Reflection calculus and conservativity spectra

Lev D. Beklemishev

Steklov Mathematical Institute of RAS, Moscow

Topological methods in Logic VI Tbilisi, July 1–7, 2018

Strictly positive modal formulas

The language of modal logic extends that of propositional calculus by a family of unary connectives $\{ \diamondsuit_i : i \in I \}$.

Strictly positive modal formulas are defined by the grammar:

$$A ::= p \mid \top \mid (A \land A) \mid \Diamond_i A, \quad i \in I.$$

We are interested in the implications $A \rightarrow B$ where A and B are strictly positive.

Strictly positive logics

- Strictly positive fragment of a modal logic L is the set of all implications $A \to B$ such that A and B are strictly positive and $L \vdash A \to B$.
- Strictly positive logics are consequence relations on the set of strictly positive modal formulas.

Strictly positive logics

- Strictly positive fragment of a modal logic L is the set of all implications A → B such that A and B are strictly positive and L ⊢ A → B.
- Strictly positive logics are consequence relations on the set of strictly positive modal formulas.

Basic strictly positive logic

We derive *sequents* of the form $A \vdash B$ with A, B s.p.

K+: the s.p. fragment of K

- \bullet $A \vdash A$; $A \vdash \top$; from $A \vdash B$ and $B \vdash C$ infer $A \vdash C$;
- $A \land B \vdash A, B$; from $A \vdash B$ and $A \vdash C$ infer $A \vdash B \land C$;
- **3** from $A \vdash B$ infer $\Diamond A \vdash \Diamond B$.

Fact. K⁺ is closed under substitution and positive replacement:

- if $A(p) \vdash B(p)$ then $A(C) \vdash B(C)$;
- if $A \vdash B$ then $C(A) \vdash C(B)$.

Basic strictly positive logic

We derive *sequents* of the form $A \vdash B$ with A, B s.p.

K+: the s.p. fragment of K

- \bullet $A \vdash A$; $A \vdash \top$; from $A \vdash B$ and $B \vdash C$ infer $A \vdash C$;
- $A \land B \vdash A, B$; from $A \vdash B$ and $A \vdash C$ infer $A \vdash B \land C$;
- **3** from $A \vdash B$ infer $\Diamond A \vdash \Diamond B$.

Fact. K⁺ is closed under substitution and positive replacement:

- if $A(p) \vdash B(p)$ then $A(C) \vdash B(C)$;
- if $A \vdash B$ then $C(A) \vdash C(B)$.

Normal strictly positive logics

A *normal s.p. logic* is a set of sequents closed under the rules of K⁺ and the substitution rule.

Other standard logics:

- (4) $\Diamond \Diamond A \vdash \Diamond A$;
- (T) $A \vdash \Diamond A$;
- (5) $\Diamond A \land \Diamond B \vdash \Diamond (A \land \Diamond B)$.

Semilattices with monotone operators

We consider lower semilattices with top equipped with a family of unary operators $\mathfrak{A} = (A; \wedge, 1, \{ \diamondsuit_i : i \in I \})$ where each \diamondsuit_i is a monotone operator.

An operator $R: \mathfrak{A} \to \mathfrak{A}$ is:

- monotone if $x \le y$ implies $R(x) \le R(y)$;
- semi-idempotent if $R(R(x)) \leq R(x)$;
- closure if R is m., s.i. and $x \leq R(x)$.

We call such structures *SLO*.

$Algebraic\ semantics$

We identify s.p. formulas and SLO terms. Then each sequent $A \vdash B$ represents an inequality (i.e. the identity $A \land B = A$):

• $A \vdash B$ holds in \mathfrak{A} if $\mathfrak{A} \models \forall \vec{x} (A(\vec{x}) \leq B(\vec{x}))$.

Facts:

- $A \vdash B$ is provable in K^+ iff $A \vdash B$ holds in all SLO \mathfrak{A} .
- Varieties of SLO = normal strictly positive logics.

