Modal logic with the difference modality of topological T_0 -spaces

AGHAMOV RAJAB

Higher School of Economics

03.07.2018

AGHAMOV RAJAB

Higher School of Economics

Theorem (McKinsey–Tarski, 1944)

S4 is the logic of all topological spaces.

AGHAMOV RAJAB

Higher School of Economics

Theorem (McKinsey–Tarski, 1944)

S4 is the logic of all topological spaces.

Theorem (McKinsey–Tarski, 1944)

S4 is the logic of any dense-in-itself separable metrizable space when interpreting \Box as interior.

Increase expressive power:

derivational interpretation

- derivational interpretation
- derivational interpretation + universal modality

- derivational interpretation
- derivational interpretation + universal modality
- derivational interpretation + difference modality

- derivational interpretation
- derivational interpretation + universal modality
- derivational interpretation + difference modality
- closure interpretation + universal modality

- derivational interpretation
- derivational interpretation + universal modality
- derivational interpretation + difference modality
- closure interpretation + universal modality
- closure interpretation + difference modality

A formula is defined as follows:

$$\psi ::= \mathbf{p} \mid \bot \mid \psi \to \psi \mid \Box \psi \mid [\neq] \psi$$

A formula is defined as follows:

$$\psi ::= \mathbf{p} \, | \, \bot \, | \, \psi \to \psi \, | \, \Box \psi \, | \, [\neq] \psi$$

 \lor,\land,\neg,\top and \equiv are expressed in terms of \rightarrow and \bot in a standard way.

Modal logic with the difference modality of topological T_0 -spaces

A formula is defined as follows:

$$\psi ::= \mathbf{p} \, | \, \bot \, | \, \psi \to \psi \, | \, \Box \psi \, | \, [\neq] \psi$$

 \lor, \land, \neg, \top and \equiv are expressed in terms of \rightarrow and \bot in a standard way. $\Diamond A = \neg \Box \neg A, \langle \neq \rangle A = \neg [\neq] \neg A.$

AGHAMOV RAJAB

Higher School of Economics

A formula is defined as follows:

$$\psi ::= \mathbf{p} \mid \bot \mid \psi \to \psi \mid \Box \psi \mid [\neq] \psi$$

 \lor, \land, \neg, \top and \equiv are expressed in terms of \rightarrow and \bot in a standard way. $\Diamond A = \neg \Box \neg A, \langle \neq \rangle A = \neg [\neq] \neg A.$

 $\forall A = \neg \Box \neg A, \langle \neq \rangle A = \neg [\neq] \neg A$ We denote $[\neq] A \land A$ by $[\forall] A$.

Modal logic with the difference modality of topological T_0 -spaces

The set of all bimodal formulas is called the *bimodal language* and is denoted by \mathcal{ML}_2 .

The set of all bimodal formulas is called the *bimodal language* and is denoted by \mathcal{ML}_2 .

A normal bimodal logic is a subset of the formulas $L\subseteq \mathcal{ML}_2$ such that

- 1. L contains all the classical tautologies:
- **2.** *L* contains the modal axioms of normality:

$$egin{aligned} & \Box(p
ightarrow dq)
ightarrow (\Box p
ightarrow \Box q), \ & [
eq](p
ightarrow q)
ightarrow ([
eq]p
ightarrow [
eq]q); \end{aligned}$$

3. *L* is closed with respect to the following inference rules:

$$\begin{array}{c} \frac{A \to B, A}{B} \text{ (MP),} \\ \frac{A}{\Box A}, \ \frac{A}{[\neq]A} (\to \Box, \to [\neq]), \\ \frac{A}{[B/p]A} \text{ (Sub).} \end{array}$$

Let *L* be a logic and Γ be a set of formulas. The minimal logic containing $L \cup \Gamma$ is denoted by $L + \Gamma$. We also write $L + \psi$ instead of $L + \{\psi\}$.

