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The product of Kripke frames F1 = (W ,R), F2 = (U, S) is the frame
F1 × F2 = (W × U,R×, S×), where

(w1,w2)R×(v1, v2) ⇔ w1Rv1 & w2 = v2,
(w1,w2)S×(v1, v2) ⇔ w1 = v1 & w2Sv2.

The product of Kripke frames F1 = (W ,R1, . . . ,Rn), F2 = (V ,S1, . . . ,Sk)
is the (n + k)-frame F1 × F2 = (W × V ,R×1 , . . . ,R

×
n ,S

×
1 , . . . ,S

×
k ), where

(w1,w2)R×i (v1, v2) ⇔ w1Riv1 & w2 = v2,

(w1,w2)S×j (v1, v2) ⇔ w1 = v1 & w2Sjv2.

For classes of Kripke frames F, G, F×G := {F× G | F ∈ F, G ∈ G}.
For logics L1,L2,

L1 × L2 := Log(Fr(L1)× Fr(L2)),

where Fr(L) is the class of all L-frames.
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Two “bad” logical properties of the product operation

I Products of Kripke incomplete logics

If two logics L1,L
′
1 have the same frames, then for any L2

L1 × L2 = L′1 × L2.

In particular, if a logic L1 is consistent, but the class of its frames is
empty (e.g. L1 is the Thomason’s bimodal logic), then L1 × L2 is
inconsistent for any L2.

I Logical non-invariance

It may happen that Log(F) = Log(F′), Log(G) = Log(G′) while

Log(F×G) 6= Log(F′ ×G′).

For example, S4 = Log(F), where F is the class of all finite preorders,
but S4× S4 6= Log(F× F).

Note that logical invariance holds for direct products of elementary
theories (A. Mostowski, 1952).
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[A. Kurucz. Combining modal logics. Handbook of Modal Logic,
volume 3. 2007.]:

There are several attempts for extending the product construction from
Kripke complete logics to arbitrary modal logics, mainly by considering
product-like constructions on Kripke models. All the suggested methods so
far result in sets of formulas that are not closed under the rule of
Substitution.

Nevertheless, a possible answer was already known by that time:

[Y. Hasimoto. Normal products of modal logics. Advances in Modal Logic,
volume 3. 2002.]
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[Y. Hasimoto. Normal products of modal logics. Advances in Modal Logic,
volume 3. 2002.]

[D. Gabbay, I. Shapirovsky, and V. Shehtman. Products of Modal Logics
and Tensor Products of Modal Algebras. Journal of Applied Logic. In
press.]
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Main construction (Hasimoto)

Definition
A set U × V , where U ⊆ X , V ⊆ Y , is called a rectangle in X × Y . A
chequered subset of X × Y is a finite union of rectangles.

Proposition

The set of all chequered subsets of W1 ×W2 is closed under Boolean
operations. Moreover, if Ai is a subalgebra of 2Wi , i = 1, 2, then the set of
all finite unions of rectangles V1 × V2, where Vi ∈ Ai , is closed under
Boolean operations as well.
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Main construction (Hasimoto)

Definition
A set U × V , where U ⊆ X , V ⊆ Y , is called a rectangle in X × Y . A
chequered subset of X × Y is a finite union of rectangles.

For nonempty sets X ,Y let ch(X ,Y ) be the Boolean algebra of all
chequered subsets of X × Y . If A, B are subalgebras of 2X , 2Y

respectively, let chAB(X ,Y ) be the Boolean algebra of finite unions of
rectangles U, V , where U ∈ A, V ∈ B.

Proposition

Let F1 = (W1,R1), F2 = (W2,R2), F1 × F2 = (W1 ×W2,R
×
1 ,R

×
2 ). Then

(1) for any rectangle U × V we have

R×1
−1

(U × V ) = R−11 (U)× V , R×2
−1

(U × V ) = U × R−12 (V );

(2) if (F1,A1) and (F2,A2) are general 1-frames, then
(F1 × F2, chA1A2(W1,W2)) is a general 2-frame.
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Every Boolean algebra can be regarded as a Boolean ring, where the ring
multiplication is the meet and the ring addition is the symmetric difference:

xy := x ∧ y , x + y := (x ∧ ¬y) ∨ (y ∧ ¬x).

A Boolean ring is a commutative associative algebra over the two-element
field F2 with an idempotent multiplication; so the standard construction of
a tensor product of associative algebras is applicable here.

