Squares of modal logics and relation algebras

Valentin Shehtman

Institute for Information Transmission Problems

> TOLO 4
> June 2014

Plan

- Introduction
- Modal logics
- Products of frames and products of logics
- Horn axioms and product-matching logics
- FMP and product FMP for squares
- Segerberg squares
- Axiomatization of Segerberg squares
- FMP and product FMP for Segerberg squares
- Translation from squares to FOL
- RA and RRA
- From Segerberg squares to RA

Introduction

In the early days of modal logic (before 1980s) there was interest in studying multiple particular systems.

Contemporary modal logic also investigates classes of logics and general constructions for combining different systems.
Products were introduced in the 1970s; their intensive study started in the 1990s.

Products are a natural type of combined modal logics Connections:
first-order classical logic
first-order modal logics
relation algebras
description logics

Modal logics

We consider normal modal logics with unary modalities.
An n-modal logic has basic modalities

It is an extension of the minimal logic \mathbf{K}_{n}.
Frames $\quad \mathrm{F}=\left(\mathrm{W}_{1} \mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}\right)$
$F \vDash A$ means that a formula A is valid in a frame F
(= true at all worlds in all Kripke models over F).
$\mathbf{L}(F):=\{A \mid F \vDash A\}$ (the logic of F).
$\mathbf{L}(C):=\bigcap\{\mathbf{L}(\mathrm{F}) \mid \mathrm{F} \in C\}$ (the logic of a class C).
Logics of this form are called Kripke complete.
Def. If F is finite, $\mathbf{L}(F)$ is called tabular.
A modal logic has the finite model property (FMP) if it is an intersection of tabular logics.

Some particular complete logics

\mathbf{K}_{n} is the minimal n-modal logic, $\mathbf{K}=\mathbf{K}_{1}$.
K. \mathbf{t}_{n} is the minimal n-temporal logic, K.t=K. \mathbf{t}_{1}.

Modalities: $\square_{1}, \ldots, \square_{1}, \square_{-1}, \ldots, \square_{-n}$
Axioms: $\diamond_{i} \square_{-i} p \rightarrow p$
$\mathbf{K . \mathbf { t } _ { \mathbf { n } }}$-frames are $\left(W, R_{1},\left(R_{1}\right)^{-1}, \ldots, R_{n}\left(R_{n}\right)^{-1}\right)$.
$\mathbf{T}=\mathbf{K}+\square \mathrm{p} \rightarrow \mathrm{p}=\mathbf{L}($ all reflexive frames)
$\mathbf{K 4}=\mathbf{K}+\square \mathrm{p} \rightarrow \square \square \mathrm{p}=\mathbf{L}$ (all transitive frames)
$\mathbf{S 4}=\mathbf{K 4}+\square \mathrm{p} \rightarrow \mathrm{p}=\mathbf{L}($ all transitive reflexive frames)
$\mathbf{K B}=\mathbf{K}+\diamond \square \mathrm{p} \rightarrow \mathrm{p}=\mathbf{L}$ (all symmetric frames)
$\mathbf{S 5}=\mathbf{S 4}+\diamond \square \mathrm{p} \rightarrow \mathrm{p}=\mathbf{L}($ all equivalence frames $)$
$=\mathbf{L}($ all universal frames)

Products of frames and logics

Def. $\left(W, R_{1}, \ldots, R_{n}\right) \times\left(V, S_{1}, \ldots, S_{m}\right):=$

$$
\left(W \times V, R_{11}, \ldots, R_{n 1}, S_{12}, \ldots, S_{m 2}\right)
$$

where
$(x, y) R_{i 1}\left(x^{\prime}, y^{\prime}\right)$ iff $x R_{i} x^{\prime} \& y=y^{\prime}$
$(x, y) R_{j 2}\left(x^{\prime}, y^{\prime}\right)$ iff $y S_{j} y^{\prime} \& x=x^{\prime}$
Def. The product of two modal logics

$$
L_{1} \times L_{2}:=\mathbf{L}\left(\left\{F_{1} \times F_{2} \mid F_{1} \vDash L_{1}, F_{2} \vDash L_{2}\right\}\right)
$$