Let *L* be a logic and Γ be a set of formulas. The minimal logic containing $L \cup \Gamma$ is denoted by $L + \Gamma$. We also write $L + \psi$ instead of $L + \{\psi\}$. (T_{\Box}) $\Box \rho \rightarrow \rho$,

Let *L* be a logic and Γ be a set of formulas. The minimal logic containing $L \cup \Gamma$ is denoted by $L + \Gamma$. We also write $L + \psi$ instead of $L + \{\psi\}$. (T_{\Box}) $\Box p \rightarrow p$, (4_{\Box}) $\Box p \rightarrow \Box \Box p$,

Let *L* be a logic and Γ be a set of formulas. The minimal logic containing $L \cup \Gamma$ is denoted by $L + \Gamma$. We also write $L + \psi$ instead of $L + \{\psi\}$. (T_{\Box}) $\Box p \rightarrow p$, (4_{\Box}) $\Box p \rightarrow \Box \Box p$, (4_{\Box}) $[\forall] p \rightarrow [\neq] [\neq] p$,

Let *L* be a logic and Γ be a set of formulas. The minimal logic containing $L \cup \Gamma$ is denoted by $L + \Gamma$. We also write $L + \psi$ instead of $L + \{\psi\}$. (T_{\Box}) $\Box p \rightarrow p$, (4_{\Box}) $\Box p \rightarrow \Box \Box p$, (4_{\Box}) $[\forall] p \rightarrow [\neq] [\neq] p$, (4_{D}) $[\forall] p \rightarrow [\neq] [\neq] p$, (B_{D}) $p \rightarrow [\neq] [\neq] \langle \neq \rangle p$,

Modal logic with the difference modality of topological T_0 -spaces

Let *L* be a logic and Γ be a set of formulas. The minimal logic containing $L \cup \Gamma$ is denoted by $L + \Gamma$. We also write $L + \psi$ instead of $L + \{\psi\}$. (T_{\Box}) $\Box p \rightarrow p$, (4_{\Box}) $\Box p \rightarrow \Box \Box p$, (4_{\Box}) $[\forall] p \rightarrow [\neq] [\neq] p$, (B_D) $p \rightarrow [\neq] [\neq] p$, (D_{\Box}) $[\forall] p \rightarrow \Box p$,

Modal logic with the difference modality of topological T_0 -spaces

Let *L* be a logic and Γ be a set of formulas. The minimal logic containing $L \cup \Gamma$ is denoted by $L + \Gamma$. We also write $L + \psi$ instead of $L + \{\psi\}$. (*T*_□) $\Box p \rightarrow p$, (*4*_□) $\Box p \rightarrow \Box \Box p$, (*4*_□) $[\forall] p \rightarrow [\neq] [\neq] p$, (*B*_D) $p \rightarrow [\neq] [\neq] p$, (*B*_D) $p \rightarrow [\neq] [\neq] p$, (*D*_□) $[\forall] p \rightarrow \Box p$, (*AT*₀) $(p \land [\neq] \neg p \land \langle \neq \rangle (q \land [\neq] \neg q)) \rightarrow (\Box \neg q \lor \langle \neq \rangle (q \land \Box \neg p)).$

Let *L* be a logic and Γ be a set of formulas. The minimal logic containing $L \cup \Gamma$ is denoted by $L + \Gamma$. We also write $L + \psi$ instead of $L + \{\psi\}$. (T_{\Box}) $\Box p \rightarrow p$, (4_{\Box}) $\Box p \rightarrow \Box \Box p$, (4_{\Box}) $[\forall] p \rightarrow [\neq] [\neq] p$, (B_{D}) $p \rightarrow [\neq] [\neq] p$, (B_{D}) $p \rightarrow [\neq] [\neq] p$, (D_{\Box}) $[\forall] p \rightarrow \Box p$, (AT_{0}) $(p \land [\neq] \neg p \land \langle \neq \rangle (q \land [\neq] \neg q)) \rightarrow (\Box \neg q \lor \langle \neq \rangle (q \land \Box \neg p))$. We introduce the notation for the following logics:

•
$$S4 = K_1 + T_{\Box} + 4_{\Box}$$

• $S4D = K_2 + T_{\Box} + 4_{\Box} + D_{\Box} + B_D + 4_D^-$

AGHAMOV RAJAB

Let *L* be a logic and Γ be a set of formulas. The minimal logic containing $L \cup \Gamma$ is denoted by $L + \Gamma$. We also write $L + \psi$ instead of $L + \{\psi\}$. (T_{\Box}) $\Box p \rightarrow p$, (4_{\Box}) $\Box p \rightarrow \Box \Box p$, (4_{\Box}) $[\forall] p \rightarrow [\neq] [\neq] p$, (B_{D}) $p \rightarrow [\neq] [\neq] p$, (B_{D}) $p \rightarrow [\neq] \langle \neq \rangle p$, (D_{\Box}) $[\forall] p \rightarrow \Box p$, (AT_{0}) $(p \land [\neq] \neg p \land \langle \neq \rangle (q \land [\neq] \neg q)) \rightarrow (\Box \neg q \lor \langle \neq \rangle (q \land \Box \neg p))$. We introduce the notation for the following logics:

