$.
- Every formula R_{n} induces a monotone semi-idempotent operator $R_{n}: T \longmapsto R_{n}(T)$ on $\mathfrak{G}_{E A}$.
- We consider the $\operatorname{SLO}\left(\mathfrak{G}_{\mathrm{FA}}: \wedge_{\mathrm{FA}}, 1_{\mathrm{FA}},\left\{R_{n}: n \in \omega\right\}\right)$

Reflection principles

Let T be a Gödelian theory.

- Reflection principles $R_{n}(T)$ for T are arithmetical sentences expressing "every Σ_{n}-sentence provable in T is true".
$R_{n}(T)$ can be seen as a relativization of the consistency assertion $\operatorname{Con}(T)=R_{0}(T)$.
- Every formula R_{n} induces a monotone semi-idempotent operator $R_{n}: T \longmapsto R_{n}(T)$ on $\mathfrak{G}_{E A}$.
- We consider the SLO $\left(\mathfrak{G}_{\mathrm{EA}} ; \wedge_{\mathrm{EA}}, 1_{\mathrm{EA}},\left\{R_{n}: n \in \omega\right\}\right)$.

Reflection calculus $R C$

RC axioms (over K^{+}for all \diamond_{n}):
(1) $\diamond_{n} \diamond_{n} A \vdash \diamond_{n} A$;
(2) $\diamond_{n} A \vdash \diamond_{m} A$ for $n>m$;
(3) $\diamond_{n} A \wedge \diamond_{m} B \vdash \diamond_{n}\left(A \wedge \diamond_{m} B\right)$ for $n>m$.

Example. $\diamond_{3} T \wedge \diamond_{2} \diamond_{3} p \vdash \diamond_{3}\left(T \wedge \diamond_{2} \diamond_{3} p\right) \vdash \diamond_{3} \diamond_{2} \diamond_{3} p$.

Main results on $R C$

Theorems (E. Dashkov, 2012).
(1) $A \vdash_{R C} B$ iff $A \vdash B$ holds in ($\mathfrak{G}_{\mathrm{PA}} ; \wedge_{\mathrm{PA}}, 1_{\mathrm{PA}},\left\{R_{n}: n \in \omega\right\}$);
(2) $R C$ is polytime decidable;
(3) $R C$ enjoys the finite model property (многообразие конечно аппроксимируемо).

Rem. The first claim is based on Japaridze's (1986) arithmetical completeness theorem for provability logic GLP.

Main results on $R C$

Theorems (E. Dashkov, 2012).
(1) $A \vdash_{R C} B$ iff $A \vdash B$ holds in ($\mathfrak{G}_{\mathrm{PA}} ; \wedge_{\mathrm{PA}}, 1_{\mathrm{PA}},\left\{R_{n}: n \in \omega\right\}$);
(2) $R C$ is polytime decidable;
(3) $R C$ enjoys the finite model property (многообразие конечно аппроксимируемо).

Rem. The first claim is based on Japaridze's (1986) arithmetical completeness theorem for provability logic GLP.

$R C^{0}$ as an ordinal notation system

Let $R C^{0}$ denote the variable-free fragment of $R C$.
Let W denote the set of all $R C^{0}$-formulas. For $A, B \in W$ define:

- $A \sim B$ if $A \vdash B$ and $B \vdash A$ in $R C^{0}$;
- $A<_{n} B$ if $B \vdash \diamond_{n} A$.

Theorem.
(1) Every $A \in W$ is equivalent to a word (formula without \wedge);
(2) $\left(W / \sim,<_{0}\right)$ is isomorphic to $\left(\varepsilon_{0},<\right)$.

Rem. $\varepsilon_{0}=\sup \left\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \ldots\right\}$ is the characteristic ordinal of Peano arithmetic.

Conservativity modalities

We consider operators associating with a theory S the theory generated by its consequences of logical complexity Π_{n+1} :

$$
\Pi_{n+1}(S):=\left\{\pi \in \Pi_{n+1}: S \vdash \pi\right\} .
$$

Notice that each Π_{n+1} is a closure operator.
We consider the $\operatorname{SLO}\left(\mathfrak{G}_{\mathrm{EA}} ; \wedge_{\mathrm{EA}}, 1_{\mathrm{EA}},\left\{R_{n}, \Pi_{n+1}: n \in \omega\right\}\right)$, the $R C^{\nabla}$ algebra of EA.

