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The product of Kripke frames F1 = (W, R), Fo = (U, S) is the frame
Fi x Fo = (W x U, R*,S*), where

(w1, m2)R*(vi,v2) < wiRvi & wa = v,
(W17 WQ)SX(V]_, V2) =4 wi = wvi & W25V2.
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The product of Kripke frames F1 = (W, R), Fo = (U, S) is the frame
Fi x Fo = (W x U, R*,S*), where

(w1, m2)R*(vi,v2) < wiRvi & wa = v,
(W17 WQ)SX(V]_, V2) =4 wi = wvi & W25V2.

The product of Kripke frames F1 = (W, Ry,...,R,), F2=(V,51,...,5)
is the (n + k)-frame Fy x Fo = (W x V,R{,..., R}, 5,...,5,), where

(w1, )R (vi,v2) & wRvi & wyr = w,

(wi, W2)SJ.X(V1, w) & w=v & wmSjv.
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The product of Kripke frames F1 = (W, R), Fo = (U, S) is the frame
Fi x Fo = (W x U, R*,S*), where

(w1, m2)R*(vi,v2) < wiRvi & wa = v,
(W17 WQ)SX(V]_, V2) =4 wi = wvi & W25V2.

The product of Kripke frames F1 = (W, Ry,...,R,), F2=(V,51,...,5)
is the (n + k)-frame Fy x Fo = (W x V,R{,..., R}, 5,...,5,), where
(w1, )R (vi,v2) & wRvi & wyr = w,

(wi, W2)SJ.X(V1, w) & w=v & wmSjv.

For classes of Kripke frames §, &, §x & :={F xG|F e §, G e &}.
For logics L1, Lo,

L; x Ly := Log(Fr(L1) x Fr(Ly)),

where Fr(L) is the class of all L-frames.
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Two “bad” logical properties of the product operation
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Two “bad” logical properties of the product operation

» Products of Kripke incomplete logics
If two logics L1, L] have the same frames, then for any Ly

L1XL2:L/1><L2.

In particular, if a logic L; is consistent, but the class of its frames is
empty (e.g. Lj is the Thomason's bimodal logic), then L; x Ly is
inconsistent for any Lo.
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Two “bad” logical properties of the product operation

» Products of Kripke incomplete logics
If two logics L1, L] have the same frames, then for any Ly

L1XL2:L/1><L2.

In particular, if a logic L; is consistent, but the class of its frames is
empty (e.g. Lj is the Thomason's bimodal logic), then L; x Ly is
inconsistent for any Lo.

» Logical non-invariance

It may happen that Log(§) = Log(§’), Log(®) = Log(&') while
Log(§ x &) # Log(§' x &").

For example, S4 = Log(J), where § is the class of all finite preorders,
but S4 x S4 # Log(§ x §).
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Two “bad” logical properties of the product operation

» Products of Kripke incomplete logics
If two logics L1, L] have the same frames, then for any Ly

L1XL2:L/1><L2.

In particular, if a logic L; is consistent, but the class of its frames is
empty (e.g. Lj is the Thomason's bimodal logic), then L; x Ly is
inconsistent for any Lo.

» Logical non-invariance

It may happen that Log(§) = Log(§’), Log(®) = Log(&') while
Log(§ x &) # Log(§' x &").

For example, S4 = Log(J), where § is the class of all finite preorders,
but S4 x S4 # Log(F x §).

Note that logical invariance holds for direct products of elementary
theories (A. Mostowski, 1952).
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[A. Kurucz. Combining modal logics. Handbook of Modal Logic,
volume 3. 2007.]:

There are several attempts for extending the product construction from
Kripke complete logics to arbitrary modal logics, mainly by considering
product-like constructions on Kripke models. All the suggested methods so
far result in sets of formulas that are not closed under the rule of
Substitution.
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[A. Kurucz. Combining modal logics. Handbook of Modal Logic,
volume 3. 2007.]:

There are several attempts for extending the product construction from
Kripke complete logics to arbitrary modal logics, mainly by considering
product-like constructions on Kripke models. All the suggested methods so
far result in sets of formulas that are not closed under the rule of
Substitution.

Nevertheless, a possible answer was already known by that time:

[Y. Hasimoto. Normal products of modal logics. Advances in Modal Logic,
volume 3. 2002.]
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[Y. Hasimoto. Normal products of modal logics. Advances in Modal Logic,
volume 3. 2002.]