Gödel's 2nd Incompleteness Theorem

A theory *T* is Gödelian if

- Natural numbers and operations + and \cdot are definable in T;
- T proves basic properties of these operations (contains EA);
- There is an algorithm (and a Σ_1 -formula) recognizing the axioms of T.

$$Con(T) = 'T$$
 is consistent'

K. Gödel (1931): If a Gödelian theory T is consistent, then Con(T) is true but unprovable in T.

Semilattice of Gödelian theories

Def. \mathfrak{G}_{EA} is the set of all Gödelian extensions of EA mod $=_{EA}$.

$$S \leq_{\mathsf{EA}} T \iff \mathsf{EA} \vdash \forall x (\Box_T(x) \to \Box_S(x));$$

$$S =_{\mathsf{EA}} T \iff (S \leq_{\mathsf{EA}} T \text{ and } T \leq_{\mathsf{EA}} S).$$

Then $(\mathfrak{G}_{EA}, \wedge_{EA}, 1_{EA})$ is a lower semilattice with $1_{EA} = EA$ and $S \wedge_{EA} T := S \cup T$ (defined by the disjunction of the Σ_1 -definitions of S and T)

Reflection principles

Let T be a Gödelian theory.

• Reflection principles $R_n(T)$ for T are arithmetical sentences expressing "every \sum_n -sentence provable in T is true".

 $R_n(T)$ can be seen as a relativization of the consistency assertion $Con(T) = R_0(T)$.

- Every formula R_n induces a monotone semi-idempotent operator $R_n: T \longmapsto R_n(T)$ on \mathfrak{G}_{EA} .
- We consider the SLO (\mathfrak{G}_{EA} ; \wedge_{EA} , 1_{EA} , $\{R_n : n \in \omega\}$).

Reflection principles

Let T be a Gödelian theory.

• Reflection principles $R_n(T)$ for T are arithmetical sentences expressing "every Σ_n -sentence provable in T is true".

 $R_n(T)$ can be seen as a relativization of the consistency assertion $Con(T) = R_0(T)$.

- Every formula R_n induces a monotone semi-idempotent operator $R_n: T \longmapsto R_n(T)$ on \mathfrak{G}_{EA} .
- We consider the SLO (\mathfrak{G}_{EA} ; \wedge_{EA} , 1_{EA} , $\{R_n : n \in \omega\}$).

Reflection calculus RC

RC axioms (over K^+ for all \diamondsuit_n):

Example.
$$\diamondsuit_3 \top \wedge \diamondsuit_2 \diamondsuit_3 p \vdash \diamondsuit_3 (\top \wedge \diamondsuit_2 \diamondsuit_3 p) \vdash \diamondsuit_3 \diamondsuit_2 \diamondsuit_3 p$$
.

Main results on RC

Theorems (E. Dashkov, 2012).

- **1** $A \vdash_{RC} B$ iff $A \vdash B$ holds in $(\mathfrak{G}_{PA}; \land_{PA}, 1_{PA}, \{R_n : n \in \omega\});$
- RC is polytime decidable;
- **®** *RC* enjoys the finite model property (многообразие конечно аппроксимируемо).

Rem. The first claim is based on Japaridze's (1986) arithmetical completeness theorem for provability logic GLP.

Main results on RC

Theorems (E. Dashkov, 2012).

- **1** $A \vdash_{RC} B$ iff $A \vdash B$ holds in $(\mathfrak{G}_{PA}; \land_{PA}, 1_{PA}, \{R_n : n \in \omega\});$
- RC is polytime decidable;
- RC enjoys the finite model property (многообразие конечно аппроксимируемо).

Rem. The first claim is based on Japaridze's (1986) arithmetical completeness theorem for provability logic GLP.

RC⁰ as an ordinal notation system

Let RC^0 denote the variable-free fragment of RC. Let W denote the set of all RC^0 -formulas. For $A, B \in W$ define:

- $A \sim B$ if $A \vdash B$ and $B \vdash A$ in RC^0 ;
- $A <_n B$ if $B \vdash \Diamond_n A$.

Theorem.

- Every $A \in W$ is equivalent to a word (formula without \land);
- ② $(W/\sim, <_0)$ is isomorphic to $(\varepsilon_0, <)$.

Rem. $\varepsilon_0 = \sup\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \dots\}$ is the characteristic ordinal of Peano arithmetic.

Conservativity modalities

We consider operators associating with a theory S the theory generated by its consequences of logical complexity Π_{n+1} :

$$\Pi_{n+1}(S) := \{ \pi \in \Pi_{n+1} : S \vdash \pi \}.$$

Notice that each Π_{n+1} is a closure operator.