Open problem: Characterize the logic/identities of this structure. Is it (polytime) decidable?

Conservativity modalities

We consider operators associating with a theory S the theory generated by its consequences of logical complexity Π_{n+1} :

$$
\Pi_{n+1}(S):=\left\{\pi \in \Pi_{n+1}: S \vdash \pi\right\} .
$$

Notice that each Π_{n+1} is a closure operator.
We consider the $\operatorname{SLO}\left(\mathfrak{G}_{\mathrm{EA}} ; \wedge_{\mathrm{EA}}, 1_{\mathrm{EA}},\left\{R_{n}, \Pi_{n+1}: n \in \omega\right\}\right)$, the $R C^{\nabla}$ algebra of EA.

Open problem: Characterize the logic/identities of this structure. Is it (polytime) decidable?

Why conservativity?

Comparison of theories:

- $U \vdash R_{n}(T)$ means U is much stronger than T.
- $U \vdash \Pi_{n+1}(T)$ means T is Π_{n+1}-conservative over U.
- $\Pi_{n+1}(U)=\Pi_{n+1}(T)$ means T and U are equivalent up to quantifier complexity Π_{n+1}.

The logic combining both R_{n} and Π_{n+1} is able to express both the distance and the proximity of theories.

Ex. (U. Schmerl, 1979) $\Pi_{2}(P A)=R_{1}^{\varepsilon_{0}}(E A)$.

Why conservativity?

Comparison of theories:

- $U \vdash R_{n}(T)$ means U is much stronger than T.
- $U \vdash \Pi_{n+1}(T)$ means T is Π_{n+1}-conservative over U.
- $\Pi_{n+1}(U)=\Pi_{n+1}(T)$ means T and U are equivalent up to quantifier complexity Π_{n+1}.

The logic combining both R_{n} and Π_{n+1} is able to express both the distance and the proximity of theories.

Ex. (U. Schmerl, 1979) $\Pi_{2}(P A)=R_{1}^{\varepsilon_{0}}(E A)$.

Why conservativity?

Comparison of theories:

- $U \vdash R_{n}(T)$ means U is much stronger than T.
- $U \vdash \Pi_{n+1}(T)$ means T is Π_{n+1}-conservative over U.
- $\Pi_{n+1}(U)=\Pi_{n+1}(T)$ means T and U are equivalent up to quantifier complexity Π_{n+1}.

The logic combining both R_{n} and Π_{n+1} is able to express both the distance and the proximity of theories.

Ex. (U. Schmerl, 1979) $\Pi_{2}(\mathrm{PA})=R_{1}^{\varepsilon_{0}}(\mathrm{EA})$.

Results

- A strictly positive logic $R C^{\nabla}$ that is conjecturally complete;
- Expressibility of transfinitely iterated reflection up to ε_{0};
- Arithmetical completeness and decidability of the variable-free fragment of $R C^{\nabla}$;
- A (constructive) characterization of the Lindenbaum-Tarski algebra of the variable-free fragment;
- A relation of this algebra to proof-theoretic ordinals of arithmetical theories (conservativity spectra).

The system RC^{∇}

$R C^{\nabla}$ is a strictly positive logic with modalities $\left\{\diamond_{n}, \nabla_{n}: n \in \omega\right\}$ $\left(\diamond_{n}\right.$ for R_{n}, ∇_{n} for $\left.\Pi_{n+1}\right)$.

Axioms and rules:
(1) RC for \diamond_{n};
(2) RC for ∇_{n};
(3) $A \vdash \nabla_{n} A$; thus, each ∇_{n} satisfies $S 4^{+}$;
(1) $\diamond_{n} A \vdash \nabla_{n} A$;
(6) $\diamond_{m} \nabla_{n} A \vdash \diamond_{m} A$ if $m \leq n$;
(6) $\nabla_{n} \diamond_{m} A \vdash \diamond_{m} A$ if $m \leq n$.

