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What is homotopy type theory?

It introduces ideas from
HOMOTOPY THEORY
in

TYPE THEORY.

See:

The Univalent Foundations Program — Homotopy type theory: univalent
foundations of mathematics. Institute of Advanced Studies, 2013.
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Homotopy theory and type theory

Homotopy theory

Homotopy is a branch of algebraic topology: for a homotopy theorists a
space consists of points, paths between these points, homotopies between
these paths, homotopies between these homotopies, et cetera. . .

Type theory
@ It is a foundation for constructive mathematics.
@ It is a functional programming language.

@ It is the basis for proof assistants like Coq, Agda,. ..

See:
@ Per Martin-Lof — Intuitionistic type theory, Bibliopolis 1984.

@ Bengt Nordstroem, Kent Petersson and Jan M. Smith — Programming
in Martin-Lof’s type theory. Oxford University Press, 1990.
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Categorical correspondences

Similar categorical structures appear in homotopy theory and type theory:
@ oo-groupoids

@ Quillen model structures

Aim today

Add another example to the list: path categories.
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Section 1

Path categories
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Setting

Path category: setting for axiomatic homotopy theory (like Quillen model
structures).

A path category is a category C equipped with two classes of maps:
o fibrations

@ weak equivalences

Terminology:

@ A map which is both a fibration and a weak equivalence will be called
an acyclic fibration.

@ If we can factor the diagonal B — B x B as a weak equivalence

r: B — PB followed by a fibration (s, t) : PB — B x B, then PB is a
path object for B.
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Examples

@ Groupoids.
@ Topological spaces.
@ Simplicial sets (Kan complexes).

@ The fibrant objects in any Quillen model structure in which every
object is cofibrant.

© Cubical sets with uniform Kan fibrations (Coquand et al).
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Category with path objects, or path category

Axioms
@ C has a terminal object 1 and X — 1 is always a fibration.
© Fibrations are closed under composition.

© The pullback of a fibration along any other map exists and is again a
fibration.

@ The pullback of an acyclic fibration along any other map is again an
acyclic fibration.

© Weak equivalences satisfy 2-out-of-6.

@ Isomorphisms are acyclic fibrations and every acyclic fibration has a
section.

@ Every object B has at least one path object.

(This strengthens Brown's notion of a category of fibrant objects in two
ways: we have 2-out-of-6 for weak equivalences instead of 2-out-of-3 and
we demand that acyclic fibrations have sections.)
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First basic facts about path categories

@ Every map f: Y — X factors as a weak equivalence followed by a
fibration:

(1,rf) Pf P2 PX t X

NN

Y

@ This means that if f : Y — X is a fibration, then we can factor
Y Y xxY as

Y — = Px(Y)—= Y xx Y,

where the first is a weak equivalence and the second a fibration.

@ Corollary: Let C(X) be the full subcategory of C/X whose objects are
fibrations. Then C(X) is again a path category.
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Homotopy in a path category
If f,g:Y — X are two parallel maps, then we say that ¥ and g are
homotopic and write f ~ g if there is a map h: Y — PX making

PX
b l(s,t)
Y- X x X
(f.g)
commute.
Theorem
The homotopy relation ~ is a congruence on C. J

The quotient is the homotopy category of C. A map which becomes an
isomorphism in the homotopy category is called a homotopy equivalence.

Theorem
The weak equivalences and homotopy equivalences coincide in a path
category.
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Two hard results

Theorem (Moerdijk-BvdB)

If w is a weak equivalence and p is a fibration fitting into a commutative
square

D—-B

L g -
w P
C-

_

k )
then there is a filler d : C — B such that pd = k and dw ~4 [. Moreover,
such fillers d are unique up to fibrewise homotopy over A.

v

Here fibrewise homotopy and ~ 4 refer to the path object Pa(B) in C(A).

Theorem (Brown) J

Weak equivalences are stable under pullback along fibrations.
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Path lifting and transport

As a first consequence of these results we have:

Corollary (Transport)

If f:Y — X is a fibration, then there is a map V: Y xx PX — Y such
that fV = tpy and V(1,rf) ~x 1. Such “connections” are unique up to
fibrewise homotopy.

Corollary (Lifting paths)

If f:Y — X is a fibration and V is a connection on it, then there is map
L:Y xx PX — PY such that sL = p; and tL = V.
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Groupoid structure

Corollary

If X is a path object structure on X, then PX gives X the structure of a
groupoid up to homotopy.

In fact, we have:

Theorem (Garner-BvdB)

In a path object category every object carries the structure of an
oo-groupoid in the sense of Batanin-Leinster.

13/26



Section 2

Type theory
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Martin-Lof’s type theory

Type theory as an alternative foundation for constructive mathematics:

There are terms and types and every term has a specific type (¢ : A).

