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Introduction.

The disjunction property (DP) was observed by Gödel for
intuitionistic logic (Int). Specifically, for any (propositional)
formulas A,B if A ∨ B ∈ Int, then A ∈ Int or B ∈ Int. It turned
out [Wroński, 1973] that there are continuum many intermediate
logics enjoying the DP. For such logics, if we have a basis R of
admissible rules, the set

R, p ∨ q/p, q, p ∧ ¬p/∅ (1)

forms a basis for admissible multiple-conclusion rules (m-rules).

Moreover, if R consists of rules of form A ∨ q/B ∨ q, where q is
not occurring in A,B, and R is an independent basis of admissible
rules, (1) is an independent basis for admissible m-rules.

For instance, m-rules p ∨ q/p, q and p ∧ ¬p/∅ form an
independent basis for m-rules admissible in the Medvedev logic.
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Introduction.

The converse also holds: if an intermediate logic L enjoys the DP
and Γi/∆i , i ∈ I is a basis of admissible m-rules,∧

Γi ∨ q/
∨

∆i ∨ q, i ∈ I , (2)

where q does not occur in formulas from Γi ,∆i , forms a basis of
rules admissible for L (comp. [Rybakov, 1985]).
The same holds for Gabbay - de Jongh logics and modal logics
with the DP
[Goudsmit, 2015, Goudsmit and Iemhoff, 2014, Jěrábek, 2005].

The proof of aforementioned results is based on semantics, while
the transition between bases and m-bases rests on purely
syntactical properties of disjunction.

The goal: to show how these relations between bases of admissible
rules and m-rules can be extended to a very broad class of logics.
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Outline.

• Basic Definitions

• Derivations in Multiple-Conclusion Logics

• Disjunction in Multiple-Conclusion Logics

• From Basis to m-Basis

• q-Extensions: from Basis to m-Basis preserving Independence

• From m-Basis to Basis
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Logics.

We consider a countable set P of (propositional) variables and
finite set of connectives C. The (propositional) formulas are
constructed in a usual way. Let Fm be a set of all propositional
formulas.

A set of formulas L ⊆ Fm closed under substitutions is a (proposi-
tional) logic.

An ordered pair Γ/∆ of finite sets of formulas Γ,∆ ⊆ Fm is called
an m-rule. Formulas from Γ are premises. Formulas from ∆ are
alternatives.

We use > and ⊥ to denote empty sets of premises and alternatives.
That is, we write >/∆ and Γ/⊥ instead of ∅/∆ and Γ/∅.

Alex Citkin m-Rules vis-à-vis Rules. ToLo, June 16, 2016 5 / 30



m-Rule System.

A (finitary structural) m-rule system is a set R of m-rules (writing
Γ|−R∆ instead of Γ/∆ ∈ R) satisfying for all finite sets
Γ, Γ′,∆,∆′ ⊆ Fm and formulas A ∈ Fm:

1. A|−RA, (R)

2. if Γ|−R∆, thenΓ, Γ′|−R∆,∆′, (M)

3. if Γ,A|−R∆ and Γ|−RA,∆, then Γ|−R∆, (T)

4. if Γ|−R∆, then σ(Γ)|−Rσ(∆) for each substitution σ. (S)

(M) and (T) entail: for any finite sets Γ0, Γ1,∆ and any formula A

if Γ0,A|−R∆ and Γ1|−RA,∆, then Γ0, Γ1|−R∆, (T*)

Given an m-rule system R, the set Th(R) := {A ∈ Fm : |−RA} is
called a set of theorems of R. Clearly, Th(R) is a logic. If L is a
logic and L = Th(R), we say that m-rule system R defines logic L.
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Alex Citkin m-Rules vis-à-vis Rules. ToLo, June 16, 2016 6 / 30



m-Rule System.

