Bisimulation games and formula depth

Valentin Shehtman
Institute for Information Transmission Problems
Higher School of Economics
Moscow State University

TOLO 5, 14 June 2016
Introduction

- **Ehrenfeucht-Fraïssé games** are well known in classical model theory, they are used to study elementary equivalence.
- **Bisimulation games** are their analogues for Kripke models and modal and intermediate logic.

Bisimulation games have been used
- for constructing bisimulations
- for study of expressive power of logical languages
- for completeness proofs in modal logic
- for proofs of local finiteness in modal and intermediate logics (and more exactly, for classifying formulas).
Modal propositional language

N-modal formulas are built from a countable set of proposition letters $\{p_1, p_2, \ldots\}$ using boolean connectives and unary modal connectives $\square_1, \ldots, \square_N$; as usual $\Diamond_i = \neg \square_i \neg$

If $N=1$ we denote the modalities just by \square and \Diamond.

The modal depth $md(A)$ is defined by induction:

- $md(p_i) = 0$, $md(\neg A) = md(A)$,
- $md(A \lor B) = md(A \land B) = \max(md(A), md(B))$,
- $md(\square_i A) = md(A) + 1$
Intuitionistic propositional language

Intuitionistic formulas are built from $\text{PL} = \{p_1, p_2, \ldots\}$ and the connectives $\wedge, \vee, \rightarrow, \bot$.

$\top A := A \rightarrow \bot$

The implication depth $\text{di}(A)$ is defined by induction:

$\text{di}(p_i) = \text{di}(\bot) = 0,$

$\text{di}(A \lor B) = \text{di}(A \land B) = \max(\text{di}(A), \text{di}(B)),$

$\text{di}(A \rightarrow B) = \max(\text{di}(A), \text{di}(B)) + 1.$
Logics-1

An *N-modal logic* is a set of N-modal formulas L such that:

- L contains all boolean tautologies
- L is closed under Modus Ponens: if A, A → B ∈ L, then B ∈ L.
- L is closed under Substitution:

 if A(p₁,...,pₙ) ∈ L, then A(B₁,...,Bₙ) (for any formulas B₁,...,Bₙ)

- if A ∈ L, then □ᵢA ∈ L
- □ᵢ(A → B) → (□ᵢA → □ᵢB) ∈ L

The *minimal logic* K_N is the smallest such set; K denotes K_1.
An *intermediate logic* is a set of intuitionistic formulas L such that:

- L contains all intuitionistic axioms
- L is closed under Modus Ponens: if $A, A \rightarrow B \in L$, then $B \in L$.
- L is closed under Substitution:

 if $A(p_1, \ldots, p_n) \in L$, then $A(B_1, \ldots, B_n)$ (for any formulas B_1, \ldots, B_n)
- L is consistent

The smallest intermediate logic is intuitionistic (\mathbf{H}), the largest is classical (\mathbf{CL}).
L[k] denotes the restriction of a logic L to formulas in variables p_1, \ldots, p_k. The sets $L[k]$ are called weak logics.

The modal depth of a formula A in a (maybe weak) modal logic L:

$$\text{md}_L(A) := \text{min}\{\text{md}(B) | L \vdash A \leftrightarrow B\}$$

The implication depth of a formula A in an intermediate logic L:

$$\text{di}_L(A) := \text{min}\{\text{di}(B) | L \vdash A \leftrightarrow B\}$$

The modal / implication depth of a logic L:

$$\text{md}(L) := \max\{\text{md}_L(A) | A \text{ is in the language of } L\}$$

$$\text{di}(L) := \max\{\text{di}_L(A) | A \text{ is an intuitionistic formula}\}$$
Trivial examples:
\(\text{di}(H) = \infty, \text{md}(K) = \infty \)
\(\text{di}(CL) = 1 \)
\(\text{md}(K + \Box \bot) = \text{md}(K + p \leftrightarrow \Box p) = 0. \)

A nontrivial (well-known) example:
\(\text{md}(S5) = 1 \)
Kripke frames and models-1

An N-modal Kripke frame is a nonempty set with N binary relations $F = (W, R_1, \ldots, R_N)$.

An intuitionistic Kripke frame is a poset $F = (W, \leq)$.

