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Outline

Main goal: developing a propositional calculus for compact
Hausdorff spaces

De Vries duality: compact Hausdorff spaces and algebras

Language, semantics, deductive system and steps towards a
completeness result

Investigation of the theory of the introduced tools



De Vries duality

deV - KHaus
\_/

(Ba<) — XB

de Vries algebra space of maximal round filters of (B, <)

X — (RO(X), <)
compact Hausdorff space algebra of regular open subsets of X
where U < V :=ClI(U) C V



Boolean algebras with a binary relation
De Vries algebras

Definition
A de Vries algebra is a pair (B, <) where
e B is a complete Boolean algebra

e < is a binary relation on B satisfying

Ql) 0<0and1<1,;

2) a< b,c implies a < bAc;

) a,b < cimpliesaV b <c;

) a<b=<c<dimplies a < d;
5) a < b implies a < b;

6) a < b implies =b < —a;

7) a < bimplies 3c: a < ¢ < b;
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Boolean algebras with a binary relation

Compingent algebras

Definition
A compingent algebra is a pair (B, <) where
e B is a Boolean algebra

e < is a binary relation on B satisfying

Ql) 0<0and1<1,;

2) a< b,c implies a < bAc;

) a,b < cimpliesaVb<c;

) a<b=<c<dimplies a < d;
5) a < b implies a < b;

6) a < b implies =b < —a;

7) a< bimplies 3c: a < c < b;
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Boolean algebras with a binary relation

Contact algebras

Definition
A contact algebra is a pair (B, <) where
e B is a Boolean algebra

e < is a binary relation on B satisfying

(Ql) 0<0and 1 <1;

(Q2) a < b,c impliesa < bAc;

(Q3) a,b < c implies aV b < c;
(Q4) a< b=<c<dimpliesa<d,
(Q5) a < b implies a < b;

(Q6) a < b implies =b < —a;



Boolean algebras with a binary relation

Syntax and semantics

A binary relation < on a Boolean algebra B can be replaced with
an operation ~»: B x B — {0,1} C B, defined as

1 ifa<b
a ~> b =
0 otherwise.



Boolean algebras with a binary relation

Syntax and semantics

A binary relation < on a Boolean algebra B can be replaced with
an operation ~»: B x B — {0,1} C B, defined as

1 ifa<b
a ~> b =
0 otherwise.

We use this operation to interpret formulas of the following
language into pairs (B, <):

o =plTloAe|-p|lp~p
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Boolean algebras with a binary relation

Syntax and semantics

Our language has the following property:

V¢ 3¢ such that for any valuation v into an algebra (B, <) :

1 ifv(p)=1
v(¢') =
0 if v(p) # 1.

In our case ¢’ := T ~ .



The system S

Consider the deductive system axiomatised by:
e All axioms ¢ of CPC

AL) (L~ o)A (p~T)

) (P~ Y)A(p~x) = (¢~ P AX)

) (T~ = V) A (P~ x) = (¥~ X)

) (p~ ) = (¢ = ¥)

A5) (o~ ) = (x ~ (¢ ~ 1))

A6) —(p ~ ) = (x ~ (¢ ~ ¥))

AT) (p ~ ) < (7Y ~ —p)
y oY
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Completeness

Theorem
The system S is strongly sound and complete with respect to
contact algebras:

NrFe < T Ee

The class of contact algebras is axiomatised by (Q1)-(Q6), which
are universal statements.

To deal with the V3 statements (Q7) and (Q8) we add
non-standard rules to the system S.
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A TMy-rule is one of the form:

) F(@,p) — x
G(p) — x

where F, G are formulas involving formula variables @, x and fresh
proposition letters p.




My, — rules

Non-standard rules for emulating V3-statements

Definition
A TMy-rule is one of the form:

() F(@,p) — x
G(p) — x

where F, G are formulas involving formula variables @, x and fresh
proposition letters p.

We associate such a rule (p) with the V3-statement

o, = V)‘(,Z(G()‘()ﬁz — dy: F()‘(,?)ﬁz)

in the signature (A, —, 1,~).
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Logics for inductive classes of contact algebras

From logics to classes

Let T be the first-order theory of contact algebras.

Let {pn}n<w be a set of My — rules.

Theorem
The system S + {pn}n<w is strongly sound and complete with
respect to Mod(T U {®,,}n<w).

By this theorem, extensions of S with [lM,-rules are complete with
respect to V3-definable classes of contact algebras. V3-definable
classes are the same as inductive classes (Chang-tos-Suszko
theorem).
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Logics for inductive classes of contact algebras

From classes to logics

Vice versa, given a V3-theory T’ D T, we can find a logic which is
complete with respect to Mod(T").

