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Introduction
In the early days of modal logic (before 1980s) there 
was interest in studying multiple particular systems.

Contemporary modal logic also investigates classes of 
logics and general constructions  for combining 
different systems.

Products were introduced in the 1970s; their intensive 
study started in the 1990s.

Products are a natural type of combined modal logics
      Connections:       

first-order classical logic

 first-order modal logics

       relation algebras

       description logics  

    



  

Modal logics

We consider normal modal logics with unary modalities.

An n-modal logic    has basic modalities      ⃞ 
1 
,...,   ⃞ 

n

It is an extension of the minimal logic K
n
. 

Frames F=(W,R
1
,...,R

n
)

F ⊨ A means that a formula A is valid in a frame F 

(= true at all worlds in all Kripke models over F).

L(F) := { A | F ⊨ A} (the logic of  F). 

    L(C ) := ∩{L(F)|F∈C }(the logic of a class C ).
Logics of this form are called Kripke complete.

Def. If F is finite, L(F) is called tabular.

A modal logic has the finite model property (FMP) if it is 

an intersection of tabular logics.
  



  

Some particular complete logics

Kn is the minimal n-modal logic, K=K1.

K.tn is the minimal n-temporal logic, K.t=K.t1.

Modalities:    ⃞ 
1 
,...,   ⃞ 

1 
,   ⃞ 

-1 
,...,   ⃞ 

-n
  

Axioms:  ◇
i 
  ⃞ 

-i 
p → p   

K.tn-frames are (W,R1,(R1)
-1,...,Rn,(Rn)

-1).

T = K+p®p = L(all reflexive frames)

K4 = K+p®p = L(all transitive frames)

S4 = K4+p®p =L(all transitive reflexive frames)

KB = K+◇p®p = L(all symmetric frames)

S5 = S4+◇p®p = L(all equivalence frames)

                         = L(all universal frames)

  



  

Products of frames and logics



  

Def. (W,R
1
,...,R

n
) × (V,S

1
,...,S

m
):=

   (W×V,R
11

,...,R
n1

,S
12

,...,S
m2

), 

where

(x,y) R
i1
 (x', y')  iff  xR

i
x' & y = y'

(x,y) R
j2
 (x', y')  iff  yS

j
y' & x = x'

  Def. The product of two modal logics

L
1
×L

2 
:= L({F

1
×F

2 
| F

1
⊨L

1
, F

2
⊨L

2
})

If  L
1 
is n-modal with   ⃞ 

1 
,...,   ⃞ 

n
 ,

 L
2 
is m-modal with   ⬛

1 
,..., ⬛

m 
,

then  L
1
×L

2 
is (n+m)-modal. In a Kripke model over F

1
×F

2

       (x,y) ⊨   ⃞ 
i 
A iff ∀x'(xR

i
x' ⇒(x',y) ⊨ A)

       (x,y) ⊨ ⬛
j 
A iff ∀x'(yS

j
y' ⇒(x,y') ⊨ A)



  

Remark on squares

Prop. The square of a logic is the logic of squares of its 
frames

L
1
×L

1 
:= L({F

1
×F

1 
| F

1
⊨L

1
})

Proof:

 (F
1
⨆F

2 
)×(F

1
⨆F

2 
)≅ 

(F
1
×F

1
)⨆(F

1
×F

2
)⨆(F

2
×F

1
)⨆(F

2
×F

2
).

Hence

L(F
1
×F

2
) ⊆  L((F

1
⨆F

2 
)2)

So the logic of all L
1
-squares contains the logic of all L

1
-

products. 



  

Axiomatization problem:

Given axioms for L
1
, L

2
, find axioms for L

1
× L

2
 . 