$$\bullet S4 = K_1 + T_{\Box} + 4_{\Box}$$

•
$$S4D = K_2 + T_{\Box} + 4_{\Box} + D_{\Box} + B_D + 4_D^-$$

• $S4DT_0 = S4D + AT_0$

Topological semantics

A topological model on a topological space $\mathbb{X} := (X, \Omega)$ is the pair (\mathbb{X}, V) , where $V : PV \to P(X)$ (the set of all subsets). The truth of a formula ϕ at a point x of the topological model $\mathcal{M} = (\mathbb{X}, V)$ (notation: $\mathcal{M}, x \vDash \phi$) is defined by induction:

$$\blacksquare \mathcal{M}, x \vDash p \Leftrightarrow x \in V(p)$$

• $\mathcal{M}, x \nvDash \bot$

•
$$\mathcal{M}, x \vDash \phi \rightarrow \psi \Leftrightarrow \mathcal{M}, x \nvDash \phi \text{ or } \mathcal{M}, x \vDash \psi$$

• $\mathcal{M}, x \vDash \Box \phi \Leftrightarrow \exists U \in \Omega(x \in U \text{ and } \forall y \in U(\mathcal{M}, y \vDash \phi))$

Topological semantics

- ϕ is true in a model \mathcal{M} : $\mathcal{M} \vDash \phi \Leftrightarrow \forall x \in X \ (\mathcal{M}, x \vDash \phi)$
- ϕ is valid in X: $X \vDash \phi \Leftrightarrow \forall V (X, V \vDash \phi)$.
- Logic of a class of topological spaces C $L(C) = \{\phi \mid \forall \mathbb{X} \in C \ \mathbb{X} \models \phi\}$

Lemma

Let $X = (X, \Omega)$ be a topological space then $X \models AT_0$ iff X is a T_0 space.

Definition

We call logic *L* complete with respect to a class of topological spaces C if L(C) = L.

AGHAMOV RAJAB

Higher School of Economics

Kripke frames

$$F = \langle W, R, R_D \rangle$$

AGHAMOV RAJAB

Kripke frames

 $F = \langle W, R, R_D \rangle$

A valuation on a Kripke frame $F = (W, R, R_D)$ is a function $V : PV \longrightarrow 2^W$. The Kripke model is a pair M = (F, V). Then we inductively define the notion of a formula ϕ being true in M at point x as follows:

$$\blacksquare M, x \vDash p \Leftrightarrow x \in V(p), \text{ for } p \in PV$$

■ *M*, *x* ⊭ ⊥

$$\blacksquare M, x \vDash \phi \to \psi \Leftrightarrow M, \ x \nvDash \phi \text{ or } M, \ x \vDash \psi$$

 $\blacksquare M, x \vDash \Box_i \phi \Leftrightarrow \forall y (x R_i y \Rightarrow M, y \vDash \phi)$

Kripke frames

 $F = \langle W, R, R_D \rangle$

A valuation on a Kripke frame $F = (W, R, R_D)$ is a function $V : PV \longrightarrow 2^W$. The Kripke model is a pair M = (F, V). Then we inductively define the notion of a formula ϕ being true in M at point x as follows:

•
$$M, x \vDash p \Leftrightarrow x \in V(p)$$
, for $p \in PV$

■ *M*, *x* ⊭ ⊥

$$\blacksquare M, x \vDash \phi \to \psi \Leftrightarrow M, \ x \nvDash \phi \text{ or } M, \ x \vDash \psi$$

 $\blacksquare M, x \vDash \Box_i \phi \Leftrightarrow \forall y (x R_i y \Rightarrow M, y \vDash \phi)$

Let L be a modal logic. A frame F is called an L-frame if $L \subseteq L(F)$.

A normal modal logic L is Kripke complete, if L = Log(C) for some C.

A normal modal logic L is Kripke complete, if L = Log(C) for some C.

Lemma

S4DT₀ logic is Kripke complete.

A normal modal logic L is Kripke complete, if L = Log(C) for some C.