Viz., the tensor product of algebras A, B is a pair (A⊗ B, π), where
A⊗ B is an algebra, π : (a, b) 7→ a⊗ b is a bilinear map A× B −→ A⊗ B
with the following universal property: every bilinear map f : A× B −→ C ,
where C is an F2-space, uniquely factors through π, i.e., f = g · π for a
unique linear g : A⊗ B −→ C .
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X ,Y are nonempty sets, A, B are subalgebras of 2X , 2Y respectively.
chAB(X ,Y ) is the Boolean algebra of finite unions of rectangles U, V ,
where U ∈ A, V ∈ B.

Observation
ChAB(X ,Y ) is the tensor product of A and B.
More precisely, (chAB(X ,Y ), π|(A× B)) is the tensor product of A and B,
where π : 2X × 2Y → Ch(X ,Y ) such that π(U,V ) := U × V .
In particular, (ch(X ,Y ), π) is the tensor product of 2X and 2Y .

Theorem (Gabbay, Shehtman, Sh)

If (A1,♦1), (A2,♦2) are normal 1-modal algebras, then there exists a
unique 2-modal algebra structure on A1 ⊗ A2 with diamond operations
♦×1 ,♦

×
2 such that for any a ∈ A1, b ∈ A2

♦×1 (a⊗ b) = ♦1a⊗ b, ♦×2 (a⊗ b) = a⊗ ♦2b.

Put (A1,♦1)⊗ (A2,♦2) := (A1 ⊗ A2,♦
×
1 ,♦

×
2 ).
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Definition
The tensor product of general frames:

(F1,A1)⊗ (F2,A2) := (F1 × F2,A1 ⊗ A2).

In particular, the tensor product of Kripke frames

F1 ⊗ F2 := (F1 × F2, ch(W1,W2)).

For classes of algebras (general frames) A, B, put
A⊗B := {A⊗ B | A ∈ A, B ∈ B}.

Definition
The tensor product of logics L1 and L2 is the logic
L1 ⊗ L2 := Log(Alg(L1)⊗Alg(L2)).

Since every modal algebra is an algebra of a general frame, we have
L1 ⊗ L2 = Log(GFr(L1)⊗GFr(L2)).
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Proposition (Hasimoto)

I L1 ⊗ L2 is consistent iff L1 and L2 are consistent.

I If L1 and L2 are consistent, then L1 ⊗ L2 is conservative over L1 and
L2.
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Logical invariance

Theorem (Hasimoto)

For classes of 1-algebras (general frames, Kripke frames) A, B,
Log(A)⊗ Log(B) = Log(A⊗B).
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Logical invariance

Theorem (Hasimoto)

For classes of 1-algebras (general frames, Kripke frames) A, B,
Log(A)⊗ Log(B) = Log(A⊗B).

FL denotes the canonical frame of a logic L, and (FL,AL) denotes its
general canonical frame.

Corollary

For any L1, L2, L1 ⊗ L2 = Log((FL1 ,AL1)⊗ (FL2 ,AL2)).

Corollary

If L1, L2 are canonical, then L1 ⊗ L2 = Log(FL1 ⊗ FL2).
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Logical invariance

Theorem (Hasimoto)

For classes of 1-algebras (general frames, Kripke frames) A, B,
Log(A)⊗ Log(B) = Log(A⊗B).

(
(F1,A1)⊗ (F2,A2)

)
⊗ (F3,A3) ∼= (F1,A1) ⊗

(
(F2,A2)⊗ (F3,A3)

)
.

Corollary

(L1 ⊗ L2)⊗ L3 = L1 ⊗ (L2 ⊗ L3).
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Logical invariance

Theorem (Hasimoto)

For classes of 1-algebras (general frames, Kripke frames) A, B,
Log(A)⊗ Log(B) = Log(A⊗B).
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(F1,A1)⊗ (F2,A2)

)
⊗ (F3,A3) ∼= (F1,A1) ⊗

(
(F2,A2)⊗ (F3,A3)

)
.

Corollary

(L1 ⊗ L2)⊗ L3 = L1 ⊗ (L2 ⊗ L3).

Problem
(L1 × L2)× L3

?
= L1 × (L2 × L3).

In particular, (K2 ×K)×K
?
= K2 × (K×K).
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Logical invariance

Theorem (Hasimoto)

For classes of 1-algebras (general frames, Kripke frames) A, B,
Log(A)⊗ Log(B) = Log(A⊗B).

Proposition

ch(X ,Y ) = 2X×Y iff X or Y is finite.

Corollary

If L1, L2 are Kripke complete, then

L1 × L2 ⊆ L1 ⊗ L2 ⊆ L1 ×fin L2,

where L1 ×fin L2 := Log(Frfin(L1)× Frfin(L2)), Frfin(L) is the class of all
finite L-frames.
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Logical invariance

Theorem (Hasimoto)

For classes of 1-algebras (general frames, Kripke frames) A, B,
Log(A)⊗ Log(B) = Log(A⊗B).

