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A different kind of picture
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Sheaves and étale spaces

Definition of étale space

Let V be a variety of algebras, (Y , ρ) a topological space.

Let (Ay )y∈Y be a Y -indexed family of V-algebras.

Let E :=
⊔

y∈Y Ay , with p : E � Y the natural surjection.

Suppose τ is a topology on E such that

p : (E , τ) � (Y , ρ) is a local homeomorphism, and

for each n-ary f the partial map f E : En 7→ E is continuous.

p : (E , τ) � (Y , ρ) is called an étale space of V-algebras.
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Sheaves and étale spaces

Sheaf from an étale space

Let p : (E , τ) � (Y , ρ) be an étale space of V-algebras.

For any U ∈ ρ, write F (U) for the set of local sections over U:

F (U) := {s : U → E continuous s.t. p ◦ s = idU}.

Note: F (U) is a V-algebra (it is a subalgebra of
∏

y∈U Ay ).

If U ⊆ V , there is a natural restriction map F (V )→ F (U).

F is called the sheaf associated with p.
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Sheaves and étale spaces

Definition of sheaf

In general, a sheaf F on Y consists of the data:

For each open U, a V-algebra F (U) (“local sections”);

For each open U ⊆ V , a V-homomorphism

()|U : F (V )→ F (U) (“restriction maps”);

such that the appropriate diagrams commute, and
such that it satisfies the following patching property:

For any open cover (Ui )i∈I of an open set U,

if (si )i∈I is a “compatible family” of local sections, i.e.,

si ∈ F (Ui ) and si |Ui∩Uj = sj |Ui∩Uj for all i , j ∈ I ,

then ∃!s ∈ F (U) such that s|Ui = si for all i ∈ I .

F (Y ) is called the algebra of global sections of the sheaf F .
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Sheaves and étale spaces

Sheaves vs. étale spaces

Fact
Any sheaf arises from an étale space, and vice versa.
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Boolean products

Boolean product representation

A Boolean space is a compact Hausdorff space which has a

basis of clopen sets.

A Boolean product representation of an algebra A is a sheaf F

on a Boolean space Y such that A is isomorphic to the algebra

of global sections of F .

Equivalent: a subdirect embedding A �
∏

y∈Y Ay satisfying:

(Open equalizers) For any a, b ∈ A, the equalizer

‖a = b‖ := {y ∈ Y | ay = by} is open;
(Patch) For K clopen in Y , a, b ∈ A, there exists c ∈ A such

that a|K = c |K and b|Kc = c |Kc .
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Boolean products

Boolean product, pictorially

A/y
A/y ′

F

Y

K K cy y ′

a

b
c

9 / 36



Sheaves on Boolean spaces Stably compact spaces Sheaves and decompositions Applications and further work

Boolean products

Boolean product, pictorially

A/y
A/y ′

F

Y

K K c

y

y ′

a

b
c

9 / 36



Sheaves on Boolean spaces Stably compact spaces Sheaves and decompositions Applications and further work

Boolean products

Boolean product, pictorially

A/y

A/y ′

F

Y

K K c

y

y ′

a

b
c

9 / 36



Sheaves on Boolean spaces Stably compact spaces Sheaves and decompositions Applications and further work

Boolean products

Boolean product, pictorially

A/y

A/y ′

F

Y

K K c

y y ′

a

b
c

9 / 36



Sheaves on Boolean spaces Stably compact spaces Sheaves and decompositions Applications and further work

Boolean products

Boolean product, pictorially

A/y
A/y ′

F

Y

K K c

y y ′

a

b
c

9 / 36



Sheaves on Boolean spaces Stably compact spaces Sheaves and decompositions Applications and further work

Boolean products

Boolean product, pictorially

A/y
A/y ′

F

Y

K K c

y y ′

a

b
c

9 / 36



Sheaves on Boolean spaces Stably compact spaces Sheaves and decompositions Applications and further work

Boolean products

Boolean product, pictorially

A/y
A/y ′

F

Y
K

K c

y y ′

a

b
c

9 / 36



Sheaves on Boolean spaces Stably compact spaces Sheaves and decompositions Applications and further work

Boolean products

Boolean product, pictorially

A/y
A/y ′

F

Y
K

K c

y y ′

a

b
c

9 / 36



Sheaves on Boolean spaces Stably compact spaces Sheaves and decompositions Applications and further work

Boolean products

Boolean product, pictorially

A/y
A/y ′

F

Y
K K cy y ′

a

b

c

9 / 36



Sheaves on Boolean spaces Stably compact spaces Sheaves and decompositions Applications and further work

Boolean products

Boolean product, pictorially

A/y
A/y ′

F

Y
K K cy y ′

a

b
c

9 / 36



Sheaves on Boolean spaces Stably compact spaces Sheaves and decompositions Applications and further work

Boolean products

Lattices of congruences

Theorem (Comer 1971, Burris & Werner 1980)

The Boolean product representations of A are in a natural

one-to-one correspondence with relatively complemented

distributive lattices of permuting congruences on A.
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Boolean products

Duals of Boolean products

Let D be a distributive lattice.