Lemma

S4DT₀ logic is Kripke complete.

A modal logic has a *countable frame property* (c.f.p.) if it is a logic of some class of countable frames.

A normal modal logic *L* is Kripke complete, if L = Log(C) for some C.

Lemma

S4DT₀ logic is Kripke complete.

A modal logic has a *countable frame property* (c.f.p.) if it is a logic of some class of countable frames.

Lemma

 $S4DT_0$ logic has countable frame property (c.f.p.).

AGHAMOV RAJAB

Higher School of Economics

Let
$$F = (W, R_1, ..., R_n)$$
 be a frame, and let $x \in W$.
 $R_i(x) = \{y \mid xR_iy\}, R_i^{-1}(x) = \{y \mid yR_ix\}.$ Let $U \subseteq W$, then
 $R_i(U) = \bigcup_{x \in U} R_i(x), R_i^{-1}(U) = \bigcup_{x \in U} R_i^{-1}(x).$

Let
$$F = (W, R_1, ..., R_n)$$
 be a frame, and let $x \in W$.
 $R_i(x) = \{y \mid xR_iy\}, R_i^{-1}(x) = \{y \mid yR_ix\}.$ Let $U \subseteq W$, then
 $R_i(U) = \bigcup_{x \in U} R_i(x), R_i^{-1}(U) = \bigcup_{x \in U} R_i^{-1}(x).$

Let $F = (W, R, R_D)$ be a Kripke frame and S^* be the transitive and reflexive closure of the relation $S = (R \cup R_D)$.

Let
$$F = (W, R_1, ..., R_n)$$
 be a frame, and let $x \in W$.
 $R_i(x) = \{y \mid xR_iy\}, R_i^{-1}(x) = \{y \mid yR_ix\}.$ Let $U \subseteq W$, then
 $R_i(U) = \bigcup_{x \in U} R_i(x), R_i^{-1}(U) = \bigcup_{x \in U} R_i^{-1}(x).$

Let $F = (W, R, R_D)$ be a Kripke frame and S^* be the transitive and reflexive closure of the relation $S = (R \cup R_D)$.

For $x \in W$, $W^{\times} \rightleftharpoons \{y \mid xS^*y\}$. The frame $F^{\times} = (W^{\times}, R_1|_{W^{\times}}, ..., R_n|_{W^{\times}})$ is called cone. If F is an *L*-frame, then the F^{\times} is called the *L*-cone.

Modal logic with the difference modality of topological T_0 -spaces

Let
$$F = (W, R_1, ..., R_n)$$
 be a frame, and let $x \in W$.
 $R_i(x) = \{y \mid xR_iy\}, R_i^{-1}(x) = \{y \mid yR_ix\}.$ Let $U \subseteq W$, then
 $R_i(U) = \bigcup_{x \in U} R_i(x), R_i^{-1}(U) = \bigcup_{x \in U} R_i^{-1}(x).$

Let $F = (W, R, R_D)$ be a Kripke frame and S^* be the transitive and reflexive closure of the relation $S = (R \cup R_D)$.

For $x \in W$, $W^{\times} \rightleftharpoons \{y \mid xS^*y\}$. The frame $F^{\times} = (W^{\times}, R_1|_{W^{\times}}, ..., R_n|_{W^{\times}})$ is called cone. If F is an *L*-frame, then the F^{\times} is called the *L*-cone.

Lemma

Let $F = (W, R_1, R_2, ..., R_n)$ be a Kripke frame, then

$$L(F) = \bigcap_{x \in W} L(F^x).$$

AGHAMOV RAJAB

Higher School of Economics

Lemma

Let $F = (W, R, R_D)$ be an S4D-cone, then:

 $F \vDash AT_0 \Longleftrightarrow \forall x, y \in W(xRy \land yRx \Longrightarrow xR_Dx \lor yR_Dy)$

AGHAMOV RAJAB

Higher School of Economics

Let F = (W, R) be an S4-frame, then the set of subsets $T = \{U \subseteq W | R(U) \subseteq U\}$ defines a topology on the set W. Topological space (W, T) is denoted by Top(F).

Let F = (W, R) be an S4-frame, then the set of subsets $T = \{U \subseteq W | R(U) \subseteq U\}$ defines a topology on the set W. Topological space (W, T) is denoted by Top(F).