A valuation in F is a function $\theta : PL \rightarrow 2^W$ (so $\theta(p_i) \subseteq W$).

(F, θ) is a Kripke model over F.

In intuitionistic Kripke models $\theta(p_i)$ should be \leq-stable:

$x \in \theta(p_i) \& x \leq y \Rightarrow y \in \theta(p_i)$

In k-weak Kripke models only p_1, \ldots, p_k are evaluated.
The inductive truth definition for the modal case \((M,x \vDash A)\)

- \(M,x \vDash p_i \text{ iff } x \in \theta(p_i)\)
- \(M,x \vDash \Box_i A \text{ iff } \forall y(xR_i y \Rightarrow M,y \vDash A)\)
- \(M,x \vDash \Diamond_i A \text{ iff } \exists y(xR_i y \& M,y \vDash A)\)

A formula \(A\) is **valid** in a frame \(F\) (in symbols, \(F \vDash A\)) if \(A\) is true at all points in every Kripke model over \(F\).
Kripke frames and models-3

The inductive truth definition for the intuitionistic case \((M,x \vDash A)\)

- \(M,x \vDash p_i \text{ iff } x \in \theta(p_i)\)
- \(M,x \vDash A \lor B \text{ iff } (M,x \vDash A \text{ or } M,x \vDash B)\)
- \(M,x \vDash A \land B \text{ iff } (M,x \vDash A \text{ and } M,x \vDash B)\)
- \(M,x \vDash A \rightarrow B \text{ iff } \forall y \geq x (M,y \vDash A \Rightarrow M,y \vDash B)\)

Then

- \(M,x \vDash \neg A \text{ iff } \forall y \geq x M,y \not\vDash A\)

A formula \(A\) is valid in a frame \(F\) (in symbols, \(F \vDash A\)) if \(A\) is true at all points in every intuitionistic Kripke model over \(F\).
Kripke frames and models-4

Canonical model theorem

For any modal or intermediate logic L (weak or not) there exists the **canonical model** M_L such that

- for any A in the language of L

 $$M_L \models (\models) A \text{ iff } L \vdash A$$

- M_L is **distinguishable**:

 two points x,y satisfy the same formulas iff $x=y$.
Tabularity and FMP

Kripke complete logics

\[L(F) := \{ A \mid F \models A \} \] (the *logic of a frame* \(F \)).

\[L(C) := \bigcap \{ L(F) \mid F \in C \} \] (the *logic of a class of frames* \(C \)).

- If \(F \) is finite, \(L(F) \) is called *tabular* (or *finite*).
- If \(C \) consists of finite frames, \(L(C) \) has the *finite model property* (FMP). Or:

\[L \text{ has the FMP iff } L \text{ is an intersection of tabular logics.} \]

Proposition ('Harrop's theorem') If \(L \) is finitely axiomatizable and has the FMP, then \(L \) is decidable.
Bisimulation games-1

n-bisimulations by Johan Van Benthem (1989) <<
n-equivalence by Kit Fine (1974)

Def For a k-weak Kripke model $M=(W,R_1,\ldots,R_N,\theta)$
consider the 0-equivalence relation between points

$$x \equiv_0 y := \forall j \leq k \ (M,x \models p_j \iff M,y \models p_j)$$

Given M and two points $x_0 \equiv_0 y_0$ we can play the r-round
bisimulation game $BG_r(M,x_0,y_0)$.

Players: Spoiler (Abelard) vs Duplicator (Éloïse).

Remark More generally, bisimulation games can be defined
for two Kripke models M,M' and points $x_0 \in M$, $y_0 \in M'$. We do
not need this in our talk.
Bisimulation games-2

The initial position in $BG_r(M, x_0, y_0)$ is (x_0, y_0).