A (finitary structural) m-rule system is a set R of m-rules (writing
Γ|−R∆ instead of Γ/∆ ∈ R) satisfying for all finite sets
Γ, Γ′,∆,∆′ ⊆ Fm and formulas A ∈ Fm:

1. A|−RA, (R)

2. if Γ|−R∆, thenΓ, Γ′|−R∆,∆′, (M)

3. if Γ,A|−R∆ and Γ|−RA,∆, then Γ|−R∆, (T)

4. if Γ|−R∆, then σ(Γ)|−Rσ(∆) for each substitution σ. (S)

(M) and (T) entail: for any finite sets Γ0, Γ1,∆ and any formula A

if Γ0,A|−R∆ and Γ1|−RA,∆, then Γ0, Γ1|−R∆, (T*)

Given an m-rule system R, the set Th(R) := {A ∈ Fm : |−RA} is
called a set of theorems of R. Clearly, Th(R) is a logic. If L is a
logic and L = Th(R), we say that m-rule system R defines logic L.
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m-Rules.

A logic L is consistent if there is a formula A, such that A /∈ L.
We call a logic substitutionally consistent (s-consistent for short)
if there is a finite set of formulas Ai , i < k , such that for neither
substitution σ, σ(Ai ) ∈ L for all i < k (not L-unifiable set of
formulas).

For instance, Int is s-consistent: take A = p ∧ ¬p; or S4 is
s-consistent: take A = ♦p ∨ ♦¬p.

If R is a set of m-rules, by [R] we denote the least m-rule system
containing all m-rules from R. If R is an m-rule system and R =
[R0] for some set of m-rules R0, we say that R0 is an m-basis of R.

If R is m-rule system and R0 is a set of m-rules, we let

R + R0 := [R ∪ R0].
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Rules.

The m-rules having a single conclusion are called the rules. By R◦

or by |−◦R we denote a set of all rules from R, that is,

R◦ := {Γ/A : Γ/A ∈ R}.

A set of rules satisfying the following conditions is called a rule
system:

1. A|−LA, (R)

2. if Γ|−LA, then Γ, Γ′|−LA, (M’)

3. if Γ,A|−LB and Γ|−LA, then Γ|−LB, (T’)

4. if Γ|−LA, then σ(Γ)|−Lσ(A) for each substitution σ. (S’)

Since every theorem A corresponds to m-rule >/A and the latter is
a rule, we have

Th(R) = Th(R◦).

If R is a rule system, we let [R]◦ to be the least rule system
containing all rules from R, and R0 +◦ R1 := [R0 ∪ R1]◦.
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Alex Citkin m-Rules vis-à-vis Rules. ToLo, June 16, 2016 8 / 30



Rules.

The m-rules having a single conclusion are called the rules. By R◦

or by |−◦R we denote a set of all rules from R, that is,

R◦ := {Γ/A : Γ/A ∈ R}.

A set of rules satisfying the following conditions is called a rule
system:

1. A|−LA, (R)

2. if Γ|−LA, then Γ, Γ′|−LA, (M’)

3. if Γ,A|−LB and Γ|−LA, then Γ|−LB, (T’)

4. if Γ|−LA, then σ(Γ)|−Lσ(A) for each substitution σ. (S’)

Since every theorem A corresponds to m-rule >/A and the latter is
a rule, we have

Th(R) = Th(R◦).

If R is a rule system, we let [R]◦ to be the least rule system
containing all rules from R, and R0 +◦ R1 := [R0 ∪ R1]◦.
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Admissible vis-à-vis Conservative m-Rules.

Let L be a logic.

An m-rule Γ/∆ is admissible for L if for every substitution σ,
σ(Γ) ⊆ L entails σ(∆) ∩ L 6= ∅ (strict - [Iemhoff, 2015]).

An m-rule r is conservative for L if there is an m-rule system R
defining L and containing r (full - [Iemhoff, 2015]).

An m-rule r is strongly conservative for L if for every m-rule system
R defining L, the system R + r defines L.

For the rules all three classes of rules systems coincide, while for
m-rule systems all three classes may be distinct. For instance, for
classical logic m-rule p ∨ q/p, q is strongly conservative, but not
admissible. For intermediate logic of seven-element cyclic Heyting
algebra this m-rule is conservative, but not strongly conservative.
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m-Inference.