Theorem (Gehrke 1991)

Boolean product representations D �
∏

y∈Y Dy are in a natural

one-to-one correspondence with Boolean sum decompositions of

the Stone dual space X of D into the Stone dual spaces (Xy )y∈Y

of the lattices (Dy )y∈Y .

Also see [Hansoul & Vrancken-Mawet 1984] for a version for

the Priestley dual spaces.
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Boolean products

Dual characterization, pictorially
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Boolean products

Question

What if Y is no longer a Boolean space?
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Basics

Stably compact spaces

“Generalisation of compact Hausdorff to T0-setting”

Definition
Stably compact space =

T0,

Sober,

Locally compact,

Intersection of compact-saturated is compact.
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Basics

Co-compact dual and patch topology

For any topological space (Y , ρ), define its co-compact dual

ρ∂ := 〈U ⊆ Y | Y \ U is compact-saturated in ρ〉top

Fact: If (Y , ρ) is stably compact, then so is Y ∂ := (Y , ρ∂).

Define ρp := ρ ∨ ρ∂ , the patch topology.

Fact: (Y , ρp) is a compact Hausdorff space.

Let y ≤ y ′ ⇐⇒ y ′ ∈ {y}, the specialization order of ρ.

Fact: ≤ is a closed subspace of (Y × Y , ρp × ρp).

So (Y , ρp,≤) is a compact ordered space (Nachbin 1965).
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Basics

Compact ordered spaces

Conversely, given a compact ordered space (Y , π,≤),
denote by π↓ the topology of open down-sets.

Then (Y , π↓) is a stably compact space, and (π↓)∂ = π↑.

Fact
The categories of stably compact spaces and compact ordered

spaces are isomorphic.
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Representation

Representing stably compact spaces

Let (Y , ρ) be a stably compact space

and let B be a lattice basis of ρ-open sets.

For U, V in B , define

U ≺ V ⇐⇒ ∃K compact such that U ⊆ K ⊆ V .

The pair (B,≺) forms a join-strong proximity lattice

which determines the space (Y , ρ).
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Representation

Basis and co-compact dual

Lemma (Dual basis)

Let (Y , ρ) be a stably compact space and B a lattice basis for ρ.

For any open set W in ρ∂ , we have

W =
⋃
{V ∈ ρ∂ | ∃U ∈ B : V ⊆ Uc ⊆W }.
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From sheaf to decomposition

Flasque sheaves

Let F be a sheaf on a space Y with F (Y ) 6= ∅.

If K ⊆ Y is a clopen set, then the restriction map

F (Y )→ F (K ) is surjective.

Thus, if Y is a Boolean space, then there is a basis B for

which all restriction maps are surjective.

If (Y , ρ) is a stably compact space with lattice basis of opens

B , then F is called B-flasque if F (Y )→ F (U) is surjective for

all U ∈ B .
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From sheaf to decomposition

Flasque sheaves and congruences

Let B be a lattice basis for a stably compact space (Y , ρ).

For a B-flasque sheaf F , define

θF : Bop → Con(F (Y ))

by

U ∈ B 7→ ker(F (Y ) � F (U)).

The map θF is a homomorphism and maps into the permuting

congruences on F (Y ).

In case B is a Boolean algebra, we get a Boolean subalgebra of

factor congruences (cf. Comer’s result).
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From sheaf to decomposition

Lifting to frames

The homomorphism θF : Bop → Con(F (Y )) can be lifted:

Define θ̃F : O(Y ∂)→ F by

θ̃F (W ) :=
∨
{θF (U) | U ∈ B, Uc ⊆W }.

Then θ̃F is a frame homomorphism.

(Here we use the dual basis lemma of stably compact spaces.)
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From sheaf to decomposition

Frame homomorphism gives continuous map

Since F (Y ) is a distributive lattice, there is an isomorphism

ψ : Con(F (Y ))→ O(X ),

where X is the Priestley dual space of F (Y ).

Therefore, there is a frame homomorphism

ψ ◦ θ̃F : O(Y ∂)→ O(X ),

which corresponds to a continuous map qF : X → Y ∂ .

Proposition

The dual of the stalk of F at y ∈ Y is q−1
F (↓y).

For U ∈ B, the dual of the lattice F (U) is q−1
F (U).
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From sheaf to decomposition

Sheaves and decompositions in a picture
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From decomposition to sheaf

From decomposition to étale space

Let D be a distributive lattice with dual space X .