Round $(n+1)$
- **Spoiler** chooses i, x_{n+1} [or y_{n+1}] such that $x_n R_i x_{n+1} [y_n R_i y_{n+1}]$
- **Duplicator** chooses y_{n+1} [x_{n+1}] such that $y_n R_i y_{n+1}$ [$x_n R_i x_{n+1}$] and $x_{n+1} \equiv_0 y_{n+1}$

A player loses if he/she cannot move.
- **Duplicator** wins after r rounds.
Bisimulation games-3

Def Formula and game *n-equivalence* relations (on M)

- \(x \equiv_n y \) := for any \(A(p_1,\ldots,p_k) \) of modal depth \(\leq n \)
 \[
 M, x \models A \iff M, y \models A
 \]
- \(x \sim_n y \) := Duplicator has a winning strategy in \(BG_n(M, x, y) \)

Main Theorem on finite bisimulation games (Stirling, 1995)

\[
\equiv_n = \sim_n
\]

- The same theorem holds for the intuitionistic case.
Local tabularity-1

Def A logic L is *locally tabular* (or *locally finite*) if for any k there are finitely many formulas in p_1, \ldots, p_k up to equivalence in L.

Equivalent definitions:

- L is locally tabular if all its weak fragments $L[k]$ are tabular.
- The variety of L-algebras is *locally finite*: every finitely generated L-algebra is finite.
- For every finite k, the free k-generated L-algebra (the *Lindenbaum algebra* of $L[k]$) is finite.
- Every weak canonical model $M_{L[k]}$ is finite.
Local tabularity-2

Finite modal (implication) depth ⇒

local tabularity ⇒ fmp

• The first implication is easy: there are finitely many k-formulas of bounded depth up to equivalence in the basic modal or intuitionistic logic.

• The second one is well-known: a locally tabular logic is complete w.r.t. its weak canonical frames

The second implication is not revertible: plenty of examples (K, S4, H etc.)

PROBLEM. Does every locally tabular modal or intermediate logic have a finite formula depth?

The problem seems difficult. Conjecture: no.
Formula depth and games-1

In every Kripke model there is a decreasing sequence

\[\equiv_0 \supseteq \equiv_1 \supseteq \ldots \quad \text{Put} \quad \equiv_\infty := \bigcap_n \equiv_n \]

Lemma 1 In a weak Kripke model every relation \(\equiv_n \) induces a finite partition (\(W/\equiv_n \) is finite).

Lemma 2 \(x \equiv_\infty y \) iff for any \(A(p_1,\ldots,p_k) \) \((M,x \vdash A \iff M,y \vdash A) \)

Lemma 3 (distinguishability) In canonical models:

\[x \equiv_\infty y \text{ iff } x = y. \]

Stabilization lemma (modal case)

If \(\equiv_n = \equiv_{n+1} \) in every \(M_{L\mid_k} \) (bisimulation games *stabilize at round* \(n \)), then \(\text{md}(L) \leq n \).

Stabilization lemma (intuitionistic case) If \(\equiv_n = \equiv_{n+1} \) in every \(M_{L\mid_k} \), then \(\text{di}(L) \leq n+1 \).
Proof of modal Stabilization lemma

For every \(x \) in \(M_{L[k]} \), put

\[
B_x := \bigwedge \{ C \mid x \models C, \text{md}(C) \leq n \}
\]

Then \(B_x \) defines \(x \). So for any \(k \)-formula \(A \)

\[
M_{L[k]} \models A \iff \bigvee \{ B_x \mid x \models A \},
\]

and the disjunction is actually finite.

By Canonical model theorem

\[
L \models A \iff \bigvee \{ B_x \mid x \models A \}. \text{ QED}
\]
Stabilization lemma (intuitionistic case) If $\equiv_n = \equiv_{n+1}$ in every $M_{L\lceil k}$, then $\text{di}(L\lceil k) \leq n+1$.

Proof. Similar to the modal case, but now we need

$$B_x := \bigwedge \{ D \mid x \Vdash D, \text{di}(D) \leq n \},$$

$$C_x := \bigvee \{ D \mid x \not\Vdash D, \text{di}(D) \leq n \}.$$

Then $y \not\Vdash B_x \rightarrow C_x$ iff $y \leq x$. So for any k-formula A

$$M_{L\lceil k} \models A \iff \bigwedge \{ B_x \rightarrow C_x \mid x \not\Vdash A \}.$$

Hence $L \vdash A \iff \bigwedge \{ B_x \rightarrow C_x \mid x \not\Vdash A \}$. QED
Normal forms in intuitionistic logic

The previous proof allows us to present every intuitionistic formula in the normal form, as a conjunction of `characteristic formulas' (cf. [Ghilardi, 1992]). This is an analogue to Hintikka theorem for classical FOL.