One may write s = t, but only if s and t have the same type
(s=t:A).
One can have parametrised (dependent) types B(a), with a: A.

Statements are always made in context.

Every type in inductively generated.
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General shape of a judgement

I+ B(xo,...,xn)Type
e B(xo,--yxn) = C(x0,---,Xn)
I a(xo,...,xn) : B(xo,...,Xn)
I a(xo, ... xn) = b(x0,...,xn): B(x0,---,%n)
where
M'=[x0: Ao x1:A1(x0)s. -y Xn: An(x0,---,Xn-1)],

is a context.
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An example

Formation T-rype

Fn:N
FO:N Fs(n): N

Introduction

n: N P(n) Type
Fc: P(0)
n:N,x: P(n)t g(x,n): P(s(n))

Elimination n:NF rec(c,g,n): P(n)

Computation rec(c,g,0) = c: P(0)
rec(c, g,s(n)) = g(rec(c, g, n), n) : P(s(n))
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Another example

AType BType
A x BType

Formation

Fa:A Fb:B

Introducti
ntroduction “p(a.b) AxB

x: Ax BF P(x) Type
a:Ab: Bt f(ab): P(p(a,b))

Eliminati
mination x : A x B prodrec(f, x) : P(x)

Computation prodrec(f, p(a, b)) = f(a, b) : P(p(a, b))
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Towards an identity type

@ There should also be a propositional equality, that is, a type Ida(a, b)

of proofs of the equality of a and b.

@ Of course, it has to be inductively generated and the rules for it
should conform to the general pattern.

o ldea: equality is the least reflexive relation.
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Rules for the identity type
Fx:Ay:A
= 1da(x, y) Type

Fa:A
Fr(a) :1da(a, a)

Formation

Introduction

x: Ay Az lda(x,y) F C(x,y,z) Type
x: Ak d(x): C(x,x, r(x))
x: Ay Az lda(x,y) F J(x,y,z,d): C(x,y,z)

Elimination

Computation J(x,x, r(x),d) = d(x)
You should realise that identity types can be nested:

a: ldig,(x,)(f, 8)

So there are proofs of the equality of certain equality proofs, and proofs of

the equality of those, et ceteral
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Section 3

The connection
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Classifying category

To understand matters better, we should organise the syntax into a
category!

Suppose A and I are contexts and
F=1[x:A,x:A1(x1),. oy %0 An(x, ooy Xnm1) |-

A context morphism f : A — [ is an n-tuple of terms ti,...,t, such that
the following statements are derivable in type theory:

AFt: A
A+ t2:A2(t1)

AFty: Ap(tr, ..., th-1)

The contexts together with the context morphisms form a category: the
syntactic or classifying category.
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Classifying category is a path category

Within the classifying category there is a special class of morphisms: those
isomorphic to maps of the form

(X1y. o xi) s [x1 0 Ay xa s Aa(xa), ooy Xn  An(X0y - -+ s Xne1) ] —
[x1: A1, % Aa(x1), ..., xi  Ar(xa, -y xi—1) ],
where i < n. These are called dependent projections.

Theorem (Gambino-Garner, Avigad-Kapulkin-Lumsdaine)

Let C be the syntactic category associated to a dependent type theory
with identity types. Then C carries the structure of a path category in
which the dependent projections are the fibrations.

In this structure the identity types are the path objects: that is, the
factorisation of the diagonal [x : A] = [x : Al X [x : A] = [x: A,y : A] is
precisely

[x Al = [x: Ay :Ap:Ida(x,y)] = [x: Ay A
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Classifying category is a path category, part 2

Theorem (Gambino-Garner, Avigad-Kapulkin-Lumsdaine)

Let C be the syntactic category associated to a dependent type theory
with identity types. Then C carries the structure of a path category in
which the dependent projections are the fibrations.

Corollary (Lumsdaine, Garner-BvdB)

In type theory every type carries the structure of an co-groupoid in the
sense of Batanin-Leinster.

Theorem (BvdB)

The two results above still hold if we weaken the computation rule from
J(x,x,r(x),d) = d(x) to requiring the existence of a proof term h(d, x)
of type IdC(X,X,I’X)(J(X7 X, r(X), d)7 d(X))
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Soundness and completeness

Theorem (BvdB)

The results from the previous page still hold if we weaken the computation
rule from J(x, x, r(x), d) = d(x) to requiring the existence of a proof term
h(d, x) of type Idc(x,x,m)(J(x, x, r(x), d), d(x)).

Theorem (Moerdijk-BvdB)

Let C be a path category. Modulo coherence problems related to
substitution C is a model of a basic type theory with identity types for
which the computation rule holds only in a weak (“propositional™) form.

These two results can be summarised as follows:

To summarise

Morally, path categories are a sound and complete semantics for type
theory with propositional identity types.
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