Tensor products of logics containing S4

Ilya Shapirovsky
Institute of Information Transmission Problems, Moscow, Russia

June 24, 2014

The product of Kripke frames $\mathrm{F}_{1}=(W, R), \mathrm{F}_{2}=(U, S)$ is the frame $\mathrm{F}_{1} \times \mathrm{F}_{2}=\left(W \times U, R^{\times}, S^{\times}\right)$, where

$$
\begin{array}{lll}
\left(w_{1}, w_{2}\right) R^{\times}\left(v_{1}, v_{2}\right) & \Leftrightarrow & w_{1} R v_{1} \& w_{2}=v_{2}, \\
\left(w_{1}, w_{2}\right) S^{\times}\left(v_{1}, v_{2}\right) & \Leftrightarrow & w_{1}=v_{1} \& w_{2} S v_{2} .
\end{array}
$$

The product of Kripke frames $\mathrm{F}_{1}=(W, R), \mathrm{F}_{2}=(U, S)$ is the frame $\mathrm{F}_{1} \times \mathrm{F}_{2}=\left(W \times U, R^{\times}, S^{\times}\right)$, where

$$
\begin{aligned}
\left(w_{1}, w_{2}\right) R^{\times}\left(v_{1}, v_{2}\right) & \Leftrightarrow \\
\left(w_{1}, w_{2}\right) S^{\times} R\left(v_{1}, v_{1} \& w_{2}\right) & \Leftrightarrow
\end{aligned} w_{1}=v_{2}, ~ v_{1} \& w_{2} S v_{2} .
$$

The product of Kripke frames $\mathrm{F}_{1}=\left(W, R_{1}, \ldots, R_{n}\right), \mathrm{F}_{2}=\left(V, S_{1}, \ldots, S_{k}\right)$ is the $(n+k)$-frame $\mathrm{F}_{1} \times \mathrm{F}_{2}=\left(W \times V, R_{1}^{\times}, \ldots, R_{n}^{\times}, S_{1}^{\times}, \ldots, S_{k}^{\times}\right)$, where

$$
\begin{aligned}
& \left(w_{1}, w_{2}\right) R_{i}^{\times}\left(v_{1}, v_{2}\right) \Leftrightarrow \quad w_{1} R_{i} v_{1} \& w_{2}=v_{2}, \\
& \left(w_{1}, w_{2}\right) S_{j}^{\times}\left(v_{1}, v_{2}\right) \Leftrightarrow
\end{aligned} w_{1}=v_{1} \& w_{2} S_{j} v_{2} .
$$

The product of Kripke frames $\mathrm{F}_{1}=(W, R), \mathrm{F}_{2}=(U, S)$ is the frame $\mathrm{F}_{1} \times \mathrm{F}_{2}=\left(W \times U, R^{\times}, S^{\times}\right)$, where

$$
\begin{aligned}
\left(w_{1}, w_{2}\right) R^{\times}\left(v_{1}, v_{2}\right) & \Leftrightarrow \\
\left(w_{1}, w_{2}\right) S^{\times} R\left(v_{1}, v_{1} \& w_{2}\right) & \Leftrightarrow
\end{aligned} w_{1}=v_{2}, v_{1} \& w_{2} S v_{2} .
$$

The product of Kripke frames $\mathrm{F}_{1}=\left(W, R_{1}, \ldots, R_{n}\right), \mathrm{F}_{2}=\left(V, S_{1}, \ldots, S_{k}\right)$ is the $(n+k)$-frame $\mathrm{F}_{1} \times \mathrm{F}_{2}=\left(W \times V, R_{1}^{\times}, \ldots, R_{n}^{\times}, S_{1}^{\times}, \ldots, S_{k}^{\times}\right)$, where

$$
\begin{aligned}
& \left(w_{1}, w_{2}\right) R_{i}^{\times}\left(v_{1}, v_{2}\right) \Leftrightarrow w_{1} R_{i} v_{1} \& w_{2}=v_{2}, \\
& \left(w_{1}, w_{2}\right) S_{j}^{\times}\left(v_{1}, v_{2}\right) \Leftrightarrow
\end{aligned} w_{1}=v_{1} \& w_{2} S_{j} v_{2} .
$$

For classes of Kripke frames $\mathfrak{F}, \mathfrak{G}, \mathfrak{F} \times \mathfrak{G}:=\{\mathrm{F} \times \mathrm{G} \mid \mathrm{F} \in \mathfrak{F}, \mathrm{G} \in \mathfrak{G}\}$. For logics $\mathrm{L}_{1}, \mathrm{~L}_{2}$,

$$
\mathrm{L}_{1} \times \mathrm{L}_{2}:=\log \left(\operatorname{Fr}\left(\mathrm{L}_{1}\right) \times \operatorname{Fr}\left(\mathrm{L}_{2}\right)\right)
$$

where $\operatorname{Fr}(\mathrm{L})$ is the class of all L-frames.

Two "bad" logical properties of the product operation

Two "bad" logical properties of the product operation

- Products of Kripke incomplete logics If two logics L_{1}, L_{1}^{\prime} have the same frames, then for any L_{2}

$$
\mathrm{L}_{1} \times \mathrm{L}_{2}=\mathrm{L}_{1}^{\prime} \times \mathrm{L}_{2}
$$

In particular, if a logic L_{1} is consistent, but the class of its frames is empty (e.g. L_{1} is the Thomason's bimodal logic), then $\mathrm{L}_{1} \times \mathrm{L}_{2}$ is inconsistent for any L_{2}.