Depth 1 Characteristic k-formulas are $B_j \rightarrow C_j$, where

$$B_j := \bigwedge \{ p_i \mid i \in J \}, \quad C_j := \bigvee \{ p_i \mid i \notin J \},$$

for $J \subseteq \{1, \ldots, k\}$.

Depth n+1 Characteristic k-formulas are $B_j \rightarrow C_j$, where

$$B_j := \bigwedge \{ D_i \mid i \in J \}, \quad C_j := \bigvee \{ D_i \mid i \notin J \},$$

where D_1, \ldots, D_m are all characteristic formulas of depth n, $J \subseteq \{1, \ldots, m\}$.
Lemma on repeating positions Suppose in a Kripke model M $x \equiv_n y$ and the Duplicator has a winning strategy s in $BG_n(M,x,y)$ such that every play controlled by s has at least two repeating positions. Then $x \equiv_{n+1} y$.
Formula depth and games-6

tabularity ⇒ finite formula depth

Theorem If F is finite, then $\text{md}(L(F)) \leq |F|^2 + 1$.

Proof: The Pigeonhole principle gives repeating positions.

Remark In many cases we have a better (linear) upper bound.
Examples of finite depth-1

\[\text{md}(K + \Box^n \bot) = n-1 \]

and more generally,

\[\text{md}(K_N + \Box^n \bot) = n-1 \]

where

\[\Box A := \Box_1 A \land \ldots \land \Box_N A. \]

The axiom \(\Box^n \bot \) forbids paths of length \(n \) in Kripke frames:

\[x_1 R x_2 \ldots R x_n, \text{ where } R = R_1 \cup \ldots \cup R_N \]

Proof. For the upper bound: every play of a bisimulation game contains at most \((n-1)\) rounds. For the lower bound:

\[\text{md}_L(\Box^{n-1} \bot) = n-1. \]

An earlier result: \(K_N + \Box^n \bot \) is locally tabular (Gabbay & Sh, 1998; a routine proof by induction).
Examples of finite depth-2

\[\text{md}(S_5) = 1 \text{ (a well-known fact)} \]

Proof. If Duplicator can win the 1-game, she can win the 2-game.
Examples of finite depth-3

\[\text{md}(\text{DL}) = 2 \]

DL is the *difference logic*

\[\text{DL} = K + \Diamond \Box p \rightarrow p + \Diamond \Diamond \Diamond p \rightarrow p \vee \Diamond p \]

- **DL** is complete w.r.t inequality frames \((W, \neq_W)\).
- Arbitrary **DL**-frames are obtained from **S5**-frames (equivalence frames) by making some points irreflexive.
- Proof (for the lower bound):
 - \(x \models \Diamond^2 p \)
 - \(y \not\models \Diamond^2 p \)
 - \(t \models p \)
 - \(z \models p \)
 - \(x \equiv_1 y \)
Examples of finite depth-4

For the upper bound we have to examine games in canonical models

Lemma In $M_{DL|k}$ $x \equiv_0 y$ & xRy implies $x \equiv_1 y$.

Proof. Duplicator's responses for the moves of Spoiler are:

S: (x,z) (with $z \neq x,y$) D: (y,z)

S: (x,x) D: (y,x)

S: (x,y) D: (y,x)

They lead to 0-equivalent points. QED
Examples of finite depth-5

Now in the general case suppose $x \equiv_2 y$ in $M_{DL[k]}$. We have to show that $x \equiv_3 y$. Let us start playing a 2-round game, so we have $x' \equiv_1 y'$, and we have to show $x' \equiv_2 y'$.

\[\text{Diagram showing arrows from } x \text{ to } x'' \text{ and from } y \text{ to } y'' \text{ with intermediate } x' \text{ and } y' \]
Examples of finite depth-6

Consider the next Spoiler's move \((x', x'')\).

(a) \(x'' = x\). The Duplicator responds with \(y'' = y\).