Transfinite iterations

Def. $R: \mathfrak{G}_{T} \rightarrow \mathfrak{G}_{T}$ is computable if it can be defined by a computable map on the Gödel numbers of numerations (of extensions of T).

Suppose (Ω, \prec) is an elementary recursive well-ordering and R is a computable m.s.i. operator on \mathfrak{G}_{T}.

There exist theories $R^{\alpha}(S)$ (where $\alpha \in \Omega$): $R^{0}(S)$

Each R^{α} is computable and m.s.i.. Under some natural additional conditions the family R^{α} is unique modulo provable equivalence.

Transfinite iterations

Def. $R: \mathfrak{G}_{T} \rightarrow \mathfrak{G}_{T}$ is computable if it can be defined by a computable map on the Gödel numbers of numerations (of extensions of T).

Suppose (Ω, \prec) is an elementary recursive well-ordering and R is a computable m.s.i. operator on \mathfrak{G}_{T}.

Theorem
There exist theories $R^{\alpha}(S)$ (where $\alpha \in \Omega$): $R^{0}(S)={ }_{T} S$ and, if $\alpha \succ 0$,

$$
R^{\alpha}(S)={ }_{T} \bigcup\left\{R\left(R^{\beta}(S)\right): \beta \prec \alpha\right\} .
$$

Each R^{α} is computable and m.s.i.. Under some natural additional conditions the family R^{α} is unique modulo provable equivalence.

Expressibility of iterations

Let $\mathrm{EA}^{+}=I \Delta_{0}($ supexp $)=\mathrm{EA}+R_{1}(\mathrm{EA})$.
Theorem
For each $n<\omega$ and $0<\alpha<\varepsilon_{0}$ there is an RC-formula $A(p)$ s.t.

$$
\forall S \in \mathfrak{G}_{\mathrm{EA}^{+}} \diamond_{n}^{\alpha}(S)==_{\mathrm{EA}^{+}} \nabla_{n} A(S) .
$$

For example, $\nabla_{0} \diamond_{1} \diamond_{0} \varphi$ is arithmetically equivalent to $\left\{\diamond_{0}^{1+n} \varphi: n<\omega\right\}$.

Ignatiev $R C^{\nabla}$-algebra

Named after K. Ignatiev who introduced a universal Kripke model for Japaridze's logic based on sequences of ordinals (1993).

- I is the set of all ω-sequences $\vec{\alpha}=\left(\alpha_{0}, \alpha_{1}, \ldots\right)$ such that $\alpha_{i}<\varepsilon_{0}$ and $\alpha_{i+1} \leq \ell\left(\alpha_{i}\right)$, for all $i \in \omega$.
- $\ell(\beta)=0$ if $\beta=0$, and $\ell(\beta)=\gamma$ if $\beta=\delta+\omega^{\gamma}$, for some δ, γ.
- $\vec{\alpha} \leq_{\mathfrak{I}} \vec{\beta} \Longleftrightarrow \forall i \alpha_{i} \geq \beta_{i}$.

Fact. The ordering $\left(I, \leq_{\mathfrak{I}}\right)$ is a meet-semilattice.

Ignatiev $R C^{\nabla}$-algebra

Named after K. Ignatiev who introduced a universal Kripke model for Japaridze's logic based on sequences of ordinals (1993).

- I is the set of all ω-sequences $\vec{\alpha}=\left(\alpha_{0}, \alpha_{1}, \ldots\right)$ such that $\alpha_{i}<\varepsilon_{0}$ and $\alpha_{i+1} \leq \ell\left(\alpha_{i}\right)$, for all $i \in \omega$.
- $\ell(\beta)=0$ if $\beta=0$, and $\ell(\beta)=\gamma$ if $\beta=\delta+\omega^{\gamma}$, for some δ, γ.
- $\vec{\alpha} \leq_{\mathfrak{I}} \vec{\beta} \Longleftrightarrow \forall i \alpha_{i} \geq \beta_{i}$.

Fact. The ordering $\left(I, \leq_{\mathfrak{I}}\right)$ is a meet-semilattice.