Two "bad" logical properties of the product operation

- Products of Kripke incomplete logics If two logics L_{1}, L_{1}^{\prime} have the same frames, then for any L_{2}

$$
\mathrm{L}_{1} \times \mathrm{L}_{2}=\mathrm{L}_{1}^{\prime} \times \mathrm{L}_{2}
$$

In particular, if a logic L_{1} is consistent, but the class of its frames is empty (e.g. L_{1} is the Thomason's bimodal logic), then $\mathrm{L}_{1} \times \mathrm{L}_{2}$ is inconsistent for any L_{2}.

- Logical non-invariance

It may happen that $\log (\mathfrak{F})=\log \left(\mathfrak{F}^{\prime}\right), \log (\mathfrak{G})=\log \left(\mathfrak{G}^{\prime}\right)$ while

$$
\log (\mathfrak{F} \times \mathfrak{G}) \neq \log \left(\mathfrak{F}^{\prime} \times \mathfrak{G}^{\prime}\right)
$$

For example, $\mathbf{S 4}=\log (\mathfrak{F})$, where \mathfrak{F} is the class of all finite preorders, but $\mathbf{S} 4 \times \mathbf{S} 4 \neq \log (\mathfrak{F} \times \mathfrak{F})$.

Two "bad" logical properties of the product operation

- Products of Kripke incomplete logics If two logics L_{1}, L_{1}^{\prime} have the same frames, then for any L_{2}

$$
\mathrm{L}_{1} \times \mathrm{L}_{2}=\mathrm{L}_{1}^{\prime} \times \mathrm{L}_{2}
$$

In particular, if a logic L_{1} is consistent, but the class of its frames is empty (e.g. L_{1} is the Thomason's bimodal logic), then $\mathrm{L}_{1} \times \mathrm{L}_{2}$ is inconsistent for any L_{2}.

- Logical non-invariance

It may happen that $\log (\mathfrak{F})=\log \left(\mathfrak{F}^{\prime}\right), \log (\mathfrak{G})=\log \left(\mathfrak{G}^{\prime}\right)$ while

$$
\log (\mathfrak{F} \times \mathfrak{G}) \neq \log \left(\mathfrak{F}^{\prime} \times \mathfrak{G}^{\prime}\right)
$$

For example, $\mathbf{S 4}=\log (\mathfrak{F})$, where \mathfrak{F} is the class of all finite preorders, but $\mathbf{S 4} \times \mathbf{S 4} \neq \log (\mathfrak{F} \times \mathfrak{F})$.
Note that logical invariance holds for direct products of elementary theories (A. Mostowski, 1952).
[A. Kurucz. Combining modal logics. Handbook of Modal Logic, volume 3. 2007.]:
There are several attempts for extending the product construction from Kripke complete logics to arbitrary modal logics, mainly by considering product-like constructions on Kripke models. All the suggested methods so far result in sets of formulas that are not closed under the rule of Substitution.
[A. Kurucz. Combining modal logics. Handbook of Modal Logic, volume 3. 2007.]:

There are several attempts for extending the product construction from Kripke complete logics to arbitrary modal logics, mainly by considering product-like constructions on Kripke models. All the suggested methods so far result in sets of formulas that are not closed under the rule of Substitution.

Nevertheless, a possible answer was already known by that time:
[Y. Hasimoto. Normal products of modal logics. Advances in Modal Logic, volume 3. 2002.]
[Y. Hasimoto. Normal products of modal logics. Advances in Modal Logic, volume 3. 2002.]
[D. Gabbay, I. Shapirovsky, and V. Shehtman. Products of Modal Logics and Tensor Products of Modal Algebras. Journal of Applied Logic. In press.]

Main construction (Hasimoto)

Definition

A set $U \times V$, where $U \subseteq X, V \subseteq Y$, is called a rectangle in $X \times Y$. A chequered subset of $X \times Y$ is a finite union of rectangles.

Proposition

The set of all chequered subsets of $W_{1} \times W_{2}$ is closed under Boolean operations. Moreover, if A_{i} is a subalgebra of $2^{W_{i}}, i=1,2$, then the set of all finite unions of rectangles $V_{1} \times V_{2}$, where $V_{i} \in A_{i}$, is closed under Boolean operations as well.

Main construction (Hasimoto)

Definition

A set $U \times V$, where $U \subseteq X, V \subseteq Y$, is called a rectangle in $X \times Y$. A chequered subset of $X \times Y$ is a finite union of rectangles.
For nonempty sets X, Y let $\operatorname{ch}(X, Y)$ be the Boolean algebra of all chequered subsets of $X \times Y$. If A, B are subalgebras of $2^{X}, 2^{Y}$ respectively, let $\operatorname{ch}_{A B}(X, Y)$ be the Boolean algebra of finite unions of rectangles U, V, where $U \in A, V \in B$.

Proposition

Let $\mathrm{F}_{1}=\left(W_{1}, R_{1}\right), \mathrm{F}_{2}=\left(W_{2}, R_{2}\right), \mathrm{F}_{1} \times \mathrm{F}_{2}=\left(W_{1} \times W_{2}, R_{1}^{\times}, R_{2}^{\times}\right)$. Then
(1) for any rectangle $U \times V$ we have

$$
R_{1}^{\times-1}(U \times V)=R_{1}^{-1}(U) \times V, \quad R_{2}^{\times-1}(U \times V)=U \times R_{2}^{-1}(V)
$$

(2) if $\left(\mathrm{F}_{1}, A_{1}\right)$ and $\left(\mathrm{F}_{2}, A_{2}\right)$ are general 1-frames, then $\left(F_{1} \times F_{2}\right.$, ch $\left._{A_{1} A_{2}}\left(W_{1}, W_{2}\right)\right)$ is a general 2-frame.