If $\quad L_{1}$ is n-modal with $\square_{1}, \ldots, \square_{n}$,
L_{2} is m-modal with

then $L_{1} \times L_{2}$ is $(n+m)$-modal. In a Kripke model over $F_{1} \times F_{2}$

$$
\begin{aligned}
& (x, y) \vDash \square_{i} A \text { iff } \forall x^{\prime}\left(x R_{i} x^{\prime} \Rightarrow\left(x^{\prime}, y\right) \vDash A\right) \\
& (x, y) \vDash \square_{j} A \text { iff } \forall x^{\prime}\left(y S_{j} y^{\prime} \Rightarrow\left(x, y^{\prime}\right) \vDash A\right)
\end{aligned}
$$

Remark on squares

Prop. The square of a logic is the logic of squares of its frames

$$
L_{1} \times L_{1}:=\mathbf{L}\left(\left\{F_{1} \times F_{1} \mid F_{1} \vDash L_{1}\right\}\right)
$$

Proof:

$$
\begin{aligned}
& \left(F_{1} \sqcup F_{2}\right) \times\left(F_{1} \sqcup F_{2}\right) \cong \\
& \left(F_{1} \times F_{1}\right) \bigsqcup\left(F_{1} \times F_{2}\right) \bigsqcup\left(F_{2} \times F_{1}\right) \bigsqcup\left(F_{2} \times F_{2}\right) .
\end{aligned}
$$

Hence

$$
\mathbf{L}\left(F_{1} \times F_{2}\right) \subseteq \mathbf{L}\left(\left(F_{1} \sqcup F_{2}\right)^{2}\right)
$$

So the logic of all L_{1}-squares contains the logic of all $L_{1}-$ products.

Axiomatization problem:

Given axioms for L_{1}, L_{2}, find axioms for $L_{1} \times L_{2}$.
This problem is solved for Horn axiomatizable logics

Def. The fusion $L_{1} * L_{2}$ of two modal logics
is the smallest logic containing them both. (If the modalities are not disjoint, rename them. In this talk we use■)

Def. The commutative join (commutator)
$\left[\mathrm{L}_{1}, \mathrm{~L}_{2}\right]:=\mathrm{L}_{1} * \mathrm{~L}_{2}+$
$\square_{j} \square_{i} \mathrm{p} \leftrightarrow \square_{\mathrm{i}} \square_{\mathrm{j}} \mathrm{p}$ (commutation axioms)
$\diamond_{\mathrm{j}} \square_{\mathrm{i}} \mathrm{p} \rightarrow \square_{\mathrm{j}} \diamond_{\mathrm{i}} \mathrm{p}$ (Church-Rosser axioms)

The corresponding conditions on frames

$$
R_{i} \circ R_{j}=R_{i} \circ R_{j} \text { (commutation) }
$$

Both conditions hold for products frames, so

$$
\left[\mathrm{L}_{1}, \mathrm{~L}_{2}\right] \subseteq \mathrm{L}_{1} \times \mathrm{L}_{2}
$$

Product-matching logics

Def. L_{1}, L_{2} are product-matching if

$$
L_{1} \times L_{2}=\left[L_{1}, L_{2}\right]
$$

Def. A Horn sentence is a universal first order sentence of the form

$$
\forall x \forall y \ldots(\phi(x, y, \ldots) \rightarrow R(x, y))
$$

where ϕ is positive quantifier-free, $R(x, y)$ is atomic.
A modal formula A is Horn if it corresponds to a Horn sentence (i.e., the class of its frames is definable by a Horn sentence).

Example Modal formulas of the form

$$
(\diamond \ldots \diamond) \square \mathrm{p} \rightarrow(\square \ldots \square) \mathrm{p}
$$

correspond to Horn sentences.
The corresponding property of frames

Logics with such axioms are always Kripke complete.
Def. A modal logic is Horn axiomatizable if it is axiomatizable by formulas that are either variable-free or Horn.
Theorem (Gabbay, Sh $1998 \ll$ BOOK03) If L_{1}, L_{2} are Kripke complete and Horn axiomatizable, then they are product matching.