A logic L1 × L2 has the product fmp if L1 × L2 = L1 ×fin L2.

Corollary

Let L1, L2 be Kripke complete logics. L1 × L2 has the product fmp iff

L1 × L2 = L1 ⊗ L2 = L1 ×fin L2;

it follows that if L1 × L2 has the product fmp, then for any Fi such that
Li = Log(Fi ), i = 1, 2, we have

L1 × L2 = Log(F1 × F2).
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Logical invariance

Theorem (Hasimoto)

For classes of 1-algebras (general frames, Kripke frames) A, B,
Log(A)⊗ Log(B) = Log(A⊗B).

Corollary

If L1 and L2 have the fmp, then:

L1 ⊗ L2 = L1 ×fin L2;

L1 × L2 = L1 ⊗ L2 iff L1 × L2 has the product fmp.
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Products with tabular logics (Gabbay, Shehtman, Sh)

A tabular logic is the logic of a finite frame.

Corollary

If L1 is Kripke complete, L2 is tabular, then L1 × L2 = L1 ⊗ L2.

Corollary

For a class of frames F, and a finite frame G,
Log(F)× Log(G) = Log(F× {G}).

Corollary

If L1 has the fmp and L2 is tabular, then L1 × L2 has the product fmp.

Corollary

The modal product of tabular logics is tabular: if F and G are finite, then

Log(F)× Log(G) = Log(F× G).
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Products with tabular logics (Gabbay, Shehtman, Sh)

A tabular logic is the logic of a finite frame.

Theorem
Suppose L2 is tabular. Then:

1. if L1 admits filtration, then L1×L2 has the exponential product fmp;

2. if L1 is Kripke complete and decidable, then L1 × L2 is decidable.
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Some problems

I Do there exist L1,L2 such that L1 × L2=L1 ⊗ L2, but L1 × L2 lacks
the product fmp and L1,L2 are non-tabular?

I Do there exist L1,L2 such that L1 × L2 is undecidable, but L1 ⊗ L2 is
decidable?

I Do there exist L1,L2 such that L1 × L2 is not finitely axiomatizable,
but L1 ⊗ L2 is finitely axiomatizable?

I Does Kripke completeness transfer from L1 and L2 to L1 ⊗ L2?

If L1 and L2 are Kripke complete then
L1 ⊗ L2 = Log(Fr(L1)⊗ Fr(L2)). The latter is the logic of a class of
general frames.
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Signature preserving products

For Kripke 1-frames F1 = (W ,R), F2 = (U, S), their ×-product is the
2-frame F1 × F2 = (W × U,R×,S×).

F1 ×dir F2 := (W × U,R× ◦ S×) is the direct product of F1 and F2:

(w1,w2) (R× ◦ S×) (v1, v2) ⇔ w1Rv1 & w2Sv2.
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Direct products of logics containing S4

L1, L2 ⊇ S4.

Proposition

S4 ⊆ L1 ×dir L2 ⊆ L1 ∩ L2.

Example

I S4×dir S4 = S4;

I S4.2×dir S4.2 = S4.2;

I If ϕ is preserved in direct products then
(S4 + ϕ)×dir (S4 + ϕ) = S4 + ϕ;

I S4.3×dir S4.3 = S4.2×dir S4.3 = S4.2.

S4.2 = S4.2×dir S4.2 ⊆ S4.3×dir S4.3 ⊆ Log((R,≤)×dir (R,≤)).
The latter logic is S4.2, since it is the logic of the causal future relation in
Minkowski plane (Goldblatt, 80; Shehtman, 83).
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(S4 + ϕ)×dir (S4 + ϕ) = S4 + ϕ;

I S4.3×dir S4.3 = S4.2×dir S4.3 = S4.2.

S4.2 = S4.2×dir S4.2 ⊆ S4.3×dir S4.3 ⊆ Log((R,≤)×dir (R,≤)).
The latter logic is S4.2, since it is the logic of the causal future relation in
Minkowski plane (Goldblatt, 80; Shehtman, 83).

Ilya Shapirovsky Tensor products of logics containing S4 June 24, 2014 15 / 20



Direct products of logics containing S4

L1, L2 ⊇ S4.

Proposition

S4 ⊆ L1 ×dir L2 ⊆ L1 ∩ L2.

Example

I S4×dir S4 = S4;

I S4.2×dir S4.2 = S4.2;

I If ϕ is preserved in direct products then
(S4 + ϕ)×dir (S4 + ϕ) = S4 + ϕ;

I S4.3×dir S4.3 =

S4.2×dir S4.3 = S4.2.