(b) \(x'' \neq x, x'' \not\equiv_0 x'\). Then \(xR_0 x''\), and \((x, x'')\) can be regarded as the first move in the 2-round game. For the response \((y, y'')\) we have \(y'R_0 y''\) (since \(y' \neq y''\), otherwise \(x'' \equiv_0 x'\)) and \(x'' \equiv_1 y''\).
Examples of finite depth-7

(c) $x'' \neq x$, $x'' \equiv_0 x'$. There is a response (y', y''), with $x'' \equiv_0 y''$. So $y'' \equiv_0 y'$ by the transitivity of \equiv_0.

Now by Lemma $x'' \equiv_1 x'$ and $y'' \equiv_1 y'$; thus $x'' \equiv_1 y''$ by the transitivity of \equiv_1. QED.
Examples of finite depth-8

\[\text{di}(H+i\text{bd}_n) \leq 2n-1 \]

In posets \(i\text{bd}_n \) forbids *chains of length* \(n+1 \): \(x_1 < x_2 \ldots < x_{n+1} \).

\[i\text{bd}_1 = p_1 \lor \neg p_1, \]

\[i\text{bd}_{n+1} = p_{n+1} \lor (p_{n+1} \rightarrow i\text{bd}_n). \]

Def Intermediate logics of finite transitive depth: extensions of \(H+i\text{bd}_n \) are of depth \(\leq n-1 \) (or of height \(\leq n \)).

Theorem (Kuznetsov – Komori) These logics are locally tabular.

Proof of the upper bound: by induction we show that \(x \equiv_k y \) implies \(x \equiv_{k+1} y \) whenever \(\text{depth}(x) + \text{depth}(y) \leq k \). So the bisimulation game stabilizes at \(2n-2 \).
Examples of finite depth-9

\[
\text{md(Grz}+\text{bd}_n) \leq 2n-2, \\
\text{md(Grz3}+\text{bd}_n) = n-1
\]

\textbf{Grz} is the logic of finite partial orders, \\
\textbf{Grz3} is the logic of finite chains.

In transitive Kripke frames \text{bd}_n forbids \textit{chains of clusters of length } n+1: x_1Rx_2...Rx_{n+1}, \text{ where}

\[\neg x_iRx_{i+1} \text{ for each } i.\]

\[
\text{bd}_n = \neg \Diamond (Q_1 \wedge \Diamond (Q_2 \wedge ... \wedge \Diamond Q_{n+1})),
\]

\[Q_i = p_i \wedge \bigwedge \{ \neg \Diamond p_j \mid 1 \leq j < i \}.
\]

\textbf{Grz3} + \text{bd}_n = L(n\text{-element chain})
Examples of finite depth-10

$\text{di}(\text{LC}) = 2$, where $\text{LC} = H+ (p \rightarrow q) \lor (q \rightarrow p)$ is the intermediate logic of arbitrary chains.

Proof. $x \equiv_1 y$ implies $x \equiv_2 y$, since $x' \equiv_0 y'$ implies $x' \equiv_1 y'$: we can ignore the first move. If the 1-round game response for (x,x'') is (y,y'') with $y'' < y$, then $x'' \equiv_0 y''$, and $y'' \equiv_0 y'$ as the model in intuitionistic. So (y',y') can be the response for (x',x'').
Examples of finite depth-11

\[\text{md}(\text{Grz} + \text{bd}_2) = 2 \]

(0, 1 show the truth values of p)

Here \(x \equiv_1 y \), but \(x \not\equiv_2 y \): Duplicator wins after 1 round. Spoiler wins after 2 rounds.

A distinguishing formula is \(\Box \Diamond p \). So it has depth 2 in \(\text{Grz} + \text{bd}_2 \)

But note that \(\text{md}(\text{Grz}_3 + \text{bd}_2) = 1 \) and

\[\text{Grz}_3 + \text{bd}_2 \vdash \Box \Diamond p \iff (\Box p \lor (\neg p \land \Diamond p)) \].
Examples of finite depth-12

di(\textit{LC+ibd}_2) = di(\textit{LC})= 2, while \ di(\textit{H+ibd}_2) =3:

As in the modal case, \(x \equiv_1 y\), but \(x \not\equiv_2 y\):

\(x \models \neg p, y \models p\)

Note that \(di(\neg p \rightarrow p)=3\) in \(\textit{H+ibd}_2\)

But \(di(\neg p \rightarrow p)=1\) in \(\textit{LC+ibd}_2\) : it is equivalent to \((p \lor \neg p)\).
Examples of finite depth-13

\[\text{md}(K4 + \text{bd}_n) \leq 4n - 3 \]

Theorem (Segerberg 1971; Maksimova 1975) For \(L \supseteq K4 \)

\(L \) is locally tabular iff \(L \) is of finite transitive depth.