Topological space with a binary relation (X, R). Consider \Box is interpreted in the same way as in topological semantics, and $[\neq]$ as in Kripke semantics. If the reflexive closure of relation R is the universal relation (i.e. $R \cup Id_W = W \times W$), then the relation can be characterized by the set of all irreflexive points, which we call *selected points*.

Modal logic with the difference modality of topological T_0 -spaces

Let F = (W, R) be an S4-frame, then the set of subsets $T = \{U \subseteq W | R(U) \subseteq U\}$ defines a topology on the set W. Topological space (W, T) is denoted by Top(F).

Topological space with a binary relation (X, R). Consider \Box is interpreted in the same way as in topological semantics, and $[\neq]$ as in Kripke semantics. If the reflexive closure of relation R is the universal relation (i.e. $R \cup Id_W = W \times W$), then the relation can be characterized by the set of all irreflexive points, which we call *selected points*.

Now let $F = (W, R, R_D)$ be a S4D-cone. We define a space with selected points $Top_D(F) \rightleftharpoons (Top(F), A)$, where $A = \{v \mid \neg vR_D v\}$.

Lemma

Let $F = (W, R, R_D)$ be a S4D-cone and (F, V) a model, then

 $L(F) = L(Top_D(F)).$

AGHAMOV RAJAB

Higher School of Economics

p-morphism

A map between topological spaces $f : \mathbb{X} \to \mathbb{Y}$ is called a *p*-morphism if it is surjective and interior (Notation: $f : \mathbb{X} \to \mathbb{Y}$).

p-morphism

A map between topological spaces $f : \mathbb{X} \to \mathbb{Y}$ is called a *p*-morphism if it is surjective and interior (Notation: $f : \mathbb{X} \to \mathbb{Y}$).

A map between topological spaces with selected points $\mathcal{X} = (\mathbb{X}, A_{\mathbb{X}})$ and $\mathcal{Y} = (\mathbb{Y}, A_{\mathbb{Y}})$ is called a p-morphism if it is a p-morphism of topological spaces $f : \mathbb{X} \to \mathbb{Y}$, and

$$A_{\mathbb{Y}} = \{ y \mid \exists x \in A_{\mathbb{X}} (f^{-1}(y) = \{x\}) \}$$

Modal logic with the difference modality of topological T_0 -spaces

p-morphism

A map between topological spaces $f : \mathbb{X} \to \mathbb{Y}$ is called a *p*-morphism if it is surjective and interior (Notation: $f : \mathbb{X} \to \mathbb{Y}$).

A map between topological spaces with selected points $\mathcal{X} = (\mathbb{X}, A_{\mathbb{X}})$ and $\mathcal{Y} = (\mathbb{Y}, A_{\mathbb{Y}})$ is called a p-morphism if it is a p-morphism of topological spaces $f : \mathbb{X} \to \mathbb{Y}$, and

$$A_{\mathbb{Y}} = \{y \mid \exists x \in A_{\mathbb{X}}(f^{-1}(y) = \{x\})\}$$

Lemma

Let $\mathcal{X} = (\mathbb{X}, A_{\mathbb{X}})$ and $\mathcal{Y} = (\mathbb{Y}, A_{\mathbb{Y}})$ be topological spaces with selected points and $f : \mathbb{X} \twoheadrightarrow \mathbb{Y}$ be a p-morphism. Then

$$L(\mathbb{X}) \subseteq L(\mathbb{Y}).$$

Theorem

The logic $S4DT_0$ is complete with respect to topological T_0 -spaces.

Theorem

The logic $S4DT_0$ is complete with respect to topological T_0 -spaces.

Let F = (W, R) be an S4-frame, then the set $V = R(x) \cap R^{-1}(x)$ for some $x \in W$ is called a cluster.

Theorem

The logic $S4DT_0$ is complete with respect to topological T_0 -spaces.

Let F = (W, R) be an S4-frame, then the set $V = R(x) \cap R^{-1}(x)$ for some $x \in W$ is called a cluster.

Note: Each cluster contains no more than one selected point.

Theorem

The logic S4DT₀ is complete with respect to topological T_0 -spaces.

Let F = (W, R) be an S4-frame, then the set $V = R(x) \cap R^{-1}(x)$ for some $x \in W$ is called a cluster.

Note: Each cluster contains no more than one selected point. Note: The logic $S4DT_0$ has c.f.p. and we can consider only $S4DT_0$ -cones

Theorem

The logic S4DT₀ is complete with respect to topological T_0 -spaces.