Product FMP

Def. $L_{1} \times L_{2}$ has the product FMP if

$$
L_{1} \times L_{2}:=\mathbf{L}\left(\left\{F_{1} \times F_{2} \mid F_{1} \vDash L_{1}, F_{2}=L_{2} ; F_{1}, F_{2} \text { are finite }\right\}\right)
$$

(Equivalently: $L_{1} \times L_{2}$ is the logic of a class of products of finite frames)

$$
\mathrm{FMP} \Rightarrow \text { product } \mathrm{FMP}
$$

Def. A QTC-logic is axiomatizable by variable-free formulas and formulas or axioms of the form

$$
\diamond_{\mathrm{i}} \square_{\mathrm{j}} \mathrm{p} \rightarrow \mathrm{p}, \square_{\mathrm{i}} \mathrm{p} \rightarrow\left(\square_{\mathrm{i}}\right)^{\mathrm{k}} \mathrm{p}
$$

Theorem [Sh 2005] If L_{2} is a QTC-logic, then

$$
\text { K. } \mathbf{t}_{\mathrm{n}} \times \mathrm{L}_{2}=\left[\mathbf{K} \cdot \mathbf{t}_{\mathrm{n}}, \mathrm{~L}_{2}\right] \text { has the fmp. }
$$

Remark. These logics may not have the product FMP, e.g.
$\mathbf{K 4} \times \mathbf{S 5}$ (Wolter)

Theorem [Sh 2011] $\left(\mathbf{K . t}_{\mathrm{n}}\right)^{2}=\left[\mathbf{K} . \mathbf{t}_{\mathrm{n}^{\prime}} \mathbf{K} . \mathbf{t}_{\mathrm{n}}\right]$ has the product fmp.
Corollary $\mathbf{K B}^{2}=[\mathbf{K B}, \mathbf{K B}]$ has the product fmp.
Proof: KB is embeddable in K.t: translate $\square \mathrm{A}$ as $\left(\square_{1} \mathrm{~A} \wedge \square_{-1} \mathrm{~A}\right)$ (the omnitemporal modality).

Conjecture The same holds with the reflexivity axioms:
$\left(\mathbf{T}_{\mathrm{t}}^{\mathrm{n}}\right)^{2}, \mathbf{T B}{ }^{2}$ have the product fmp.

Segerberg squares

These are square frames with additional functions.
Krister Segerberg (1973) studied a special type - squares of frames with the universal relation. He considered the following functions on squares.

$$
\begin{aligned}
& \mathrm{f}_{0}:(\mathrm{x}, \mathrm{y}) \mapsto(\mathrm{y}, \mathrm{x}) \text { (the diagonal symmetry) } \\
& \mathrm{f}_{1}:(\mathrm{x}, \mathrm{y}) \mapsto(\mathrm{y}, \mathrm{y}) \text { (the first diagonal projection) } \\
& \mathrm{f}_{2}:(\mathrm{x}, \mathrm{y}) \mapsto(\mathrm{x}, \mathrm{x}) \text { (the second diagonal projection) }
\end{aligned}
$$

These functions can be associated with extra modal operators
$\mathrm{O}, \mathrm{O}_{1}, \mathrm{O}_{2}$. So in square frames they are interpreted as follows:

$$
\begin{array}{ll}
(x, y) \vDash O A & \text { iff }(y, x) \vDash A \\
(x, y) \vDash O_{2} A & \text { iff }(x, x) \vDash A \\
(x, y) \vDash O_{1} A & \text { iff }(y, y) \vDash A
\end{array}
$$

Remark. Segerberg used a different notation for these modalities.