S4.2 = S4.2×dir S4.2 ⊆ S4.3×dir S4.3 ⊆ Log((R,≤)×dir (R,≤)).
The latter logic is S4.2, since it is the logic of the causal future relation in
Minkowski plane (Goldblatt, 80; Shehtman, 83).

Ilya Shapirovsky Tensor products of logics containing S4 June 24, 2014 15 / 20



Direct products of logics containing S4

L1, L2 ⊇ S4.

Proposition

S4 ⊆ L1 ×dir L2 ⊆ L1 ∩ L2.

Example

I S4×dir S4 = S4;

I S4.2×dir S4.2 = S4.2;

I If ϕ is preserved in direct products then
(S4 + ϕ)×dir (S4 + ϕ) = S4 + ϕ;

I S4.3×dir S4.3 = S4.2×dir S4.3 = S4.2.

S4.2 = S4.2×dir S4.2 ⊆ S4.3×dir S4.3 ⊆ Log((R,≤)×dir (R,≤)).

The latter logic is S4.2, since it is the logic of the causal future relation in
Minkowski plane (Goldblatt, 80; Shehtman, 83).

Ilya Shapirovsky Tensor products of logics containing S4 June 24, 2014 15 / 20



Direct products of logics containing S4

L1, L2 ⊇ S4.

Proposition

S4 ⊆ L1 ×dir L2 ⊆ L1 ∩ L2.

Example

I S4×dir S4 = S4;

I S4.2×dir S4.2 = S4.2;

I If ϕ is preserved in direct products then
(S4 + ϕ)×dir (S4 + ϕ) = S4 + ϕ;

I S4.3×dir S4.3 = S4.2×dir S4.3 = S4.2.

S4.2 = S4.2×dir S4.2 ⊆ S4.3×dir S4.3 ⊆ Log((R,≤)×dir (R,≤)).
The latter logic is S4.2, since it is the logic of the causal future relation in
Minkowski plane (Goldblatt, 80; Shehtman, 83).

Ilya Shapirovsky Tensor products of logics containing S4 June 24, 2014 15 / 20



(W ,R)×dir (U,S) := (W × U,R× ◦ S×).

Definition
For general frames, put

(F1,A1)⊗dir (F2,A2) := (F1 ×dir F2,A1 ⊗ A2);

for algebras, put (A1,♦1)⊗dir (A2,♦2) := (A1 ⊗ A2,♦
×
1 ♦
×
2 ).

L1⊗dir L2 := Log(Alg(L1)⊗dir Alg(L2)) (= Log(GFr(L1)⊗dir GFr(L2))).

Theorem (Hasimoto)

For classes of algebras (general frames) C1, C2,

Log(C1)⊗dir Log(C2) = Log(C1 ⊗dir C2).
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The commutator of L1 and L2:

[L1,L2] := L1 ∗ L2 + ♦1♦2p ↔ ♦2♦1p + ♦1�2p → ♦2�1p,

where L1 ∗ L2 is the fusion of L1 and L2.

Proposition

If L1,L2 ⊇ S4, then L1 ⊗ L2 ⊇ [S4,S4].

Proof.
L1 ⊗ L2 contains the fusion L1 ∗ L2, so it contains S4 ∗ S4. Also,

L1 ⊗ L2 ⊇ K⊗K = K×K = [K,K].

Proposition

If a bimodal logic contains [S4,S4], then ♦1♦2 is an S4-operator.

Corollary

If L1,L2 ⊇ S4, then L1 ⊗dir L2 ⊇ S4.
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Some more problems

I Does Kripke completeness transfer from L1 and L2 to L1 ⊗dir L2?

I For L1,L2 ⊇ S4, does topological completeness transfer from L1 and
L2 to L1 ⊗dir L2?
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Some more problems

I Main question. X1,X
′
1,X2,X

′
2 are topological spaces,

Log(X1) = Log(X′1), Log(X2) = Log(X′2).

Log(X1 × X2)
?
= Log(X′1 × X ′2).

I How ⊗dir interacts with the product topology?
Let L1 = Log(X1), L2 = Log(X2).

L1 ⊗dir L2 ??? Log(X1 × X2)

I Let (X1 × X2, τ1, τ2) be the bitopological product of X1 = (X1, τ1)
and X2 = (X2, τ2). In general, τ1 ◦ τ2 is not an S4-operator (e.g., if
Log(X1 × X2, τ1, τ2) = S4 ∗ S4).
Fact: ((X1 × X2, τ1, τ2),Ch(X1,X2)) � [S4,S4], so
((X1 × X2, τ1 ◦ τ2),Ch(X1,X2)) � S4.

Log((X1 × X2, τ1 ◦ τ2),Ch(X1,X2)) ??? Log(X1 × X2)
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Thank you!
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