Let R be a set of m-rules and Γ be a finite (maybe empty) set of
formulas. An inference from Γ by R ((R, Γ)-inference for short) is a
labeled tree, defined by induction:

(-) A tree containing only a root labeled by > is an
(R, Γ)-inference – a trivial inference;

(a) If I is an (R, Γ)-inference, then a tree obtained from I by
adjoining to an extendable (that is, not labeled by ⊥) leaf, an
immediate successor labeled by a formula from Γ is an
(R, Γ)-inference;

(b) If I is an (R, Γ)-inference and n is an extendable leaf, then a
tree, obtained from I by adjoining to n immediate successors
n0, . . . , nm−1 labeled by formulas B0, . . . ,Bm−1, is
(R, Γ)-inference, provided there is an instance Γ/∆ of a rule
from R such that

Γ ⊆ λ(n↑) and ∆ = {B0, . . . ,Bm−1},
where λ(n↑) is a set of labels of all predecessors of n.
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m-Inference: Example.

Given an (R, Γ)-inference

>

C0 . . . Cn−1

and an m-rule {Ai , i < n}/{Bj , j < m} ∈ R, the trees

>

C0

A

. . . Cn−1

and >

C0

B0 . . . Bm−1

. . . Cn−1

are (R, Γ)-inferences, provided A ∈ Γ and all premises Ai , i < n can
be found on the branch between leaf C0 and the root.
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m-Inference.

A length len(I ) of an inference I is a number of nodes distinct from
leaves. That is, len(I ) is a number of ”steps” in the inference.

Let R be a set of m-rules and r := Γ/∆ be an m-rule. We say that
r is derivable from rules R (in written R|−r) if there is a (R, Γ)-
inference I such that λ(lv(I )) ⊆ ∆, i.e. every leaf formula is an
alternative from ∆.

Theorem (comp. [Iemhoff, 2015])

Suppose R is a set of rules. Then

[R] = {r : R|−r}.

A proof can be done by induction on the length of inference.
Remark. The above definition of inference is slightly different
from the definitions in [Shoesmith and Smiley, 2008] and
[Iemhoff, 2015].
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∨-Introduction.

We assume that there is a formula D(p, q) (a finite set of formulas
Di (p, q), i < k) on two variables that possesses properties of
disjunction. To make the notation more suggestive we write p∇q.

First, we need ∨-introduction rules:

dir := p/p∇q and dil := q/p∇q.

In the case of a set of formulas, the ∨-introduction rules are

p/Di (p, q) and q/Di (p, q), where i < k .

For ∨-elimination rules we use a multiple-alternative rule.
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∨-Elimination.

In the setting of natural deduction, ∨-elimination rule is

A ∨ B

[A]

...
C

[B]

...
C

C

∨-Elimination in the multiple-alternative setting:

A ∨ B

A

C

B

C

de := p∇q/p, q.
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Properties of ∇.

If R is a set of rules and R|−dil,R|−dir,R|−de, we say that ∇ is
m-disjunction for R.

Given a set of m-rules, the m-disjunction for R is unique modulo |−.

Proposition

Let R be a set m-rules. If D(p, q) and D ′(p, q) are m-disjunctions
for R then

R|−D(p, q)/D ′(p, q) and R|−D ′(p, q)/D(p, q).

In the multiple-formula setting, if ∇ = {Dj(p, q), j < k} and
∇′ = {D ′l (p, q), l < s},

R|−D0, . . . ,Dk−1/D
′
l , for every l < s.

and
R|−D ′0, . . . ,D ′s−1/Dj , for every j < k .
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Properties of ∇.

The following rules play special role:

dir := p/p∇q
dil := p/q∇p
dc := p∇q/q∇p
dar := (p∇q)∇r/p∇(q∇r)

dal := p∇(q∇r)/(p∇q)∇r
dsd := (p∇r)∇(q∇r)/(p∇q)∇r
did := (p∇p)/p

Let D◦ := {dir, dil, dc, dar, dal, dsd, did}

Example

For Int, D(p, q) = p ∨ q. For S4, D(p, q) = �p ∨�q. For BCK,
D(p, q) = (p → q)→ q [Kowalski, 2014].
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Properties of ∇.