This problem is solved for Horn axiomatizable logics

Def. The fusion L
1*L

2 
of two modal logics  

is the smallest logic containing them both. (If the 
modalities are not disjoint, rename them. In this talk we 
use ⬛ )

Def. The commutative join (commutator) 

       [L
1
,L

2 
] :=  [L

1*L
2 
+

 
L

1,L2
]:=L

1*L
2 
+

⬛
j 
  ⃞ 

i
p ↔   ⃞ 

i
⬛

j
p (commutation axioms)

 ◆
j 
  ⃞ 

i 
p → ⬛

j
◇

i 
p (Church-Rosser axioms)

 

 

 



  

The corresponding conditions on frames

                R
i 
∘R

j 
⊆ R

j
∘R

i    
(Church – Rosser)

-1 -1-1

-1 -1



  

R
i
∘ R

j 
= R

i
∘ R

j 
(commutation)

 

Both conditions hold for products frames, so

      [L
1
,L

2 
] ⊆ L

1
×L

2



  

Product-matching logics

Def.  L
1
, L

2 
are product-matching if  

                 L
1
×L

2
 = [L

1
,L

2 
]

Def. A Horn sentence is a universal first order sentence of 
the form

∀x∀y...(ϕ(x,y,...) → R(x,y)),

where ϕ is positive quantifier-free,  R(x,y) is atomic. 

A modal formula A is Horn if it corresponds to a Horn 
sentence (i.e., the class of its frames is 

definable by a Horn sentence). 



  

 Example Modal formulas of the form 

 (◇…◇)   ⃞ p → (  ⃞ …  ⃞ )p

correspond to Horn sentences.

The corresponding property of frames

Logics with such axioms are always Kripke complete.

Def. A modal logic is Horn axiomatizable if it is 
axiomatizable by formulas that are either variable-free or 
Horn. 
Theorem (Gabbay, Sh 1998<<BOOK03) If L1, L2 are Kripke 
complete and Horn axiomatizable, then they are product 
matching. 



  

Product FMP
Def. L

1
×L

2
 has the product FMP if

L
1
×L

2 
:= L({F

1
×F

2 
| F

1
⊨L

1
, F

2
⊨L

2 
; F

1
,F

2 
are finite})

(Equivalently: L
1
×L

2
 is the logic of a class of products of 

finite frames)
FMP ⇒ product FMP

Def. A QTC-logic is axiomatizable by variable-free formulas 
and formulas or axioms of the form 

◇
i  
  ⃞ 

j 
p®p,   ⃞ 

i 
p®(  ⃞ 

i
)kp. 

Theorem [Sh 2005] If L
2
 is a QTC-logic, then 

K.t
n 
× L

2
 = [K.t

n 
,L

2 
] has the fmp.

Remark. These logics may not have the product FMP, e.g. 

K4× S5 (Wolter)
 



  

Theorem [Sh 2011] (K.t
n
)2 = [K.t

n
,K.t

n
] has the product fmp.

Corollary KB2 = [KB,KB] has the product fmp.

Proof: KB is embeddable in K.t: translate 
  
  ⃞ A as (  ⃞ 

1 
A ∧   ⃞ 

-1
A)

(the omnitemporal modality).

Conjecture The same holds with the reflexivity axioms:

(T.t
n
)2,  TB2 have the product fmp. 



  

Segerberg squares

These are square frames with additional functions. 

Krister Segerberg (1973) studied a special type - squares of 
frames with the universal relation. He considered the following 
functions on squares.

f


:  (x,y) ↦ (y,x)  (the diagonal symmetry)

       f
1
:   (x,y) ↦ (y,y)  (the first diagonal projection)

f
2
:   (x,y) ↦ (x,x)  (the second diagonal projection)

These functions can be associated with extra modal operators 
, 

1
, 

2
. So in square frames  they are interpreted as follows:

(x,y) ⊨ A  iff  (y,x) ⊨ A
(x,y) ⊨ 

2
A  iff  (x,x) ⊨ A

(x,y) ⊨ 
1
A  iff  (y,y) ⊨ A

 



  

Remark. Segerberg used a different notation for these modalities. 