Every Boolean algebra can be regarded as a Boolean ring, where the ring multiplication is the meet and the ring addition is the symmetric difference:

$$
x y:=x \wedge y, \quad x+y:=(x \wedge \neg y) \vee(y \wedge \neg x)
$$

A Boolean ring is a commutative associative algebra over the two-element field \mathbf{F}_{2} with an idempotent multiplication; so the standard construction of a tensor product of associative algebras is applicable here.

Viz., the tensor product of algebras A, B is a pair $(A \otimes B, \pi)$, where $A \otimes B$ is an algebra, $\pi:(a, b) \mapsto a \otimes b$ is a bilinear map $A \times B \longrightarrow A \otimes B$ with the following universal property: every bilinear map $f: A \times B \longrightarrow C$, where C is an \mathbf{F}_{2}-space, uniquely factors through π, i.e., $f=g \cdot \pi$ for a unique linear $g: A \otimes B \longrightarrow C$.
X, Y are nonempty sets, A, B are subalgebras of $2^{X}, 2^{Y}$ respectively. $c^{A B}(X, Y)$ is the Boolean algebra of finite unions of rectangles U, V, where $U \in A, V \in B$.

Observation

$C h_{A B}(X, Y)$ is the tensor product of A and B.
More precisely, $\left(c h_{A B}(X, Y), \pi \mid(A \times B)\right)$ is the tensor product of A and B, where $\pi: 2^{X} \times 2^{Y} \rightarrow C h(X, Y)$ such that $\pi(U, V):=U \times V$. In particular, $(\operatorname{ch}(X, Y), \pi)$ is the tensor product of 2^{X} and 2^{Y}.
X, Y are nonempty sets, A, B are subalgebras of $2^{X}, 2^{Y}$ respectively. ${ }^{c h} h_{A B}(X, Y)$ is the Boolean algebra of finite unions of rectangles U, V, where $U \in A, V \in B$.

Observation

$C h_{A B}(X, Y)$ is the tensor product of A and B.
More precisely, $\left(c h_{A B}(X, Y), \pi \mid(A \times B)\right)$ is the tensor product of A and B, where $\pi: 2^{X} \times 2^{Y} \rightarrow C h(X, Y)$ such that $\pi(U, V):=U \times V$. In particular, $(\operatorname{ch}(X, Y), \pi)$ is the tensor product of 2^{X} and 2^{Y}.

Theorem (Gabbay, Shehtman, Sh)

If $\left.\left.\left(A_{1},\right\rangle_{1}\right),\left(A_{2},\right\rangle_{2}\right)$ are normal 1-modal algebras, then there exists a unique 2-modal algebra structure on $A_{1} \otimes A_{2}$ with diamond operations $\diamond_{1}^{\times}, \diamond_{2}^{\times}$such that for any $a \in A_{1}, b \in A_{2}$

$$
\diamond_{1}^{\times}(a \otimes b)=\diamond_{1} a \otimes b, \diamond_{2}^{\times}(a \otimes b)=a \otimes \diamond_{2} b
$$

X, Y are nonempty sets, A, B are subalgebras of $2^{X}, 2^{Y}$ respectively. ${ }^{c h} h_{A B}(X, Y)$ is the Boolean algebra of finite unions of rectangles U, V, where $U \in A, V \in B$.

Observation

$C^{A B}(X, Y)$ is the tensor product of A and B.
More precisely, $\left(\operatorname{ch}_{A B}(X, Y), \pi \mid(A \times B)\right)$ is the tensor product of A and B, where $\pi: 2^{X} \times 2^{Y} \rightarrow C h(X, Y)$ such that $\pi(U, V):=U \times V$. In particular, $(\operatorname{ch}(X, Y), \pi)$ is the tensor product of 2^{X} and 2^{Y}.

Theorem (Gabbay, Shehtman, Sh)

If $\left.\left.\left(A_{1},\right\rangle_{1}\right),\left(A_{2},\right\rangle_{2}\right)$ are normal 1-modal algebras, then there exists a unique 2-modal algebra structure on $A_{1} \otimes A_{2}$ with diamond operations $\diamond_{1}^{\times}, \diamond_{2}^{\times}$such that for any $a \in A_{1}, b \in A_{2}$

$$
\diamond_{1}^{\times}(a \otimes b)=\diamond_{1} a \otimes b, \diamond_{2}^{\times}(a \otimes b)=a \otimes \diamond_{2} b .
$$

$\operatorname{Put}\left(A_{1}, \diamond_{1}\right) \otimes\left(A_{2}, \diamond_{2}\right):=\left(A_{1} \otimes A_{2}, \diamond_{1}^{\times}, \diamond_{2}^{\times}\right)$.

Definition

The tensor product of general frames:

$$
\left(\mathrm{F}_{1}, A_{1}\right) \otimes\left(\mathrm{F}_{2}, A_{2}\right):=\left(\mathrm{F}_{1} \times \mathrm{F}_{2}, A_{1} \otimes A_{2}\right)
$$

In particular, the tensor product of Kripke frames

$$
\mathrm{F}_{1} \otimes \mathrm{~F}_{2}:=\left(\mathrm{F}_{1} \times \mathrm{F}_{2}, \operatorname{ch}\left(W_{1}, W_{2}\right)\right) .
$$

For classes of algebras (general frames) $\mathfrak{A}, \mathfrak{B}$, put $\mathfrak{A} \otimes \mathfrak{B}:=\{A \otimes B \mid A \in \mathfrak{A}, B \in \mathfrak{B}\}$.

Definition
The tensor product of logics L_{1} and L_{2} is the logic $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}:=\log \left(\operatorname{Alg}\left(\mathrm{L}_{1}\right) \otimes \operatorname{Alg}\left(\mathrm{L}_{2}\right)\right)$.
Since every modal algebra is an algebra of a general frame, we have $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}=\log \left(\operatorname{GFr}\left(\mathrm{L}_{1}\right) \otimes \operatorname{GFr}\left(\mathrm{L}_{2}\right)\right)$.