Let F = (W, R) be an S4-frame, then the set $V = R(x) \cap R^{-1}(x)$ for some $x \in W$ is called a cluster.

Note: Each cluster contains no more than one selected point. Note: The logic $S4DT_0$ has c.f.p. and we can consider only $S4DT_0$ -cones

We will construct a T_0 -space and a p-morphism from a space to $Top_D(F)$. Consider the following 3 cases:

I. The cone is a cluster without R_D -irreflexive points.

Theorem

The logic S4DT₀ is complete with respect to topological T_0 -spaces.

Let F = (W, R) be an S4-frame, then the set $V = R(x) \cap R^{-1}(x)$ for some $x \in W$ is called a cluster.

Note: Each cluster contains no more than one selected point. Note: The logic $S4DT_0$ has c.f.p. and we can consider only $S4DT_0$ -cones

We will construct a T_0 -space and a p-morphism from a space to $Top_D(F)$. Consider the following 3 cases:

- I. The cone is a cluster without R_D -irreflexive points.
- II. The cone is a cluster with a R_D -irreflexive point.

Theorem

The logic S4DT₀ is complete with respect to topological T_0 -spaces.

Let F = (W, R) be an S4-frame, then the set $V = R(x) \cap R^{-1}(x)$ for some $x \in W$ is called a cluster.

Note: Each cluster contains no more than one selected point. Note: The logic $S4DT_0$ has c.f.p. and we can consider only $S4DT_0$ -cones

We will construct a T_0 -space and a p-morphism from a space to $Top_D(F)$. Consider the following 3 cases:

- I. The cone is a cluster without R_D -irreflexive points.
- II. The cone is a cluster with a R_D -irreflexive point.
- III. General case.

AGHAMOV RAJAB

f.m.p.

Definition

A logic *L* has the *finite model property* if L = L(C), where *C* is a class of finite frames.

Definition

Let us consider a frame $F = (W, R_1, R_2)$ and an equivalence relation \sim on W. A frame $F/\sim = (W/\sim, R_1/\sim, R_2/\sim)$ is said to be a *minimal filtration* of F through \sim , if for $U_1, U_2 \in W/\sim$ and i = 1, 2

$$U_1R_i/\sim U_2 \Leftrightarrow \exists u \in U_1 \exists v \in U_2 uR_i v$$

AGHAMOV RAJAB

Higher School of Economics

f.m.p.

Definition

Let $M = (W, R_1, R_2, V)$ be a Kripke model, Φ a set of bimodal formulas closed under subformulas. For $x \in W$ let $\Phi(x) := \{A \in \Phi | M, x \models A\}$. Two worlds $x, y \in W$ are called Φ -equivalent in M (notation: $x \equiv_{\Phi} y$) if $\Phi(x) = \Phi(y)$.

We say that the equivalence \sim agrees with a set Φ if $\sim \subseteq \equiv_{\Phi}$.

Lemma

If a formula ϕ is satisfiable in model M over a frame F and the equivalence \sim agrees with a set of all subformulas of ϕ , then ϕ is satisfiable in F/\sim .

AGHAMOV RAJAB

f.m.p.

A partition of the set W is a family of disjoint subsets of W whose union is W. If \mathbb{A} and \mathbb{B} are partitions of a set W and each element of \mathbb{A} is a subset of one element from \mathbb{B} , then we say \mathbb{A} is a refinement of \mathbb{B} . We denote by $\sim_{\mathbb{A}}$ the equivalence relation whose set of classes coincides with $\mathbb{A} : \mathbb{A} = W/\sim_{\mathbb{A}}$. We write $F_{\mathbb{A}}$ and $R_{\mathbb{A}}$ instead of $F/\sim_{\mathbb{A}}$ and $R/\sim_{\mathbb{A}}$.

Definition

A class of frames C admits minimal filtration if for each frame $F = (W, R, R_D) \in C$ and for each finite partition \mathbb{A} of W, there is a finite refinement \mathbb{B} of \mathbb{A} , such that $F_{\mathbb{B}} \in C$.

Lemma

If C admits minimal filtration, then L(C) has the finite model property.

AGHAMOV RAJAB

Result and sketch proof

Theorem

S4DT₀ has the finite model property.

AGHAMOV RAJAB

Higher School of Economics

THANK YOU!

AGHAMOV RAJAB

Higher School of Economics