We define how to translate a quantifier-free formula (X, y) into a
formula ®(x, y) of our language.

Proposition

Let d(x, y) be a quantifier-free formula.

The statement Vx3y®d(X, y) is equivalent to the one associated to
the My-rule

(ho) —%
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Logics for inductive classes of contact algebras

Correspondence between logics and inductive classes

Let T be the first-order theory of contact algebras.

{pn}n<w — T U {¢pn}n<w
set of lMy-rules V3-theory extending T

T — {peo | VXIyd(x,7) € T'}
V3-theory extending T set of MNy-rules

Extensions of S s Inductive classes of

with TMy-rules contact algebras
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The logic of compingent algebras

(Q7) a < bimplies Ic: a < c < b;
(Q8) a# 0 implies3db#0: b < a.

(Q7) and (Q8) correspond to the following rules:

(o~ p)A(p~ )= x

(v7) (p~ )= x

pA(p~ @) =X
(v8) =




The logic of compingent algebras

(Q7) a < bimplies Ic: a < c < b;
(Q8) a# 0 implies3db#0: b < a.

(Q7) and (Q8) correspond to the following rules:

(o~ p)A(p~ )= x

(v7) (p~ )= x
PRRAUETES

Thus we obtain:

Corollary

S + (p7) + (p8) is strongly sound and complete with respect to
compingent algebras.



Admissibility of y-rules
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Admissibility of Ny-rules

Definition
A Ma-rule (p) is admissible in S if all the theorems of S + (p) are
provable in S.

Theorem (Criterion of admissibility)

A TMy-rule (p) is admissibile in S if and only if any contact algebra
(B, <) is a substructure of some contact algebra (C, <) satisfying
b,

Corollary
(p7) and (p8) are admissibile in S.
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The logic of compact Hausdorff spaces

Definition

The MacNeille completion of a compingent algebra (B, <) is

(B, <), where B is the MacNeille completion of B and < is defined
as:

a <[ & thereexist a,b € B suchthat a <a< b <.

Lemma
Given a compingent algebra (B, <), its MacNeille completion
(B, <) is a de Vries algebra.

Corollary

e S+ (p7)+ (p8) is sound and complete with respect to de
Vries algebras.

e S+ (p7) + (p8) is sound and complete with respect to
compact Hausdorff spaces.
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MacNeille canonicity and topological properties

Definition

An axiom or rule is MacNeille canonical if, whenever a compingent
algebra (B, <) validates it, also its MacNeille completion (B, <)
does.

Corollary
Let the axiom (A) and the My-rule (p) be MacNeille canonical.
e S+ (p7)+ (p8) + (A) is sound and complete with respect to
de Vries algebras validating (A).

e S+ (p7)+ (p8) + (p) is sound and complete with respect to
de Vries algebras satisfying ®,,.

MacNeille canonical axioms and rules can be used to express
topological properties.
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MacNeille canonicity and topological properties

Examples

e Connectedness:
(C) (p~9) = (T~ )V (T~ )

S+ (p7) + (p8)+ (C) is the logic of connected compact
Hausdorff spaces.

e Zero-dimensionality:

(o~ p)A(p~ )N (P~ p)— X
(o~ ) = x

(r9)

S+ (p7) + (p8) + (p9) is the logic of Stone spaces.
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Related work

Our completeness result for My-rules is inspired by the work of
Balbiani, Tinchev and Vakarelov in Modal Logics for Region-based
Theories of Space (2007).

They use a first-order language without quantifiers.
In this language they provide propositional calculi related to RCC
(Region Connection Calculus).

Some of these calculi involve particular non-standard rules:

v = (aCp V p*Cb)
w = aCb

¢ = (p=0VaCp)
p=(a=1)

(NOR)

where p does not occurr in a, b,

(EXT) where p does not occurr in a, ¢
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Related work

Balbiani et al. consider two semantics for their language:

e Relational semantics based on Kripke frames;

e Topological semantics via algebras of regular closed subsets of
topological spaces

With respect to these semantics, the authors give completeness
results for the propositional calculi they introduced.
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Conclusion

e We developed a finitary propositional calculus for compact
Hausdorff spaces via de Vries algebras.

e We developed the theory of M;-rules, showing:

- a correspondence between logics and inductive classes;
- a semantic criterion for admissibility of INMy-rules.

e We showed how MacNeille completions can be used to obtain
logics for subclasses of compact Hausdorff spaces.
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