Proposition (Hasimoto)

- $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$ is consistent iff L_{1} and L_{2} are consistent.

Proposition (Hasimoto)

- $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$ is consistent iff L_{1} and L_{2} are consistent.
- If L_{1} and L_{2} are consistent, then $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$ is conservative over L_{1} and L_{2}.

Logical invariance

Theorem (Hasimoto)
For classes of 1-algebras (general frames, Kripke frames) $\mathfrak{A}, \mathfrak{B}$, $\log (\mathfrak{A}) \otimes \log (\mathfrak{B})=\log (\mathfrak{A} \otimes \mathfrak{B})$.

Logical invariance

Theorem (Hasimoto)
For classes of 1-algebras (general frames, Kripke frames) $\mathfrak{A}, \mathfrak{B}$, $\log (\mathfrak{A}) \otimes \log (\mathfrak{B})=\log (\mathfrak{A} \otimes \mathfrak{B})$.
F_{L} denotes the canonical frame of a logic L , and $\left(\mathrm{F}_{\mathrm{L}}, A_{\mathrm{L}}\right)$ denotes its general canonical frame.

Corollary
For any $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{1} \otimes \mathrm{~L}_{2}=\log \left(\left(\mathrm{F}_{\mathrm{L}_{1}}, A_{\mathrm{L}_{1}}\right) \otimes\left(\mathrm{F}_{\mathrm{L}_{2}}, A_{\mathrm{L}_{2}}\right)\right)$.
Corollary
If $\mathrm{L}_{1}, \mathrm{~L}_{2}$ are canonical, then $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}=\log \left(\mathrm{F}_{\mathrm{L}_{1}} \otimes \mathrm{~F}_{\mathrm{L}_{2}}\right)$.

Logical invariance

Theorem (Hasimoto)

For classes of 1-algebras (general frames, Kripke frames) $\mathfrak{A}, \mathfrak{B}$, $\log (\mathfrak{A}) \otimes \log (\mathfrak{B})=\log (\mathfrak{A} \otimes \mathfrak{B})$.

$$
\left(\left(\mathrm{F}_{1}, A_{1}\right) \otimes\left(\mathrm{F}_{2}, A_{2}\right)\right) \otimes\left(\mathrm{F}_{3}, A_{3}\right) \cong\left(\mathrm{F}_{1}, A_{1}\right) \otimes\left(\left(\mathrm{F}_{2}, A_{2}\right) \otimes\left(\mathrm{F}_{3}, A_{3}\right)\right) .
$$

Corollary
$\left(\mathrm{L}_{1} \otimes \mathrm{~L}_{2}\right) \otimes \mathrm{L}_{3}=\mathrm{L}_{1} \otimes\left(\mathrm{~L}_{2} \otimes \mathrm{~L}_{3}\right)$.

Logical invariance

Theorem (Hasimoto)
For classes of 1-algebras (general frames, Kripke frames) $\mathfrak{A}, \mathfrak{B}$, $\log (\mathfrak{A}) \otimes \log (\mathfrak{B})=\log (\mathfrak{A} \otimes \mathfrak{B})$.

$$
\left(\left(\mathrm{F}_{1}, A_{1}\right) \otimes\left(\mathrm{F}_{2}, A_{2}\right)\right) \otimes\left(\mathrm{F}_{3}, A_{3}\right) \cong\left(\mathrm{F}_{1}, A_{1}\right) \otimes\left(\left(\mathrm{F}_{2}, A_{2}\right) \otimes\left(\mathrm{F}_{3}, A_{3}\right)\right) .
$$

Corollary
$\left(\mathrm{L}_{1} \otimes \mathrm{~L}_{2}\right) \otimes \mathrm{L}_{3}=\mathrm{L}_{1} \otimes\left(\mathrm{~L}_{2} \otimes \mathrm{~L}_{3}\right)$.
Problem
$\left(\mathrm{L}_{1} \times \mathrm{L}_{2}\right) \times \mathrm{L}_{3} \stackrel{?}{=} \mathrm{L}_{1} \times\left(\mathrm{L}_{2} \times \mathrm{L}_{3}\right)$.
In particular, $\left(\mathbf{K}^{2} \times \mathbf{K}\right) \times \mathbf{K} \stackrel{?}{=} \mathbf{K}^{2} \times(\mathbf{K} \times \mathbf{K})$.

Logical invariance

Theorem (Hasimoto)

For classes of 1-algebras (general frames, Kripke frames) $\mathfrak{A}, \mathfrak{B}$, $\log (\mathfrak{A}) \otimes \log (\mathfrak{B})=\log (\mathfrak{A} \otimes \mathfrak{B})$.

Proposition

$\operatorname{ch}(X, Y)=2^{X \times Y}$ iff X or Y is finite.
Corollary
If $\mathrm{L}_{1}, \mathrm{~L}_{2}$ are Kripke complete, then

$$
\mathrm{L}_{1} \times \mathrm{L}_{2} \subseteq \mathrm{~L}_{1} \otimes \mathrm{~L}_{2} \subseteq \mathrm{~L}_{1} \times_{\text {fin }} \mathrm{L}_{2}
$$

where $\mathrm{L}_{1} \times{ }_{\text {fin }} \mathrm{L}_{2}:=\log \left(\operatorname{Fr}_{\text {fin }}\left(\mathrm{L}_{1}\right) \times \operatorname{Fr}_{\text {fin }}\left(\mathrm{L}_{2}\right)\right), \operatorname{Fr}_{\text {fin }}(\mathrm{L})$ is the class of all finite L-frames.