Ignatiev $R C^{\nabla}$-algebra

We define the functions $\nabla_{n}^{\mathfrak{I}}, \diamond_{n}^{\mathfrak{I}}: I \rightarrow I$.
For each $\vec{\alpha}=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}, \ldots\right)$ let

- $\nabla_{n}^{\mathfrak{I}}(\vec{\alpha}):=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}, 0, \ldots\right)$;
- $\diamond_{n}^{\mathfrak{J}}(\vec{\alpha}):=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{n}, 0, \ldots\right)$, where $\beta_{n+1}:=0$ and $\beta_{i}:=\alpha_{i}+\omega^{\beta_{i+1}}$, for all $i \leq n$.

Ignatiev $R C^{\nabla}$-algebra

We define the functions $\nabla_{n}^{\mathfrak{I}}, \diamond_{n}^{\mathfrak{I}}: I \rightarrow I$.
For each $\vec{\alpha}=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}, \ldots\right)$ let

- $\nabla_{n}^{\mathfrak{I}}(\vec{\alpha}):=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}, 0, \ldots\right)$;
- $\diamond_{n}^{\mathfrak{J}}(\vec{\alpha}):=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{n}, 0, \ldots\right)$, where $\beta_{n+1}:=0$ and $\beta_{i}:=\alpha_{i}+\omega^{\beta_{i+1}}$, for all $i \leq n$.

Fact. The SLO $\mathfrak{I}=\left(I, \wedge_{\mathfrak{I}},\left\{\diamond_{n}^{\mathfrak{I}}, \nabla_{n}^{\mathfrak{I}}: n \in \omega\right\}\right)$ is an $R C^{\nabla}$-algebra.

Back to arithmetic

Let $\mathfrak{G}_{\mathrm{EA}}^{0}$ denote the subalgebra of
$\left(\mathfrak{G}_{\mathrm{EA}} ; \wedge_{\mathrm{EA}}, 1_{\mathrm{EA}},\left\{R_{n}, \Pi_{n+1}: n \in \omega\right\}\right)$ generated by 1_{EA}.

The following structures are isomorphic:

(3) The free 0 -generated $R C^{\nabla}$-algebra; (3) $\mathfrak{I}=\left(I, \wedge_{\mathfrak{J}},\left\{\diamond_{n}^{\mathfrak{J}}, \nabla_{n}^{\mathfrak{J}}: n \in \omega\right\}\right)$.

Back to arithmetic

Let $\mathfrak{G}_{\text {EA }}^{0}$ denote the subalgebra of $\left(\mathfrak{G}_{\mathrm{EA}} ; \wedge_{\mathrm{EA}}, 1_{\mathrm{EA}},\left\{R_{n}, \Pi_{n+1}: n \in \omega\right\}\right)$ generated by 1_{EA}.

Theorem
The following structures are isomorphic:
(1) $\mathfrak{G}_{\mathrm{EA}}^{0}$;
(2) The free 0 -generated $R C^{\nabla}$-algebra;
(3) $\mathfrak{I}=\left(I, \wedge_{\mathfrak{I}},\left\{\diamond_{n}^{\mathfrak{I}}, \nabla_{n}^{\mathfrak{I}}: n \in \omega\right\}\right)$.

Conservativity spectra

Let S be a Gödelian extension of EA and $(\Omega,<)$ a (natural) elementary recursive well-ordering.

- Π_{n+1}^{0}-ordinal of S, denoted $\operatorname{ord}_{n}(S)$, is the sup of all $\alpha \in \Omega$ such that $S \vdash R_{n}^{\alpha}(\mathrm{EA})$;
- Conservativity spectrum of S is the sequence $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots\right)$ such that $\alpha_{i}=\operatorname{ord}_{i}(S)$.

Conservativity spectra

Let S be a Gödelian extension of EA and $(\Omega,<)$ a (natural) elementary recursive well-ordering.

- Π_{n+1}^{0}-ordinal of S, denoted $\operatorname{ord}_{n}(S)$, is the sup of all $\alpha \in \Omega$ such that $S \vdash R_{n}^{\alpha}(\mathrm{EA})$;
- Conservativity spectrum of S is the sequence $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots\right)$ such that $\alpha_{i}=\operatorname{ord}_{i}(S)$.