Formally we define the Segerberg square of a frame $F=\left(W, R_{1}, \ldots, R_{n}\right)$ as the $(2 n+3)$-frame

$$
\operatorname{seg}^{2}:=\left(\mathrm{F}^{2}, \mathrm{f}_{\mathrm{o}}, \mathrm{f}_{1}, \mathrm{f}_{2}\right)
$$

(where $\mathrm{f}_{\mathrm{o}}, \mathrm{f}_{1}, \mathrm{f}_{2}$ are the functions on W^{2} described above).
Respectively, the Segerberg square of an n-modal logic L_{1} is defined the logic of the Segerberg squares of its frames

$$
\operatorname{seg}\left(\mathrm{L}_{1}\right)^{2}:=\mathbf{L}\left(\left\{_{\operatorname{seg}} \mathrm{F}^{2} \mid \mathrm{F} \vDash \mathrm{~L}_{1}\right\}\right)
$$

Tomorrow (or Sucessor) logic

$$
\mathbf{S L}:=\mathbf{K}+\diamond p \leftrightarrow \square \mathrm{p}
$$

This well-known logic is also due to Segerberg (1967). It is complete w.r.t. the frame

(the successor relation on natural numbers).
Every logic of a frame with a functional accessibility relation is an extension of SL.

AXIOMATIZING SEGERBERG SQUARES

Soundness Every Segerberg square validates the following formulas

The corresponding semantic conditions for an arbitrary ($2 n+3$)frame $\quad\left(V, X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n^{\prime}} f_{0}, f, f\right)$
are in the right column; here fg denotes the composition of functions: $(\mathrm{fg})(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))$
(I) The SL-axioms for the circles O , , .
(II) (Sg1) $\quad O O p \leftrightarrow p \quad \mathrm{f}_{\mathrm{o}} \mathrm{f}_{\mathrm{o}}=1$ (the identity function on V)

The "symmetry" fo is an involution.
(Sg2) $\quad \mathrm{O}_{1} \mathrm{O}_{1} \mathrm{p} \leftrightarrow \mathrm{O}_{1} \mathrm{p} \quad \mathrm{f}_{1} \mathrm{f}_{1}=\mathrm{f}_{1}$
(Sg2') The same for 2.
Both projections f_{i} are idempotent transformations of the square. In fact (Sg2') follows from (Sg1), (Sg2), (Sg3).
$(\mathrm{Sg} 3) \quad \mathrm{OO}_{1} \mathrm{p} \leftrightarrow \mathrm{O}_{2} \mathrm{p}$

$$
\mathrm{f}_{1} \mathrm{f}_{\mathrm{o}}=\mathrm{f}_{2}
$$

(Sg4) $\quad O_{1} O p \leftrightarrow O_{1} p$ $\mathrm{f}_{\mathrm{o}} \mathrm{f}_{1}=\mathrm{f}_{1}$

In Segerberg squares (Sg4) means that the image of f consists of self-symmetric points (or: every diagonal point is self-symmetric). But in the general case not all self-symmetric points are in $\mathrm{f}[\mathrm{V}]$.
(Sg3), (Sg4) imply that $\mathrm{f}_{\mathrm{O}} \mathrm{f}_{1} \mathrm{f} \mathrm{O}=\mathrm{f}_{2}$, i.e., the involution $\mathrm{f} O$ conjugates the projections f_{1} and f_{2}.
(Sg 3) shows that O_{2} is expressible in terms of $\mathrm{O}, \mathrm{O}_{1}$.
(Sg5) $\quad \square_{\mathrm{i}} \mathrm{Op} \leftrightarrow \square_{\mathrm{i}} \mathrm{p} \quad \mathrm{aR} \mathrm{R}_{\mathrm{i} 1} \mathrm{~b}$ iff $\mathrm{f}_{\mathrm{o}}(\mathrm{a}) \mathrm{R}_{\mathrm{i} 2} \mathrm{f}_{\mathrm{o}}(\mathrm{b})$
Symmetry is an isomorphism between $\mathrm{R}_{\mathrm{i} 1}$ and $\mathrm{R}_{\mathrm{i} 2}$
(Sg6) $\quad O_{1} \square_{i}\left(\square_{i} p \rightarrow O_{2} p\right) \quad f(a) R_{i 1} b$ implies $b R_{i 2} f(b)$
In Segerberg squares:
If $(y, y) R_{i 1}(x, y)$ (i.e. $y R_{i} x$), then $(x, y) R_{i 2}(x, x)$.
(Sg7) $\quad \mathrm{O}_{1} \mathrm{p} \rightarrow \square_{\mathrm{i}} \mathrm{O}_{1} \mathrm{p} \quad a R_{\mathrm{i} 1} \mathrm{~b}$ only if $\mathrm{f}_{1}(\mathrm{a})=\mathrm{f}_{1}(\mathrm{~b})$
Horizontally accessible points are in the same horizontal row.
(Sg8) $\quad O_{1} \square_{\mathrm{i}} \mathrm{O}_{1} \mathrm{p} \leftrightarrow \square_{\mathrm{i}} \mathrm{O}_{1} \mathrm{p} \quad\left(\exists \mathrm{b} a R_{\mathrm{i} 2} \mathrm{~b}\right)$ iff $\left(\exists \mathrm{b} \mathrm{f}_{1}(\mathrm{a}) \mathrm{R}_{\mathrm{i} 2} \mathrm{~b}\right)$
In Segerberg squares: vertical seriality is equivalent for (y, y) and (x, y).
Def. For a modal logic L_{1}, put