Logical invariance

Theorem (Hasimoto)
For classes of 1-algebras (general frames, Kripke frames) $\mathfrak{A}, \mathfrak{B}$, $\log (\mathfrak{A}) \otimes \log (\mathfrak{B})=\log (\mathfrak{A} \otimes \mathfrak{B})$.

A logic $\mathrm{L}_{1} \times \mathrm{L}_{2}$ has the product fmp if $\mathrm{L}_{1} \times \mathrm{L}_{2}=\mathrm{L}_{1} \times$ fin L_{2}.
Corollary
Let $\mathrm{L}_{1}, \mathrm{~L}_{2}$ be Kripke complete logics. $\mathrm{L}_{1} \times \mathrm{L}_{2}$ has the product fmp iff

$$
\mathrm{L}_{1} \times \mathrm{L}_{2}=\mathrm{L}_{1} \otimes \mathrm{~L}_{2}=\mathrm{L}_{1} \times_{\text {fin }} \mathrm{L}_{2}
$$

it follows that if $\mathrm{L}_{1} \times \mathrm{L}_{2}$ has the product fmp, then for any \mathfrak{F}_{i} such that $\mathrm{L}_{i}=\log \left(\mathfrak{F}_{i}\right), i=1,2$, we have

$$
\mathrm{L}_{1} \times \mathrm{L}_{2}=\log \left(\mathfrak{F}_{1} \times \mathfrak{F}_{2}\right)
$$

Logical invariance

Theorem (Hasimoto)

For classes of 1-algebras (general frames, Kripke frames) $\mathfrak{A}, \mathfrak{B}$, $\log (\mathfrak{A}) \otimes \log (\mathfrak{B})=\log (\mathfrak{A} \otimes \mathfrak{B})$.

Corollary

If L_{1} and L_{2} have the fmp, then:

$$
\begin{gathered}
\mathrm{L}_{1} \otimes \mathrm{~L}_{2}=\mathrm{L}_{1} \times \text { fin } \mathrm{L}_{2} \\
\mathrm{~L}_{1} \times \mathrm{L}_{2}=\mathrm{L}_{1} \otimes \mathrm{~L}_{2} \text { iff } \mathrm{L}_{1} \times \mathrm{L}_{2} \text { has the product fmp. }
\end{gathered}
$$

Products with tabular logics (Gabbay, Shehtman, Sh)

A tabular logic is the logic of a finite frame.

Corollary

If L_{1} is Kripke complete, L_{2} is tabular, then $\mathrm{L}_{1} \times \mathrm{L}_{2}=\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$.
Corollary
For a class of frames \mathfrak{F}, and a finite frame G , $\log (\mathfrak{F}) \times \log (\mathrm{G})=\log (\mathfrak{F} \times\{\mathrm{G}\})$.

Corollary
If L_{1} has the fmp and L_{2} is tabular, then $\mathrm{L}_{1} \times \mathrm{L}_{2}$ has the product fmp.
Corollary
The modal product of tabular logics is tabular: if F and G are finite, then

$$
\log (F) \times \log (G)=\log (F \times G)
$$

Products with tabular logics (Gabbay, Shehtman, Sh)

A tabular logic is the logic of a finite frame.
Theorem
Suppose L_{2} is tabular. Then:

1. if L_{1} admits filtration, then $\mathrm{L}_{1} \times \mathrm{L}_{2}$ has the exponential product fmp;
2. if L_{1} is Kripke complete and decidable, then $\mathrm{L}_{1} \times \mathrm{L}_{2}$ is decidable.

Some problems

- Do there exist $\mathrm{L}_{1}, \mathrm{~L}_{2}$ such that $\mathrm{L}_{1} \times \mathrm{L}_{2}=\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$, but $\mathrm{L}_{1} \times \mathrm{L}_{2}$ lacks the product fmp and $\mathrm{L}_{1}, \mathrm{~L}_{2}$ are non-tabular?
- Do there exist $\mathrm{L}_{1}, \mathrm{~L}_{2}$ such that $\mathrm{L}_{1} \times \mathrm{L}_{2}$ is undecidable, but $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$ is decidable?
- Do there exist $\mathrm{L}_{1}, \mathrm{~L}_{2}$ such that $\mathrm{L}_{1} \times \mathrm{L}_{2}$ is not finitely axiomatizable, but $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$ is finitely axiomatizable?

Some problems

- Do there exist $\mathrm{L}_{1}, \mathrm{~L}_{2}$ such that $\mathrm{L}_{1} \times \mathrm{L}_{2}=\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$, but $\mathrm{L}_{1} \times \mathrm{L}_{2}$ lacks the product fmp and $\mathrm{L}_{1}, \mathrm{~L}_{2}$ are non-tabular?
- Do there exist $\mathrm{L}_{1}, \mathrm{~L}_{2}$ such that $\mathrm{L}_{1} \times \mathrm{L}_{2}$ is undecidable, but $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$ is decidable?
- Do there exist $\mathrm{L}_{1}, \mathrm{~L}_{2}$ such that $\mathrm{L}_{1} \times \mathrm{L}_{2}$ is not finitely axiomatizable, but $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$ is finitely axiomatizable?
- Does Kripke completeness transfer from L_{1} and L_{2} to $\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$?

If L_{1} and L_{2} are Kripke complete then
$\mathrm{L}_{1} \otimes \mathrm{~L}_{2}=\log \left(\operatorname{Fr}\left(\mathrm{L}_{1}\right) \otimes \operatorname{Fr}\left(\mathrm{L}_{2}\right)\right)$. The latter is the logic of a class of general frames.

Signature preserving products

For Kripke 1-frames $\mathrm{F}_{1}=(W, R), \mathrm{F}_{2}=(U, S)$, their \times-product is the 2 -frame $F_{1} \times \mathrm{F}_{2}=\left(W \times U, R^{\times}, S^{\times}\right)$.