We consider the SLO (\mathfrak{G}_{EA} ; \wedge_{EA} , 1_{EA} , $\{R_n, \Pi_{n+1} : n \in \omega\}$), the RC $^{\nabla}$ algebra of EA.

Open problem: Characterize the logic/identities of this structure. Is it (polytime) decidable?

Conservativity modalities

We consider operators associating with a theory S the theory generated by its consequences of logical complexity Π_{n+1} :

$$\Pi_{n+1}(S) := \{ \pi \in \Pi_{n+1} : S \vdash \pi \}.$$

Notice that each Π_{n+1} is a closure operator.

We consider the SLO (\mathfrak{G}_{EA} ; \wedge_{EA} , 1_{EA} , $\{R_n, \Pi_{n+1} : n \in \omega\}$), the RC $^{\nabla}$ algebra of EA.

Open problem: Characterize the logic/identities of this structure. Is it (polytime) decidable?

Why conservativity?

Comparison of theories:

- $U \vdash R_n(T)$ means U is much stronger than T.
- $U \vdash \Pi_{n+1}(T)$ means T is Π_{n+1} -conservative over U.
- $\Pi_{n+1}(U) = \Pi_{n+1}(T)$ means T and U are equivalent up to quantifier complexity Π_{n+1} .

The logic combining both R_n and Π_{n+1} is able to express both the distance and the proximity of theories.

Ex. (U. Schmerl, 1979) $\Pi_2(PA) = R_1^{\epsilon_0}(EA)$

Why conservativity?

Comparison of theories:

- $U \vdash R_n(T)$ means U is much stronger than T.
- $U \vdash \Pi_{n+1}(T)$ means T is Π_{n+1} -conservative over U.
- $\Pi_{n+1}(U) = \Pi_{n+1}(T)$ means T and U are equivalent up to quantifier complexity Π_{n+1} .

The logic combining both R_n and Π_{n+1} is able to express both the distance and the proximity of theories.

```
Ex. (U. Schmerl, 1979) \Pi_2(PA) = R_1^{\varepsilon_0}(EA).
```

Why conservativity?

Comparison of theories:

- $U \vdash R_n(T)$ means U is much stronger than T.
- $U \vdash \Pi_{n+1}(T)$ means T is Π_{n+1} -conservative over U.
- $\Pi_{n+1}(U) = \Pi_{n+1}(T)$ means T and U are equivalent up to quantifier complexity Π_{n+1} .

The logic combining both R_n and Π_{n+1} is able to express both the distance and the proximity of theories.

Ex. (U. Schmerl, 1979)
$$\Pi_2(PA) = R_1^{\epsilon_0}(EA)$$
.

Results

- A strictly positive logic RC^{∇} that is conjecturally complete;
- Expressibility of transfinitely iterated reflection up to ε_0 ;
- Arithmetical completeness and decidability of the variable-free fragment of RC^{∇} ;
- A (constructive) characterization of the Lindenbaum-Tarski algebra of the variable-free fragment;
- A relation of this algebra to proof-theoretic ordinals of arithmetical theories (*conservativity spectra*).

The system RC^{∇}

RC^{∇} is a strictly positive logic with modalities $\{\diamondsuit_n, \nabla_n : n \in \omega\}$ $(\diamondsuit_n \text{ for } R_n, \nabla_n \text{ for } \Pi_{n+1}).$

Axioms and rules:

- \bullet RC for \Diamond_n ;
- **2** RC for ∇_n ;
- **3** $A \vdash \nabla_n A$; thus, each ∇_n satisfies $S4^+$;
- **6** $\Diamond_m \nabla_n A$ $\vdash \Diamond_m A$ if $m \leq n$;
- **6** ∇_n ♦ $_m$ A \vdash $♦_m$ A if $m \le n$.

$Transfinite\ iterations$

Def. $R: \mathfrak{G}_{\mathcal{T}} \to \mathfrak{G}_{\mathcal{T}}$ is computable if it can be defined by a computable map on the Gödel numbers of numerations (of extensions of \mathcal{T}).