[D. Gabbay, |. Shapirovsky, and V. Shehtman. Products of Modal Logics
and Tensor Products of Modal Algebras. Journal of Applied Logic. In
press. |
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Main construction (Hasimoto)

Definition
Aset Ux V,where UC X, V CY,iscalled a rectanglein X x Y. A
chequered subset of X x Y is a finite union of rectangles.

Proposition
The set of all chequered subsets of Wy x W is closed under Boolean
operations. Moreover, if A; is a subalgebra of 2Wi = 1,2, then the set of

all finite unions of rectangles Vi x Vi, where V; € A;, is closed under
Boolean operations as well.
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Main construction (Hasimoto)

Definition

Aset Ux V,where UC X, V CY,iscalled a rectanglein X x Y. A
chequered subset of X x Y is a finite union of rectangles.

For nonempty sets X, Y let ch(X, Y) be the Boolean algebra of all
chequered subsets of X x Y. If A, B are subalgebras of 2%, 2¥
respectively, let chag(X, Y') be the Boolean algebra of finite unions of
rectangles U, V, where U € A, V € B.

Proposition

Let F1 = (Wl, Rl), F2 = (WQ, RQ), F1 X F2 = (W1 X WQ, R1><, RZX) Then
(1) for any rectangle U x V we have

RXTNUX V) =RY(U)x V, R HUx V)=UxRyYV);

(2) if (F1,A1) and (F2, A2) are general 1-frames, then
(F1 x Fa, cha,a, (Wi, Wh)) is a general 2-frame.
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Every Boolean algebra can be regarded as a Boolean ring, where the ring
multiplication is the meet and the ring addition is the symmetric difference:

xy =xANy, x+y:=(xA"y)V(yA-x).

A Boolean ring is a commutative associative algebra over the two-element
field F» with an idempotent multiplication; so the standard construction of
a tensor product of associative algebras is applicable here.

Viz., the tensor product of algebras A, B is a pair (A® B, ), where
A® B is an algebra, 7 : (a,b) — a® b is a bilinear map Ax B— A® B
with the following universal property: every bilinear map f : Ax B — C,
where C is an Fy-space, uniquely factors through «, i.e., f = g -7 for a
unique linear g : A® B — C.
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X, Y are nonempty sets, A, B are subalgebras of 2X, 2Y respectively.

chag(X,Y) is the Boolean algebra of finite unions of rectangles U, V/,
where U € A, V € B.

Observation

Chag(X,Y) is the tensor product of A and B.

More precisely, (chag(X,Y),m|(A x B)) is the tensor product of A and B,
where 7 : 2X x 2Y — Ch(X, Y) such that 7(U, V) := U x V.

In particular, (ch(X, Y), ) is the tensor product of 2% and 2Y.
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X, Y are nonempty sets, A, B are subalgebras of 2X, 2Y respectively.
chag(X,Y) is the Boolean algebra of finite unions of rectangles U, V/,
where U € A, V € B.

Observation

Chag(X,Y) is the tensor product of A and B.

More precisely, (chag(X,Y),m|(A x B)) is the tensor product of A and B,
where 7 : 2X x 2Y — Ch(X, Y) such that 7(U, V) := U x V.

In particular, (ch(X, Y), ) is the tensor product of 2% and 2Y.

Theorem (Gabbay, Shehtman, Sh)

If (A1, 01), (A2, 02) are normal 1-modal algebras, then there exists a
unique 2-modal algebra structure on A1 ® Ay with diamond operations
01, 0% such that for any a € A1, b€ A

O (a®b) =01a®@ b, O (a® b) =a® O2b.
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X, Y are nonempty sets, A, B are subalgebras of 2X, 2Y respectively.
chag(X,Y) is the Boolean algebra of finite unions of rectangles U, V/,
where U € A, V € B.

Observation

Chag(X,Y) is the tensor product of A and B.

More precisely, (chag(X,Y),m|(A x B)) is the tensor product of A and B,
where 7 : 2X x 2Y — Ch(X, Y) such that 7(U, V) := U x V.

In particular, (ch(X, Y), ) is the tensor product of 2% and 2Y.