Signature preserving products

For Kripke 1-frames $\mathrm{F}_{1}=(W, R), \mathrm{F}_{2}=(U, S)$, their \times-product is the 2 -frame $F_{1} \times F_{2}=\left(W \times U, R^{\times}, S^{\times}\right)$.
$\mathrm{F}_{1} \times$ dir $\mathrm{F}_{2}:=\left(W \times U, R^{\times} \circ S^{\times}\right)$is the direct product of F_{1} and F_{2} :

$$
\left(w_{1}, w_{2}\right)\left(R^{\times} \circ S^{\times}\right)\left(v_{1}, v_{2}\right) \Leftrightarrow w_{1} R v_{1} \& w_{2} S v_{2} .
$$

Direct products of logics containing S4

$\mathrm{L}_{1}, \mathrm{~L}_{2} \supseteq \mathbf{S 4}$.
Proposition
$\mathbf{S 4} \subseteq \mathrm{L}_{1} \times{ }_{\text {dir }} \mathrm{L}_{2} \subseteq \mathrm{~L}_{1} \cap \mathrm{~L}_{2}$.

Direct products of logics containing S4

$\mathrm{L}_{1}, \mathrm{~L}_{2} \supseteq \mathbf{S 4}$.
Proposition
$\mathrm{S} 4 \subseteq \mathrm{~L}_{1} \times_{\text {dir }} \mathrm{L}_{2} \subseteq \mathrm{~L}_{1} \cap \mathrm{~L}_{2}$.
Example

- $\mathbf{S 4} \times{ }_{\text {dir }} \mathbf{S 4}=\mathbf{S 4}$;

Direct products of logics containing S4

$\mathrm{L}_{1}, \mathrm{~L}_{2} \supseteq \mathbf{S 4}$.
Proposition
$\mathrm{S} 4 \subseteq \mathrm{~L}_{1} \times{ }_{\text {dir }} \mathrm{L}_{2} \subseteq \mathrm{~L}_{1} \cap \mathrm{~L}_{2}$.
Example

- S4 $\times_{\text {dir }}$ S4 $=\mathbf{S 4}$;
- S4.2 $\times_{\text {dir }}$ S4.2 = S4.2;

Direct products of logics containing S4

$\mathrm{L}_{1}, \mathrm{~L}_{2} \supseteq \mathbf{S 4}$.
Proposition
$\mathrm{S} 4 \subseteq \mathrm{~L}_{1} \times_{\text {dir }} \mathrm{L}_{2} \subseteq \mathrm{~L}_{1} \cap \mathrm{~L}_{2}$.
Example

- S4 $\times_{\text {dir }}$ S4 $=$ S4;

- If φ is preserved in direct products then
$(\mathbf{S} 4+\varphi) \times{ }_{\text {dir }}(\mathbf{S} 4+\varphi)=\mathbf{S} 4+\varphi$;

Direct products of logics containing S4

$\mathrm{L}_{1}, \mathrm{~L}_{2} \supseteq \mathbf{S 4}$.
Proposition
$\mathrm{S} 4 \subseteq \mathrm{~L}_{1} \times_{\text {dir }} \mathrm{L}_{2} \subseteq \mathrm{~L}_{1} \cap \mathrm{~L}_{2}$.
Example

- S4 $\times_{\text {dir }}$ S4 $=$ S4;
- S4.2 $\times_{\text {dir }} \mathbf{S 4 . 2 = \mathbf { S 4 . 2 } \text { ; }}$
- If φ is preserved in direct products then
$(\mathbf{S} 4+\varphi) \times{ }_{\text {dir }}(\mathbf{S} 4+\varphi)=\mathbf{S} 4+\varphi$;
- $\mathbf{S 4 . 3 \times d i r} \mathbf{S 4 . 3}=$

Direct products of logics containing S4

$\mathrm{L}_{1}, \mathrm{~L}_{2} \supseteq \mathbf{S 4}$.
Proposition
$\mathbf{S 4} \subseteq \mathrm{L}_{1} \times$ dir $\mathrm{L}_{2} \subseteq \mathrm{~L}_{1} \cap \mathrm{~L}_{2}$.

Example

- S4 $\times_{\text {dir }}$ S4 $=$ S4;
- S4.2 $\times_{\text {dir }} \mathbf{S 4 . 2}=\mathbf{S 4 . 2}$;
- If φ is preserved in direct products then
$(\mathbf{S} 4+\varphi) \times_{\text {dir }}(\mathbf{S} 4+\varphi)=\mathbf{S} 4+\varphi$;
- $\mathrm{S} 4.3 \times{ }_{\text {dir }} \mathrm{S} 4.3=\mathrm{S} 4.2 \times{ }_{\text {dir }} \mathrm{S} 4.3=\mathrm{S} 4.2$.
$\mathbf{S 4 . 2}=\mathbf{S} 4.2 \times{ }_{\operatorname{dir}} \mathbf{S} 4.2 \subseteq \mathbf{S 4 . 3} \times{ }_{\operatorname{dir}} \mathbf{S} 4.3 \subseteq \log \left((\mathbb{R}, \leq) \times{ }_{\operatorname{dir}}(\mathbb{R}, \leq)\right)$.

Direct products of logics containing S4

$\mathrm{L}_{1}, \mathrm{~L}_{2} \supseteq \mathbf{S 4}$.
Proposition
$\mathrm{S} 4 \subseteq \mathrm{~L}_{1} \times_{\text {dir }} \mathrm{L}_{2} \subseteq \mathrm{~L}_{1} \cap \mathrm{~L}_{2}$.