$$
\begin{aligned}
& \operatorname{seg}\left[\mathrm{L}_{1}, \mathrm{~L}_{1}\right]:= \\
& \quad\left[\mathrm{L}_{1}, \mathrm{~L}_{1}\right]+\mathbf{S L} * \mathbf{S L} * \mathbf{S L}\left(\text { for } O, \mathrm{O}_{1}, \mathrm{O}_{2}\right)+\{(\mathrm{Sg} 1), \ldots,(\mathrm{Sg} 8)\} .
\end{aligned}
$$

Theorem 1 (Completeness) If a logic L_{1}

is Horn axiomatizable, then ${ }_{\text {seg }}\left[\mathrm{L}_{1}, \mathrm{~L}_{1}\right]==_{\text {seg }}\left(\mathrm{L}_{1}\right)^{2}$
Theorem $\mathbf{2}_{\text {seg }}\left(\mathbf{K}_{\mathbf{n}}\right)^{2}$ has the product fmp.

Tarski's axioms for relation algebras

$$
\begin{aligned}
& a \circ(b \cup c)=(a \circ b) \cup(a \circ c) \\
& a \circ I=a \\
& \left(a^{-1}\right)^{-1}=a \\
& (a \cup b)^{-1}=a^{-1} \cup b^{-1} \\
& (a \circ b)^{-1}=b^{-1} \circ a^{-1} \\
& a^{-1} \circ(-(a \circ b)) \leq-b
\end{aligned}
$$

References

K. Segerberg. Two-dimensional modal logic. Journal of Philosophical Logic, v. 2, pp. 77-96, 1973.
[BOOK03] D. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev. Many-dimensional Modal Logics: Theory and Applications. Elsevier, 2003.
D. Gabbay, V. Shehtman. Products of modal logics, part 1. Logic Journal of the IGPL, v. 6, pp. 73-146, 1998.
D. Gabbay, V. Shehtman. Products of modal logics, part 2. Logic Journal of the IGPL, v. 8 (2000), pp. 165-210.
D. Gabbay, V. Shehtman. Products of modal logics, part 3. Logic Studia Logica, v. 72 (2002), pp. 157-183.
V. Shehtman. Filtration via bisimulation. In: Advances in Modal Logic, Volume 5. King's College Publications, 2005, pp. 289308.

References

S.P. Kikot. On squares of modal logics with the designated diagonal (in Russian). Мат. заметки (Mathematical Notices), 88(2), 261-274 (2010).
R. Hirsch, I. Hodkinson. Relation algebras by games. Elsevier, 2002.
V. Shehtman. Squares of modal logics with additional connectives. Russian Mathematical Surveys, 67(4), 721-777 (2012).