Theorem (Gabbay, Shehtman, Sh)

If (A1, 01), (A2, 02) are normal 1-modal algebras, then there exists a
unique 2-modal algebra structure on A1 ® Ay with diamond operations
01, 0% such that for any a € A1, b€ A

O (a®b) =01a®@ b, O (a® b) =a® O2b.

Put (A1, 01) ® (A2, 02) := (A1 @ A2, 07, 03 ).
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Definition
The tensor product of general frames:

(F1, A1) @ (F2, A2) := (F1 x F2, A1 @ Az).
In particular, the tensor product of Kripke frames

Fi1®Fy = (F1 x Fo, Ch(Wl, W2))

For classes of algebras (general frames) 2, B, put
ARB:={AxB|Ac, Bec B}

Definition

The tensor product of logics L1 and Ly is the logic
L1 ® Ly := Log(Alg(L1) ® Alg(L2)).

Since every modal algebra is an algebra of a general frame, we have
L; ® Ly = Log(GFr(L;1) ® GFr(Ly)).
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Proposition (Hasimoto)

» L1 ® L» is consistent iff L1 and Ly are consistent.
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Proposition (Hasimoto)

» L1 ® L» is consistent iff L1 and Ly are consistent.

» /f Ly and Ly are consistent, then L1 ® Lo is conservative over L1 and
Lo.
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Logical invariance

Theorem (Hasimoto)

For classes of 1-algebras (general frames, Kripke frames) 2, B,
Log(2() ® Log(8) = Log(2 @ B).
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Logical invariance

Theorem (Hasimoto)

For classes of 1-algebras (general frames, Kripke frames) 2, B,
Log(2() ® Log(8) = Log(2 @ B).

Fr, denotes the canonical frame of a logic L, and (Fp,, Ar,) denotes its
general canonical frame.

Corollary
For any Ll, Lo, L1 ® Ly = LOg((FLl,ALl) X (FL2,AL2)).

Corollary
If L1, Ly are canonical, then L1 ® Ly = Log(Fr, ® Fr,).
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Logical invariance

Theorem (Hasimoto)

For classes of 1-algebras (general frames, Kripke frames) 2, B,
Log(2() ® Log(8) = Log(2 @ B).

((F1,A1) ® (F2,A2)) @ (F3,A3) = (F1,A1) @ ((F2,A2) @ (F3,A3)).

Corollary
(L1 ®Lp) ® L3 = L1 ® (L ® L3).
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Logical invariance

Theorem (Hasimoto)

For classes of 1-algebras (general frames, Kripke frames) 2, B,
Log(2() ® Log(8) = Log(2 @ B).

((F1,A1) ® (F2,A2)) @ (F3,A3) = (F1,A1) @ ((F2,A2) @ (F3,A3)).
Corollary
(L1 ® Lz) ® L3 = L1 ® (L2 ® Ls).

Problem ,
(Ll X L2) X L3 = Ll X (L2 X L3)
In particular, (K2 x K) x K = K2 x (K x K).
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Logical invariance

Theorem (Hasimoto)

For classes of 1-algebras (general frames, Kripke frames) 2, B,
Log(2() ® Log(8) = Log(2 @ B).

Proposition
ch(X,Y) = 2%X*Y iff X or Y is finite.

Corollary
If L1, Ly are Kripke complete, then

Li x Ly CL; ®Ly C Ly X4 Lo,

where L1 X fi, Lo := Log(Frfin(L1) X Frein(L2)), Frsi,(L) is the class of all
finite L-frames.
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Logical invariance

Theorem (Hasimoto)

For classes of 1-algebras (general frames, Kripke frames) 2, B,
Log(2() ® Log(8) = Log(2 @ B).

A logic Ly x Ly has the product fmp if L1 x Ly = L1 Xg, Lo.
Corollary
Let Ly, Ly be Kripke complete logics. 1.1 x Ly has the product fmp iff

L1 x Lp = L1 ® Lo = L1 X Lo;

it follows that if L; x Ly has the product fmp, then for any §; such that
L; = Log(§i), i = 1,2, we have

Ll X L2 = Log(%l X Sg)
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Logical invariance

Theorem (Hasimoto)

For classes of 1-algebras (general frames, Kripke frames) 2, B,
Log(2() ® Log(8) = Log(2 @ B).