Suppose (Ω, \prec) is an elementary recursive well-ordering and R is a computable m.s.i. operator on \mathfrak{G}_T .

Theorem

There exist theories $R^{\alpha}(S)$ (where $\alpha \in \Omega$): $R^{0}(S) = \tau S$ and, if $\alpha \succeq 0$.

$$R^{\alpha}(S) =_{\mathcal{T}} \bigcup \{R(R^{\beta}(S)) : \beta \prec \alpha\}.$$

Each R^{α} is computable and m.s.i.. Under some natural additional conditions the family R^{α} is unique modulo provable equivalence.

$Transfinite\ iterations$

Def. $R: \mathfrak{G}_{\mathcal{T}} \to \mathfrak{G}_{\mathcal{T}}$ is computable if it can be defined by a computable map on the Gödel numbers of numerations (of extensions of \mathcal{T}).

Suppose (Ω, \prec) is an elementary recursive well-ordering and R is a computable m.s.i. operator on \mathfrak{G}_T .

Theorem

There exist theories $R^{\alpha}(S)$ (where $\alpha \in \Omega$): $R^{0}(S) =_{T} S$ and, if $\alpha \succ 0$,

$$R^{\alpha}(S) =_{T} \bigcup \{R(R^{\beta}(S)) : \beta \prec \alpha\}.$$

Each R^{α} is computable and m.s.i.. Under some natural additional conditions the family R^{α} is unique modulo provable equivalence.

Expressibility of iterations

Let
$$EA^+ = I\Delta_0(supexp) = EA + R_1(EA)$$
.

Theorem

For each $n < \omega$ and $0 < \alpha < \varepsilon_0$ there is an RC-formula A(p) s.t.

$$\forall S \in \mathfrak{G}_{\mathsf{E}\mathsf{A}^+} \diamondsuit_n^{\alpha}(S) =_{\mathsf{E}\mathsf{A}^+} \nabla_n A(S).$$

For example, $\nabla_0 \diamondsuit_1 \diamondsuit_0 \varphi$ is arithmetically equivalent to $\{\diamondsuit_0^{1+n} \varphi : n < \omega\}$.

Named after K. Ignatiev who introduced a universal Kripke model for Japaridze's logic based on sequences of ordinals (1993).

- I is the set of all ω -sequences $\vec{\alpha} = (\alpha_0, \alpha_1, ...)$ such that $\alpha_i < \varepsilon_0$ and $\alpha_{i+1} \le \ell(\alpha_i)$, for all $i \in \omega$.
- $\ell(\beta) = 0$ if $\beta = 0$, and $\ell(\beta) = \gamma$ if $\beta = \delta + \omega^{\gamma}$, for some δ, γ .
- $\vec{\alpha} \leq_{\mathfrak{I}} \vec{\beta} \iff \forall i \ \alpha_i \geq \beta_i$.

Fact. The ordering $(I, \leq_{\mathfrak{I}})$ is a meet-semilattice.

Named after K. Ignatiev who introduced a universal Kripke model for Japaridze's logic based on sequences of ordinals (1993).

- I is the set of all ω -sequences $\vec{\alpha} = (\alpha_0, \alpha_1, ...)$ such that $\alpha_i < \varepsilon_0$ and $\alpha_{i+1} \le \ell(\alpha_i)$, for all $i \in \omega$.
- $\ell(\beta) = 0$ if $\beta = 0$, and $\ell(\beta) = \gamma$ if $\beta = \delta + \omega^{\gamma}$, for some δ, γ .
- $\vec{\alpha} \leq_{\mathfrak{I}} \vec{\beta} \iff \forall i \ \alpha_i \geq \beta_i$.

Fact. The ordering $(I, \leq_{\mathfrak{I}})$ is a meet-semilattice.

We define the functions $\nabla_n^{\mathfrak{I}}, \diamondsuit_n^{\mathfrak{I}}: I \to I$. For each $\vec{\alpha} = (\alpha_0, \alpha_1, \dots, \alpha_n, \dots)$ let

- $\bullet \ \nabla_n^{\mathfrak{I}}(\vec{\alpha}) := (\alpha_0, \alpha_1, \dots, \alpha_n, 0, \dots);$
- $\diamondsuit_n^{\mathfrak{I}}(\vec{\alpha}) := (\beta_0, \beta_1, \dots, \beta_n, 0, \dots)$, where $\beta_{n+1} := 0$ and $\beta_i := \alpha_i + \omega^{\beta_{i+1}}$, for all $i \leq n$.