Example

- S4 $\times_{\text {dir }}$ S4 $=$ S4;
- S4.2 $\times_{\text {dir }} \mathbf{S 4 . 2}=\mathbf{S 4 . 2}$;
- If φ is preserved in direct products then
$(\mathbf{S} 4+\varphi) \times$ dir $(\mathbf{S} 4+\varphi)=\mathbf{S 4}+\varphi$;
- S4.3 $\times_{\text {dir }}$ S4.3 $=$ S4.2 \times dir $\mathbf{S 4 . 3 = \mathbf { S 4 . 2 } .}$
$\mathbf{S 4 . 2}=\mathbf{S 4 . 2} \times{ }_{\text {dir }} \mathbf{S} 4.2 \subseteq \mathbf{S 4 . 3} \times{ }_{\operatorname{dir}} \mathbf{S} 4.3 \subseteq \log \left((\mathbb{R}, \leq) \times{ }_{\operatorname{dir}}(\mathbb{R}, \leq)\right)$.
The latter logic is S4.2, since it is the logic of the causal future relation in Minkowski plane (Goldblatt, 80; Shehtman, 83).
$(W, R) \times \operatorname{dir}(U, S):=\left(W \times U, R^{\times} \circ S^{\times}\right)$.
Definition
For general frames, put

$$
\left(\mathrm{F}_{1}, A_{1}\right) \otimes_{\operatorname{dir}}\left(\mathrm{F}_{2}, A_{2}\right):=\left(\mathrm{F}_{1} \times_{\operatorname{dir}} \mathrm{F}_{2}, A_{1} \otimes A_{2}\right)
$$

for algebras, put $\left(A_{1}, \diamond_{1}\right) \otimes_{\text {dir }}\left(A_{2}, \diamond_{2}\right):=\left(A_{1} \otimes A_{2}, \diamond_{1}^{\times} \diamond_{2}^{\times}\right)$.
$\mathrm{L}_{1} \otimes_{\text {dir }} \mathrm{L}_{2}:=\log \left(\operatorname{Alg}\left(\mathrm{L}_{1}\right) \otimes_{\text {dir }} \operatorname{Alg}\left(\mathrm{L}_{2}\right)\right)\left(=\log \left(\operatorname{GFr}\left(\mathrm{L}_{1}\right) \otimes_{\text {dir }} \operatorname{GFr}\left(\mathrm{L}_{2}\right)\right)\right)$.

Theorem (Hasimoto)
For classes of algebras (general frames) $\mathfrak{C}_{1}, \mathfrak{C}_{2}$,

$$
\log \left(\mathfrak{C}_{1}\right) \otimes_{\text {dir }} \log \left(\mathfrak{C}_{2}\right)=\log \left(\mathfrak{C}_{1} \otimes_{\text {dir }} \mathfrak{C}_{2}\right)
$$

The commutator of L_{1} and L_{2} :

$$
\left[\mathrm{L}_{1}, \mathrm{~L}_{2}\right]:=\mathrm{L}_{1} * \mathrm{~L}_{2}+\diamond_{1} \diamond_{2} p \leftrightarrow \diamond_{2} \diamond_{1} p+\diamond_{1} \square_{2} p \rightarrow \diamond_{2} \square_{1} p,
$$

where $\mathrm{L}_{1} * \mathrm{~L}_{2}$ is the fusion of L_{1} and L_{2}.
Proposition
If $\mathrm{L}_{1}, \mathrm{~L}_{2} \supseteq \mathbf{S} 4$, then $\mathrm{L}_{1} \otimes \mathrm{~L}_{2} \supseteq[\mathbf{S 4}, \mathbf{S} 4]$.
Proof.
$\mathrm{L}_{1} \otimes \mathrm{~L}_{2}$ contains the fusion $\mathrm{L}_{1} * \mathrm{~L}_{2}$, so it contains $\mathbf{S 4} * \mathbf{S 4}$. Also,

$$
\mathrm{L}_{1} \otimes \mathrm{~L}_{2} \supseteq \mathbf{K} \otimes \mathbf{K}=\mathbf{K} \times \mathbf{K}=[\mathbf{K}, \mathbf{K}]
$$

Proposition

If a bimodal logic contains [S4, S4], then $\diamond_{1} \diamond_{2}$ is an S4-operator.
Corollary
If $\mathrm{L}_{1}, \mathrm{~L}_{2} \supseteq \mathbf{S 4}$, then $\mathrm{L}_{1} \otimes_{\text {dir }} \mathrm{L}_{2} \supseteq \mathbf{S} 4$.

Some more problems

Some more problems

- Does Kripke completeness transfer from L_{1} and L_{2} to $\mathrm{L}_{1} \otimes_{\text {dir }} \mathrm{L}_{2}$?

Some more problems

- Does Kripke completeness transfer from L_{1} and L_{2} to $\mathrm{L}_{1} \otimes_{\text {dir }} \mathrm{L}_{2}$?
- For $\mathrm{L}_{1}, \mathrm{~L}_{2} \supseteq \mathbf{S} 4$, does topological completeness transfer from L_{1} and L_{2} to $\mathrm{L}_{1} \otimes_{\text {dir }} \mathrm{L}_{2}$?