Proposition

Let R be a set m-rules and ∇ be an m-disjunction for R. Then the
following holds:

(a) R |−r for every r ∈ D◦;

(b) If R|−A∇B and R|−A/C and R|−B/C, then R|−A∇B/C for
every A,B,C ∈ Fm.

Rule de is not the same as the disjunction property: for every
intermediate logic L, ∨ is an m-disjunction for a rule system con-
sisting of axiom schemas of L (treated as rules) and modus ponens,
regardless whether L enjoys the DP. m-Rule de is ”equivalent” to
the DP only when it is admissible for Th(R).
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From basis to m-basis.

Let L be a logic. Then the set of all m-rules admissible in L forms
an m-rule system Adm(L), and the set of all admissible in L rules
forms a rule system Adm◦(L).

If Γ/∆ ∈ Adm(L) and Γ is not L-unifiable, m-rule Γ/∆ is called
passive. Clearly, if Γ/∆ is a passive m-rule, then the rule Γ/⊥ is
passive too.

Proposition

Let L be a logic, Γ ⊆ L be a not L-unifiable set of formulas, and let
R◦ be a basis of admissible rules. Then any passive m-rule can be
derived from m-rules

R◦ and Γ/⊥.

For instance, in S4.3 all passive m-rules can be derived from
♦p ∧ ♦¬p/⊥ (comp. [Rybakov et al., 2000]) or from p ∧ ¬p/⊥.
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From basis to m-basis.

Suppose sets Γ := {Ai , i < k} and ∆ := {Bj , j < m} are not
L-unifiable. We derive ∆/⊥ from Γ/⊥, using |∼ ∆/Ai , i < k:

B1

. . .

Bm−1

A1

. . .

Ak−1

⊥

premises

by ∆/Ai

by Γ/⊥
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From basis to m-basis.

Theorem

Let L be a logic, ∇ be m-disjunction for Adm(L) and R◦ be a basis
of Adm◦(L). Then,

(a) If L is s-consistent and Γ is any finite not L-unifiable set of
formulas,

R◦, de, Γ/⊥
is a basis for Adm(L);

(b) If L is not s-consistent,

R◦, de

is a basis for Adm(L);

Alex Citkin From basis to m-basis. ToLo, June 16, 2016 20 / 30



From basis to m-basis: some applications.

Corollary

Let L be a logic and Adm(L) has an m-disjunction. Then

(a) Adm◦(L) is decidable if and only if Adm(L) is decidable;

(b) If Adm◦(L) has a finite base, then Adm(L) has a finite base;

(c) If Adm◦(L) has a finite basis relative to L, then Adm(L) has a
finite basis relative to L.

Due to Adm◦(L) being decidable for every
L ∈ {K4,K4.1,S4,S4.1,Grz, Int, ,Dn, n ≥ 1} ([Rybakov, 1997]),
we have that for all these logics Adm(L) is decidable too
([Rybakov, 1997]).

Due to Adm◦(Int+) and Adm◦(Jhn) being decidable
([Odintsov and Rybakov, 2013]), Adm(Int+) and Adm(Jhn) is
decidable too.
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From basis to m-basis: some applications.

Visser’s rules form a basis of Adm◦(Int) ([Iemhoff, 2001]), hence
Visser’s rules together with de and p ∧ ¬p/⊥ is a basis of
Adm(Int).

m-Rule p ∧ ¬p/⊥ is not derivable from Visser’s rules. In general,
m-rule of form Γ/⊥ is not derivable from any set of rules that have
non-empty set of alternatives.
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q-Extension.

Let A be a formula and q be a variable not occurring in A. Then
formula (A∇q) is a q-extension of A. We let >q := > and
⊥q := q.

Definition

q-Extension of an m-rule r := Γ/∆ is a rule rq obtained from r by
replacing every premise from Γ by its q-extension, and by replacing
alternatives ∆ by q-extension of the formula obtained by
connecting all formulas from ∆ by ∇.