Fact. The SLO $\mathfrak{I}=(I,\wedge_{\mathfrak{I}},\{\diamondsuit_{n}^{\mathfrak{I}},\nabla_{n}^{\mathfrak{I}}:n\in\omega\})$ is an RC^{∇} -algebra

We define the functions $\nabla_n^{\mathfrak{I}}, \diamondsuit_n^{\mathfrak{I}}: I \to I$. For each $\vec{\alpha} = (\alpha_0, \alpha_1, \dots, \alpha_n, \dots)$ let

- $\nabla_n^{\mathfrak{I}}(\vec{\alpha}) := (\alpha_0, \alpha_1, \ldots, \alpha_n, 0, \ldots);$
- $\diamondsuit_n^{\mathfrak{I}}(\vec{\alpha}) := (\beta_0, \beta_1, \dots, \beta_n, 0, \dots)$, where $\beta_{n+1} := 0$ and $\beta_i := \alpha_i + \omega^{\beta_{i+1}}$, for all $i \leq n$.

Fact. The SLO $\mathfrak{I}=(I,\wedge_{\mathfrak{I}},\{\diamondsuit_{n}^{\mathfrak{I}},\nabla_{n}^{\mathfrak{I}}:n\in\omega\})$ is an RC^{∇} -algebra.

Back to arithmetic

Let $\mathfrak{G}_{\mathsf{EA}}^0$ denote the subalgebra of $(\mathfrak{G}_{\mathsf{EA}}; \wedge_{\mathsf{EA}}, 1_{\mathsf{EA}}, \{R_n, \Pi_{n+1} : n \in \omega\})$ generated by 1_{EA} .

Theorem

The following structures are isomorphic:

- **●** 𝔻⁰ EA;
- ② The free 0-generated RC^{∇} -algebra:
- $\mathfrak{I} = (I, \wedge_{\mathfrak{I}}, \{\diamondsuit_{n}^{\mathfrak{I}}, \nabla_{n}^{\mathfrak{I}} : n \in \omega\}).$

Back to arithmetic

Let $\mathfrak{G}_{\mathsf{EA}}^0$ denote the subalgebra of $(\mathfrak{G}_{\mathsf{EA}}; \wedge_{\mathsf{EA}}, 1_{\mathsf{EA}}, \{R_n, \Pi_{n+1} : n \in \omega\})$ generated by 1_{EA} .

Theorem

The following structures are isomorphic:

- **●** 𝔥⁰_{EA};
- 2 The free 0-generated RC^{∇} -algebra;
- $\mathfrak{I} = (I, \wedge_{\mathfrak{I}}, \{\diamondsuit_{n}^{\mathfrak{I}}, \nabla_{n}^{\mathfrak{I}} : n \in \omega\}).$

Conservativity spectra

Let S be a Gödelian extension of EA and $(\Omega, <)$ a (natural) elementary recursive well-ordering.

- Π_{n+1}^0 -ordinal of S, denoted $ord_n(S)$, is the sup of all $\alpha \in \Omega$ such that $S \vdash R_n^{\alpha}(\mathsf{EA})$;
- Conservativity spectrum of S is the sequence $(\alpha_0, \alpha_1, \alpha_2, ...)$ such that $\alpha_i = \operatorname{ord}_i(S)$.

```
Examples of spectra: I\Sigma_1: (\omega^\omega, \omega, 1, 0, 0, \dots)

PA: (\varepsilon_0, \varepsilon_0, \varepsilon_0, \dots)

PA + PH: (\varepsilon_0^2, \varepsilon_0 \cdot 2, \varepsilon_0, \varepsilon_0, \dots)
```

Conservativity spectra

Let S be a Gödelian extension of EA and $(\Omega, <)$ a (natural) elementary recursive well-ordering.

- Π_{n+1}^0 -ordinal of S, denoted $ord_n(S)$, is the sup of all $\alpha \in \Omega$ such that $S \vdash R_n^{\alpha}(\mathsf{EA})$;
- Conservativity spectrum of S is the sequence $(\alpha_0, \alpha_1, \alpha_2, ...)$ such that $\alpha_i = \operatorname{ord}_i(S)$.