Def \(L \) is of **finite transitive depth** if \(L \vdash \text{bd}_n \) for some \(n \).

Corollary For extensions of \(K4 \) local tabularity is equivalent to finite modal depth.

PROBLEM (Chagrov) Find a description of local tabularity for extensions of \(K \).
Examples of finite depth-14

If \(\text{md}(L) = m \), then \(\text{md}(\{\mathbf{K} + \square^n \perp, L\}) \leq (m+1)n-1 \)

Def. The commutative join (commutator)

\[
[L_1, L_2] := L_1 \ast L_2 \text{ (the fusion)} +
\]

\[\blacklozenge_j \square_i p \leftrightarrow \square_i \blacklozenge_j p \text{ (commutation axioms)}\]

\[\blacklozenge_j \square_i p \rightarrow \blacklozenge_j \blacklozenge_i p \text{ (Church-Rosser axioms)}\]
Tabularity criterion-1

Theorem (Chagrov 1994)

L is tabular iff \(L \vdash \alpha_n \land \text{Alt}_n \) for some \(n \).

The formulas \(\alpha_n \), \(\text{Alt}_n \) correspond to universal conditions on frames:

- \(\alpha_n \) forbids simple paths of length \(n \):
 \[x_1Rx_2...Rx_n, \text{ where all the } x_i \text{ are different.} \]

- \(\text{Alt}_n \) forbids \(n \)-branching: \(xRx_1,...,xRx_n, \), where all the \(x_i \) are different.
Tabularity criterion-2

\[\alpha_n = \neg \Box (P_1 \land \Box (P_2 \land \ldots \land (P_{n-1} \land \Box P_n) \ldots)) , \]

\[\text{Alt}_n = \neg (\Box P_1 \land \Box P_2 \land \ldots \land \Box P_n) , \]

where

\[P_i = \neg p_i \land \{ p_j \mid 1 \leq j \leq n, j \neq i \} . \]
Theorems on local tabularity-1

1. Every logic $\mathbf{K}_n + \alpha_n$ (Chagrov's formula) is locally tabular.

(This theorem was conjectured in 1994 by Chagrov.)

The proof does not give the FMD. To reach a repeating position, Duplicator should keep track of all possible returns.

So she plays her own stronger game:

at the position (x,y) at every stage not only $x \equiv_0 y$, but for any $m<n$, $i \leq N$

there is a return m steps back from x along R_i iff there is a return m steps back from y along R_i.

This is actually a bisimulation game in another model.

As it stabilizes at n, we obtain the local tabularity.
Theorems on local tabularity-2

2. The logics \([K_N + \alpha_n, K_N' + \Box^n \bot]\), \([K_N + \alpha_n, S5]\) are locally tabular.

Remark. In general products and commutative joins do not preserve local tabularity, a counterexample is \([S5, S5] = S5^2\) (Tarski).

Theorem [N. Bezhanishvili, 2002] \(S5^2\) is pre-locally tabular. Probably, there exists a game-theoretic proof.
THANK YOU!
References-1

Logics

- **K** = **L** (all frames)
- **K4** := **K** + ◇◇p → ◇p = **L** (all transitive frames)
- **S4** := **K4** + p → ◇p = **L** (all transitive reflexive frames)
 = **L** (all partial orders)
- **Grz** := **S4** + Ʌ(p ∧ □(p → ◇(Ʌp ∧ ◇p)))
 = **L** (all finite partial orders)
- **Grz3** := **Grz** + ◇p ∧ ◇q → ◇(p ∧ ◇q) ∨ ◇(q ∧ ◇p)
 = **L** (all finite chains)
- **S5** := **S4** + ◇□p → p = **L** (all equivalence frames)
 = **L** (all universal frames [clusters])

All these logics have the FMP, so they are decidable.