For instance, q-extension of m-rule A0,A1/B0,B1 is rule

A0∇q,A1∇q/B0∇B1∇q,

where q has no occurrences in A0,A1,B0,B1. And q-extensions of
rules A/⊥ and >/B are respectfully rules

A∇q/q and >/B∇q.
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q-Extension.

Proposition

Let R be a set of m-rules and ∇ be an m-disjunction for R. For
any rule r,

R, rq|−r.

Let r := A/B.
>

A

A∇B

B∇B

B

premise

dir

rq

de
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q-Extension.

A set of m-rules R (rules R◦) is independent if neither m-rule r ∈ R
(neither rule r ∈ R◦) can be derived from R \ {r} (◦-derived from
R◦ \ {r}).

Theorem

Let L be a logic, ∇ be m-disjunction for Adm(L) and R◦ be an
independent basis of Adm◦(L) consisting of q-extended rules.
Then,

(a) If L is s-consistent and Γ is any finite not L-unifiable set of
formulas,

R◦, de, Γ/⊥
is an independent basis for Adm(L);

(b) If L is not s-consistent,

R◦, de

is an independent basis for Adm(L);
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q-Extension.

For instance [Jěrábek, 2008], the following is an independent basis
of admissible rules for Int:

πn := ((
∨
i<n

pi → p)→
∨
i<n

pi ) ∨ q/
∨
i<n

(p ∧
∧
j 6=i

pj → pi ) ∨ q.

Thus, {πn; n > 1, de, p ∧ ¬p/⊥} is an independent m-basis for
Int. In [Jěrábek, 2008] Jěrábek proves that the following is
independent m-basis (n 6= 1)

Πn := ((
∨
i<n

pi → p)→
∨
i<n

pi )/{p ∧
∧
j 6=i

pj → pi ; i < n}.

As we see, in the Jěrábek’s basis m-rule de is not needed, because
the conclusions of rules πn are already ”decomposed”.

Problem

Is there an intermediate logic with the DP that has an independent
basis of admissible rules, but does not have an independent
m-basis?
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From m-basis to basis.

Theorem

Let L be a logic and R be a m-basis of Adm(L). Then D◦ ∪ R∇ is
basis of Adm◦(L).

From the above theorem and absence of finite basis for admissible
in Int rules [Rybakov, 1984], we have [Rybakov, 1985]

Corollary

There is no finite m-basis for Int.

For example, we can take the m-basis {rn, de, p ∧ ¬p/⊥} of
Gabbay-de Jongh logic BBn constructed in [Goudsmit, 2015,
Theorem 5.36] and convert it into a basis {rqn}.

rn := (∨ni=1(pi → p)→ ∨nj=1pj)/ ∨nj=1 ((∨ni=1pi → p)→ pj),

rqn := q ∨ (∨ni=1(pi → p)→ ∨nj=1pj)/ ∨nj=1 ((∨ni=1pi → p)→ pj) ∨ q.
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From m-basis to basis.

The proof is based on the following observation:

r := A0, . . . ,An−1/B0,B1 r′ := A0, . . . ,An−1/B0∇B1

ri := Bi/C ; i < 2 rqi := Bi ∨ q/C ∨ q; i < 2

A0, . . . ,An−1

B0

C

B1

C

r

r1 r2

|

|

|

|

|

A0, . . . ,An−1

B0∇B1

C∇B1

C∇C

C

r′

rq0

rq1
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Final Remarks.

So far we were considering transitions from a given m-basis to a
basis, and vise versa. But we can try to use a set of conservative
m-rules in order to define all admissible rules. For instance, despite
the fact [Rybakov, 1995] that there are tabular intermediate and
modal logics whose admissible rules have no finite basis, the
following holds.

Proposition

Let L be a tabular extension of Int (or K4) logic. Then there is a
finite set of m-rules R such that R is conservative relative to L and
every admissible in L rule is derivable from R.

Problem

Is there a finite set R of m-rules that is conservative relative to Int
and such that every admissible in Int rule is derivable from R?
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Thank You

Thank You
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