Examples of spectra:

```
\begin{split} & I\Sigma_1: \ (\omega^\omega,\omega,1,0,0,\dots) \\ & \mathsf{PA}: \ \ (\varepsilon_0,\varepsilon_0,\varepsilon_0,\dots) \\ & \mathsf{PA} + PH: \ \ (\varepsilon_0^2,\varepsilon_0\cdot 2,\varepsilon_0,\varepsilon_0,\dots) \end{split}
```

Spectra and \Im

An extension T of EA is *bounded*, if T is contained in a finite subtheory of PA.

Theorem

- Let T be bounded and $\vec{\alpha}$ be the conservativity spectrum of T. Then $\forall n < \omega \; \alpha_{n+1} \leq \ell(\alpha_n)$ and $\alpha_n < \varepsilon_0$, that is, $\vec{\alpha} \in \mathfrak{I}$.
- ② Let $\vec{\alpha} \in \mathfrak{I}$, A be a variable-free RC^{∇} -formula corresponding to $\vec{\alpha}$ via the isomorphism, and $A_{\mathsf{EA}} \in \mathfrak{G}^0_{\mathsf{EA}}$ its arithmetical interpretation. Then $\vec{\alpha}$ is the conservativity spectrum of A_{EA} .
- ② A_{EA} is the weakest theory with the given conservativity spectrum $\vec{\alpha}$.

Spectra and \Im

An extension T of EA is *bounded*, if T is contained in a finite subtheory of PA.

Theorem

- Let T be bounded and $\vec{\alpha}$ be the conservativity spectrum of T. Then $\forall n < \omega \ \alpha_{n+1} \le \ell(\alpha_n)$ and $\alpha_n < \varepsilon_0$, that is, $\vec{\alpha} \in \mathfrak{I}$.
- ② Let $\vec{\alpha} \in \mathfrak{I}$, A be a variable-free RC^{∇} -formula corresponding to $\vec{\alpha}$ via the isomorphism, and $A_{\mathsf{EA}} \in \mathfrak{G}^0_{\mathsf{EA}}$ its arithmetical interpretation. Then $\vec{\alpha}$ is the conservativity spectrum of A_{EA} .
- ③ A_{EA} is the weakest theory with the given conservativity spectrum $\vec{\alpha}$.

Spectra and \Im

An extension T of EA is *bounded*, if T is contained in a finite subtheory of PA.

Theorem

- Let \mathcal{T} be bounded and $\vec{\alpha}$ be the conservativity spectrum of \mathcal{T} . Then $\forall n < \omega \; \alpha_{n+1} \leq \ell(\alpha_n)$ and $\alpha_n < \varepsilon_0$, that is, $\vec{\alpha} \in \mathfrak{I}$.
- ② Let $\vec{\alpha} \in \mathfrak{I}$, A be a variable-free RC^{∇} -formula corresponding to $\vec{\alpha}$ via the isomorphism, and $A_{\mathsf{EA}} \in \mathfrak{G}^0_{\mathsf{EA}}$ its arithmetical interpretation. Then $\vec{\alpha}$ is the conservativity spectrum of A_{EA} .
- **3** A_{EA} is the weakest theory with the given conservativity spectrum $\vec{\alpha}$.

Conclusion

- The set of Gödelian extensions of EA obtained from $\mathbf{1}_{EA}$ by the operations of Σ_n -reflection and Π_{n+1} -conservativity forms a natural semilattice with monotone operators satisfying the identities of RC^{∇} .
- The algebra has several natural (isomorphic) presentations including the free 0-generated RC[∇]-algebra. It bijectively corresponds to the set of all conservativity spectra of bounded extensions of EA.

Conclusion

- The set of Gödelian extensions of EA obtained from $\mathbf{1}_{EA}$ by the operations of Σ_n -reflection and Π_{n+1} -conservativity forms a natural semilattice with monotone operators satisfying the identities of RC^{∇} .
- The algebra has several natural (isomorphic) presentations including the free 0-generated RC[∇]-algebra. It bijectively corresponds to the set of all conservativity spectra of bounded extensions of EA.