For q : X → Y ∂ continuous to a stably compact space Y ,

we may define an étale space p : E → Y such that

p−1(y) is the lattice dual to the closed subspace q−1(↓y) ⊆ X .

Write F for the sheaf associated to p : E → Y .

There is a natural embedding

η : D → F (Y )

a 7→ (y ∈ Y 7→ â ∩ q−1(↓y)).
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From decomposition to sheaf

Characterizing sheaf representations dually

Thus, any continuous map q : X → Y ∂ yields a sheaf F such

that D embeds into the lattice of global sections F (Y ) of Y .

Question: When is the embedding η an isomorphism?

Lemma (Dual characterization)

For any open set U ⊆ Y , the following are equivalent:

1 Each local section s ∈ F (U) is equal to η(a)|U for some a ∈ D;

2 If U =
⋃

i∈I Ui and (Ki )i∈I is a family of clopen downsets in X

such that Ki ∩ q−1(Ui ∩ Uj) = Kj ∩ q−1(Ui ∩ Uj), (i , j ∈ I )

then there is a clopen downset K in X such that

K ∩ q−1(U) =
⋃

i∈I (Ki ∩ q−1(Ui )). (“Property (PU)”)
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From decomposition to sheaf

Property (PU) in a picture
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From decomposition to sheaf

Flasque sheaves and patching decompositions

If Y is a stably compact space with lattice basis B , we say a

map q : X → Y ∂ is B-patching if (PU) holds for all U ∈ B .

Theorem
Let D be a distributive lattice with dual Priestley space X .

The B-flasque sheaf representations of D over Y are in one-to-one

correspondence with the B-patching decompositions of X over Y ∂ .
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From decomposition to sheaf

This talk in a picture
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Application: Cartesian products

The dual space of a Cartesian product

Suppose that D =
∏

i∈I Di is a Cartesian product of

distributive lattices.

Note that D = F (Y ), where Y = βI , the Stone-Čech

compactification of I as a discrete space, and F is the sheaf

whose stalk at y ∈ βI is the ultraproduct Dy := (
∏

i∈I Di )/y .

(cf. Jónsson’s Lemma)

Therefore, the Priestley space X dual to D decomposes as the

disjoint union of closed subspaces Xy , where Xy is the

Priestley dual space of Dy .
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Application: MV-algebras

MV-algebras

Infinite-valued logic (Łukasiewicz, 1917): truth values in [0, 1].

a formula (= polynomial), e.g., ϕ = (p ⊕ q) ∧ r

is interpreted as [ϕ] : [0, 1]3 → [0, 1],

collection of all formulas is a Multi-Valued (MV) algebra.

Definition
An MV-algebra is a tuple (A,∨,∧, 0, 1,⊕,	) such that

(A,∨,∧, 0, 1) is a bounded distributive lattice,

(A,⊕, 0) is a commutative monoid and 	 is the residual of ⊕:

a 	 b ≤ c ⇐⇒ a ≤ b ⊕ c ,

x ∨ y = (x 	 y)⊕ y .
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Application: MV-algebras

Dual spaces of MV-algebras

Since an MV-algebra A is in particular a distributive lattice, let

(XA, π,≤) be the Priestley dual space of the lattice reduct.

There is a subspace YA of XA consisting of prime MV-ideals,

i.e., those prime ideals I which satisfy I ⊕ I ⊆ I .

The Zariski topology on YA is the subspace topology of π↓, a

lattice basis for this topology is B := {â ∩ YA | a ∈ A}.

There is a subspace ZA of YA consisting of maximal MV-ideals.
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Application: MV-algebras

Dual spaces of MV-algebras

Theorem
The dual space XA of any MV-algebra A is a topological partial

commutative semigroup,

which admits a B-patching decomposition

k : (XA, π)→ (YA, π
↓) over the prime MV-spectrum YA with the

Zariski topology, and there is a retraction m : (YA, π
↓)→ (ZA, π

↓).

XA

+

k

ZA
YA
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Application: MV-algebras

Sheaf representations of MV-algebras

Corollary (Keimel, Filipoiu-Georgescu, Yang, Dubuc-Poveda, . . . )

Any MV-algebra A can be represented as the global sections of:

1 a sheaf Fpr of totally ordered MV-algebras over the space YA

with the co-Zariski topology;

2 a sheaf Fmax of local MV-algebras over the space ZA.
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Further work

Can we go beyond flasque sheaves?

What do these results say about canonical extensions?

Applications to other classes of DL-ordered algebras?

Relation to Jipsen’s Priestley & Esakia products for n-potent

GBL-algebras?
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