Some more problems

- Main question. $\mathfrak{X}_{1}, \mathfrak{X}_{1}^{\prime}, \mathfrak{X}_{2}, \mathfrak{X}_{2}^{\prime}$ are topological spaces, $\log \left(\mathfrak{X}_{1}\right)=\log \left(\mathfrak{X}_{1}^{\prime}\right), \log \left(\mathfrak{X}_{2}\right)=\log \left(\mathfrak{X}_{2}^{\prime}\right)$.

$$
\log \left(\mathfrak{X}_{1} \times \mathfrak{X}_{2}\right) \stackrel{?}{=} \log \left(\mathfrak{X}_{1}^{\prime} \times X_{2}^{\prime}\right)
$$

Some more problems

- Main question. $\mathfrak{X}_{1}, \mathfrak{X}_{1}^{\prime}, \mathfrak{X}_{2}, \mathfrak{X}_{2}^{\prime}$ are topological spaces, $\log \left(\mathfrak{X}_{1}\right)=\log \left(\mathfrak{X}_{1}^{\prime}\right), \log \left(\mathfrak{X}_{2}\right)=\log \left(\mathfrak{X}_{2}^{\prime}\right)$.

$$
\log \left(\mathfrak{X}_{1} \times \mathfrak{X}_{2}\right) \stackrel{?}{=} \log \left(\mathfrak{X}_{1}^{\prime} \times X_{2}^{\prime}\right)
$$

- How $\otimes_{\text {dir }}$ interacts with the product topology? Let $\mathrm{L}_{1}=\log \left(\mathfrak{X}_{1}\right), \mathrm{L}_{2}=\log \left(\mathfrak{X}_{2}\right)$.

$$
\mathrm{L}_{1} \otimes_{\text {dir }} \mathrm{L}_{2} \quad \text { ??? } \quad \log \left(\mathfrak{X}_{1} \times \mathfrak{X}_{2}\right)
$$

Some more problems

- Main question. $\mathfrak{X}_{1}, \mathfrak{X}_{1}^{\prime}, \mathfrak{X}_{2}, \mathfrak{X}_{2}^{\prime}$ are topological spaces, $\log \left(\mathfrak{X}_{1}\right)=\log \left(\mathfrak{X}_{1}^{\prime}\right), \log \left(\mathfrak{X}_{2}\right)=\log \left(\mathfrak{X}_{2}^{\prime}\right)$.

$$
\log \left(\mathfrak{X}_{1} \times \mathfrak{X}_{2}\right) \stackrel{?}{=} \log \left(\mathfrak{X}_{1}^{\prime} \times X_{2}^{\prime}\right)
$$

- How $\otimes_{\text {dir }}$ interacts with the product topology? Let $\mathrm{L}_{1}=\log \left(\mathfrak{X}_{1}\right), \mathrm{L}_{2}=\log \left(\mathfrak{X}_{2}\right)$.

$$
\mathrm{L}_{1} \otimes_{\operatorname{dir}} \mathrm{L}_{2} \quad \text { ??? } \quad \log \left(\mathfrak{X}_{1} \times \mathfrak{X}_{2}\right)
$$

- Let $\left(X_{1} \times X_{2}, \tau_{1}, \tau_{2}\right)$ be the bitopological product of $\mathfrak{X}_{1}=\left(X_{1}, \tau_{1}\right)$ and $\mathfrak{X}_{2}=\left(X_{2}, \tau_{2}\right)$. In general, $\tau_{1} \circ \tau_{2}$ is not an $\mathbf{S 4}$-operator (e.g., if $\left.\log \left(X_{1} \times X_{2}, \tau_{1}, \tau_{2}\right)=\mathbf{S} 4 * \mathbf{S} 4\right)$.

Some more problems

- Main question. $\mathfrak{X}_{1}, \mathfrak{X}_{1}^{\prime}, \mathfrak{X}_{2}, \mathfrak{X}_{2}^{\prime}$ are topological spaces, $\log \left(\mathfrak{X}_{1}\right)=\log \left(\mathfrak{X}_{1}^{\prime}\right), \log \left(\mathfrak{X}_{2}\right)=\log \left(\mathfrak{X}_{2}^{\prime}\right)$.

$$
\log \left(\mathfrak{X}_{1} \times \mathfrak{X}_{2}\right) \stackrel{?}{=} \log \left(\mathfrak{X}_{1}^{\prime} \times X_{2}^{\prime}\right)
$$

- How $\otimes_{\text {dir }}$ interacts with the product topology? Let $\mathrm{L}_{1}=\log \left(\mathfrak{X}_{1}\right), \mathrm{L}_{2}=\log \left(\mathfrak{X}_{2}\right)$.

$$
\mathrm{L}_{1} \otimes_{\text {dir }} \mathrm{L}_{2} \quad \text { ??? } \quad \log \left(\mathfrak{X}_{1} \times \mathfrak{X}_{2}\right)
$$

- Let $\left(X_{1} \times X_{2}, \tau_{1}, \tau_{2}\right)$ be the bitopological product of $\mathfrak{X}_{1}=\left(X_{1}, \tau_{1}\right)$ and $\mathfrak{X}_{2}=\left(X_{2}, \tau_{2}\right)$. In general, $\tau_{1} \circ \tau_{2}$ is not an $\mathbf{S 4}$-operator (e.g., if $\left.\log \left(X_{1} \times X_{2}, \tau_{1}, \tau_{2}\right)=\mathbf{S} 4 * \mathbf{S} 4\right)$.
Fact: $\left(\left(X_{1} \times X_{2}, \tau_{1}, \tau_{2}\right), \operatorname{Ch}\left(X_{1}, X_{2}\right)\right) \vDash[\mathbf{S 4}, \mathbf{S} 4]$, so $\left(\left(X_{1} \times X_{2}, \tau_{1} \circ \tau_{2}\right), \operatorname{Ch}\left(X_{1}, X_{2}\right)\right) \vDash \mathbf{S} 4$.

$$
\log \left(\left(X_{1} \times X_{2}, \tau_{1} \circ \tau_{2}\right), \operatorname{Ch}\left(X_{1}, X_{2}\right)\right) \quad ? ? ? \quad \log \left(\mathfrak{X}_{1} \times \mathfrak{X}_{2}\right)
$$

Thank you!