Formally we define the Segerberg square of a frame F=(W,R
1
,...,R

n
) 

as the (2n+3)-frame

Seg
F2 :=(F2, f


, f

1
, f

2
) 

(where f


, f
1
, f

2  
are the functions on W2 described above).

Respectively, the Segerberg square  of an n-modal logic L
1
 is 

defined the logic of the Segerberg squares of its frames 

Seg
(L

1
)2:= L({

Seg
F2

 
| F

 
⊨L

1
})

 



  

Tomorrow (or Sucessor) logic

SL:= K + ◇
 
p ↔   ⃞ 

 
p

This well-known logic is also due to Segerberg (1967). It is complete 
w.r.t. the frame

(the successor relation on natural numbers). 

Every logic of a frame with a functional accessibility relation is an 
extension of SL. 

 



  

AXIOMATIZING SEGERBERG SQUARES

Soundness  Every Segerberg square validates the following 
formulas 

The corresponding semantic conditions for an arbitrary (2n+3)-
frame (V,X

1
,...,X

n
, Y

1
,...,Y

n
, f

,f,f)

are in the right column; here fg denotes the composition of 
functions: (fg)(x)=f(g(x))

(I) The SL-axioms for the circles , , .

(II) (Sg1) p ↔ p f


f


 = 1 (the identity function on V)

The "symmetry"  f is an involution. 

(Sg2) 
1


1
p ↔ 

1
p f

1
f 

1
= f

1

(Sg2') The same for 2.

Both projections  f
i  
are idempotent transformations of the 

square. In fact (Sg2') follows from (Sg1), (Sg2), (Sg3).

 



  

(Sg3) 
1
p ↔ 

2
p f

1
f


 = f
2

(Sg4) 
1
p ↔ 

1
p f


f
1
 = f

1

In Segerberg squares (Sg4) means that the image of  f 
consists of self-symmetric points (or: every diagonal point is 
self-symmetric). But in the general case not all self-symmetric 
points are in  f[V].

(Sg3), (Sg4) imply that 

ff
1
f = f

2
, i.e., the involution f conjugates the projections  f

1
 

and f
2
.

(Sg3) shows that 
2
  is expressible in terms of , 

1
. 

(Sg5)   ⃞ 
i
p ↔ ⬛

i
p aR

i1
b  iff  f


(a)R

i2
f

(b)

Symmetry is an isomorphism between Ri1 and Ri2

 



  

(Sg6) 
1 
  ⃞ 

i
(⬛

i
p → 

2
p) f(a)R

i1
b implies bR

i2
f(b)

In Segerberg squares: 

If (y,y)Ri1(x,y) (i.e. yRix), then (x,y)Ri2(x,x).

(Sg7) 
1
p →   ⃞ 

i


1
p aR

i1
b only if  f

1
(a) = f

1
(b)

Horizontally accessible points are in the same horizontal 
row.

     (Sg8) 
1 
⬛

i


1
p ↔ ⬛

i


1
p (∃b aR

i2
b) iff (∃b f

1
(a)R

i2
b)  

In Segerberg squares: vertical seriality is equivalent for (y,y) 
and (x,y).

Def.  For a modal logic L
1
, put

Seg
[L

1
, L

1
] := 

          [L
1
, L

1
] + SL*SL*SL (for , 

1
, 

2
) + {(Sg1),..., (Sg8)}. 

 



  

Theorem 1 (Completeness) If a logic L
1

is Horn axiomatizable, then 
Seg

[L
1
, L

1
] =

Seg
(L

1
)2

Theorem 2 
Seg

(K
n
)2 has the product fmp.

 

 



  

Tarski’s axioms for relation algebras

a ◦ (b ∪ c) = (a ◦ b) ∪ (a ◦ c) 

a ◦ I = a

(a-1) -1 = a

(a ∪ b)-1 = a-1 ∪ b -1

(a ◦ b) -1 = b -1 ◦ a-1

 a-1 ◦ (-(a ◦ b)) ≤ - b
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