Corollary
If L1 and Ly have the fmp, then:

L1 ® Ly = L1 X4 Lo;

L; x Ly = L1 ® Ly iff Ly x Ly has the product fmp.
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Products with tabular logics (Gabbay, Shehtman, Sh)

A tabular logic is the logic of a finite frame.
Corollary

If L1 is Kripke complete, Ly is tabular, then L x Ly = L; ® Lo.

Corollary

For a class of frames §, and a finite frame G,

Log(3) x Log(G) = Log(§ x {G}).

Corollary
If L1 has the fmp and Ly is tabular, then Ly x Lo has the product fmp.

Corollary
The modal product of tabular logics is tabular: if F and G are finite, then

Log(F) x Log(G) = Log(F x G).
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Products with tabular logics (Gabbay, Shehtman, Sh)
A tabular logic is the logic of a finite frame.

Theorem

Suppose L., is tabular. Then:

1. if Ly admits filtration, then Li x Ly has the exponential product fmp;
2. if Ly is Kripke complete and decidable, then L.y x Ly is decidable.
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Some problems

» Do there exist L, Ly such that L; x Lo=L; ® Loy, but L; x Ly lacks
the product fmp and L, L, are non-tabular?

» Do there exist L1, Ly such that L x Ly is undecidable, but L; ® Ly is
decidable?

» Do there exist L1, Ly such that L; x Ly is not finitely axiomatizable,
but L1 ® Ly is finitely axiomatizable?
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Some problems

» Do there exist L, Ly such that L; x Lo=L; ® Loy, but L; x Ly lacks
the product fmp and L, L, are non-tabular?

» Do there exist L1, Ly such that L x Ly is undecidable, but L; ® Ly is
decidable?

» Do there exist L1, Ly such that L; x Ly is not finitely axiomatizable,
but L1 ® Ly is finitely axiomatizable?

» Does Kripke completeness transfer from L; and Ly to L1 ® Ly?

If L1 and Ly are Kripke complete then
L; ® Ly = Log(Fr(L1) ® Fr(Lp)). The latter is the logic of a class of
general frames.
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Signature preserving products

For Kripke 1-frames F1 = (W, R), F2 = (U, S), their x-product is the
2-frame F; x Fp = (W x U, R*,S5%).
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Signature preserving products

For Kripke 1-frames F1 = (W, R), F2 = (U, S), their x-product is the
2-frame F; x Fp = (W x U, R*,S5%).

Fi Xgir F2 := (W x U, R* 0 §*) is the direct product of F; and F:

(wi,wo) (R*05%) (vi,v2) & wiRvi & waSvs.
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Direct products of logics containing S4
Li, Lo O S4.
Proposition

S4 C 1 xg4ir Lo CLiNLo.
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Direct products of logics containing S4
Li, Ly D S4.

Proposition
S4 C 1 xg4ir Lo CLiNLo.

Example

» S4 Xdir S4 = 54;
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Direct products of logics containing S4
L1, Lo D S4.

Proposition

S4 C L xgy Lo CLiNLy.

Example

» S4 Xdir S4 = 54;
» S4.2 X dir S4.2 = S4.2;
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Direct products of logics containing S4
L1, Lo D S4.
Proposition
S4 C L1 xgir Lp €Ly NLy.
Example
» S4 Xdir S4 = S4;
» S4.2 X dir S4.2 = S4.2;

> If ¢ is preserved in direct products then
(S4 +¢) Xair (S8 + @) =S4+ ¢;
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Direct products of logics containing S4
L1, Lo D S4.
Proposition
S4 C L1 xgir Lp €Ly NLy.
Example
» S4 Xdir S4 = S4;
» S4.2 X dir S4.2 = S4.2;

> If ¢ is preserved in direct products then
(S4 +¢) Xair (S8 + @) =S4+ ¢;
» S4.3 x4, S4.3 =
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Direct products of logics containing S4
Lq, Lo, D S4.
Proposition
S4 C L1 xgir Lo € L1 N Lo.
Example
» S4 Xdir S4 = S4;
» S4.2 X dir S4.2 = S4.2;

> If ¢ is preserved in direct products then
(S4 +¢) Xair (S8 + @) =S4+ ¢;
» S4.3 x4, S4.3 = S4.2 x4, S4.3 = S4.2.