Examples of spectra:
$I \Sigma_{1}:\left(\omega^{\omega}, \omega, 1,0,0, \ldots\right)$
PA: $\left(\varepsilon_{0}, \varepsilon_{0}, \varepsilon_{0}, \ldots\right)$
$\mathrm{PA}+\mathrm{PH}: \quad\left(\varepsilon_{0}^{2}, \varepsilon_{0} \cdot 2, \varepsilon_{0}, \varepsilon_{0}, \ldots\right)$

Spectra and \mathfrak{I}

An extension T of EA is bounded, if T is contained in a finite subtheory of PA.

Theorem
(1) Let T be bounded and $\vec{\alpha}$ be the conservativity spectrum of T. Then $\forall n<\omega \alpha_{n+1} \leq \ell\left(\alpha_{n}\right)$ and $\alpha_{n}<\varepsilon_{0}$, that is, $\vec{\alpha} \in \mathfrak{I}$.
(3) Let $\vec{\alpha} \in \Im, A$ be a variable-free $R C^{\nabla}$-formula corresponding to $\vec{\alpha}$ via the isomorphism, and $A_{E A} \in \mathfrak{G}_{E A}^{0}$ its arithmetical interpretation. Then $\vec{\alpha}$ is the conservativity spectrum of $A_{\mathbb{E}}$.
(3) A_{EA} is the weakest theory with the given conservativity spectrum $\vec{\alpha}$.

Spectra and \mathfrak{I}

An extension T of EA is bounded, if T is contained in a finite subtheory of PA.

Theorem
(1) Let T be bounded and $\vec{\alpha}$ be the conservativity spectrum of T. Then $\forall n<\omega \alpha_{n+1} \leq \ell\left(\alpha_{n}\right)$ and $\alpha_{n}<\varepsilon_{0}$, that is, $\vec{\alpha} \in \Im$.
(2) Let $\vec{\alpha} \in \mathfrak{I}, A$ be a variable-free $R C^{\nabla}$-formula corresponding to $\vec{\alpha}$ via the isomorphism, and $A_{\mathrm{EA}} \in \mathfrak{G}_{\mathrm{EA}}^{0}$ its arithmetical interpretation. Then $\vec{\alpha}$ is the conservativity spectrum of $A_{\text {EA }}$.
(3) $A_{\text {EA }}$ is the weakest theory with the given conservativity spectrum $\vec{\alpha}$.

Spectra and \mathfrak{I}

An extension T of EA is bounded, if T is contained in a finite subtheory of PA.

Theorem
(1) Let T be bounded and $\vec{\alpha}$ be the conservativity spectrum of T. Then $\forall n<\omega \alpha_{n+1} \leq \ell\left(\alpha_{n}\right)$ and $\alpha_{n}<\varepsilon_{0}$, that is, $\vec{\alpha} \in \Im$.
(2) Let $\vec{\alpha} \in \mathfrak{I}, A$ be a variable-free $R C^{\nabla}$-formula corresponding to $\vec{\alpha}$ via the isomorphism, and $A_{\mathrm{EA}} \in \mathfrak{G}_{\mathrm{EA}}^{0}$ its arithmetical interpretation. Then $\vec{\alpha}$ is the conservativity spectrum of $A_{\text {EA }}$.
(3) $A_{\text {EA }}$ is the weakest theory with the given conservativity spectrum $\vec{\alpha}$.

Conclusion

- The set of Gödelian extensions of EA obtained from $1_{\text {EA }}$ by the operations of Σ_{n}-reflection and Π_{n+1}-conservativity forms a natural semilattice with monotone operators satisfying the identities of $R C^{\nabla}$.
- The algebra has several natural (isomorphic) presentations including the free 0 -generated $R C^{\nabla}$-algebra. It bijectively corresponds to the set of all conservativity spectra of bounded extensions of EA

Conclusion

- The set of Gödelian extensions of EA obtained from $1_{\text {EA }}$ by the operations of Σ_{n}-reflection and Π_{n+1}-conservativity forms a natural semilattice with monotone operators satisfying the identities of $R C^{\nabla}$.
- The algebra has several natural (isomorphic) presentations including the free 0 -generated $R C^{\nabla}$-algebra. It bijectively corresponds to the set of all conservativity spectra of bounded extensions of EA.