S4.2 = S4.2 x4, S4.2 C SA.3 x4, $4.3 C Log((R, <) xgir (R, <)).
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Direct products of logics containing S4
Lq, Lo, D S4.
Proposition
S4 C L1 xgir Lo € L1 N Lo.
Example
» S4 Xdir S4 = S4;
» S4.2 X dir S4.2 = S4.2;

> If ¢ is preserved in direct products then
(S4 +¢) Xair (S8 + @) =S4+ ¢;
» S4.3 x4, S4.3 = S4.2 x4, S4.3 = S4.2.

S4.2 = S4.2 x4, S4.2 C S4.3 x4, S4.3 C Log((R, <) x4ir (R, <)).
The latter logic is S4.2, since it is the logic of the causal future relation in
Minkowski plane (Goldblatt, 80; Shehtman, 83).

Ilya Shapirovsky Tensor products of logics containing S4 June 24, 2014 15 /20



(W, R) xgir (U,S) := (W x U, R 0 §¥).

Definition
For general frames, put

(F1, A1) ®dir (F2, A2) := (F1 X4ir F2, A1 ® Ad);
for algebras, put (A1, 01) ®dir (A2, 02) := (A1 ® A2, 070F).

L1 ®gjy Lo := Log(Alg(Ll) Rdir Alg(Lg)) (: LOg(GFl"(Ll) Rdir GFI"(LQ))).

Theorem (Hasimoto)

For classes of algebras (general frames) €1, €,

Log(¢1) ®dir Log(€2) = Log(¢1 ®gir €2).
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The commutator of L1 and Lo:

[L1,Lo] := L1 x Ly + 0102p <> 0201p + 01002p — O201p,
where Lj * L» is the fusion of L and Ls.

Proposition
IfLi1,Ly, D S4, thenL; ® L, D [547 54]

Proof.
L1 ® Ly contains the fusion Lj * Lo, so it contains S4 x S4. Also,

Li®oLl, DKo K=K x K = [K,K].

Proposition
If a bimodal logic contains [S4,S4], then (107 is an S4-operator.

Corollary
If Li,Ly D S4, then L1 ®g;r Lo O S4.
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Some more problems
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Some more problems

» Does Kripke completeness transfer from L; and Ly to L1 ®gj Lo?
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Some more problems

» Does Kripke completeness transfer from L; and Ly to L1 ®gj Lo?

» For L1, Ly D S4, does topological completeness transfer from L; and
L> to L1 ®gir Lo?
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Some more problems

» Main question. X1, X)), X2, X, are topological spaces,
Log(X1) = Log(X}), Log(X2) = Log(X3).

Log(X1 x X2) = Log(X} x X3).
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Some more problems

» Main question. X1, X)), X2, X, are topological spaces,
Log(X1) = Log(X]), Log(X2) = Log(X}).

Log(X1 x X2) = Log(X} x X3).

» How ®yj, interacts with the product topology?
Let L; = Log(%l), L, = LOg(%2).

L1 ®gir L2 777 Log(X1 x X2)
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Some more problems
» Main question. X1, X)), X2, X, are topological spaces,
Log(X1) = Log(X]), Log(X2) = Log(X}).
Log(X1 x X2) = Log(X} x X3).
» How ®yj, interacts with the product topology?
Let L; = Log(%l), L, = LOg(}:Q).
L1 ®gir L2 777 Log(X1 x X2)

» Let (X1 x Xp,71,72) be the bitopological product of X1 = (X1, 1)
and X3 = (X2, 7). In general, 71 o 75 is not an S4-operator (e.g., if
Log(X1 X X2, 7'1,7'2) = S4 % 54)
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Some more problems
» Main question. X1, X)), X2, X, are topological spaces,
Log(X1) = Log(X]), Log(X2) = Log(X}).
Log(X1 x X2) = Log(X} x X3).
» How ®yj, interacts with the product topology?
Let L; = Log(%l), L, = LOg(%2).
L1 ®gir L2 777 Log(X1 x X2)

» Let (X1 x Xp,71,72) be the bitopological product of X1 = (X1, 1)
and X3 = (X2, 7). In general, 71 o 75 is not an S4-operator (e.g., if
Log(X1 X X2, 7'1,7'2) =S4« 54)

Fact: ((Xl X X, T1, 7'2), Ch(Xl,Xz)) E [S4, S4], SO
(X1 x X, 71 0732), Ch(X1, X2)) F S4.

Log((X1 X XQ, T1 © 7'2), Ch(Xl,XQ)) 7 Log(%l X }:2)
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Thank you!
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