

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

LORIA, CNRS-Université de Lorraine

June 26, 2014

Joint work with Alexandru Baltag, Nick Bezhanishvili and Sonja Smets.

Some History and Motivation	Stalnaker's Logic KB	Our Work 0000 000000	Future Work

Background Notions

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

э

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Some History and Motivation	Stalnaker's Logic KB	Our Work 0000 000000	Future Work

Background Notions

Topological space: (X, τ)

For any $A \subseteq X$, we denote,

- interior operator: Int(A)
- closure operator: $Cl(A) := X \setminus Int(X \setminus A)$
- derived set operator: d(A)
- co-derived set operator: $t(A) := X \setminus d(X \setminus A)$

Our Work

・ロト ・ 一下・ ・ ヨト・

Future Work

Topological Semantics for Knowledge

(McKinsey and Tarski, 1944)

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

Our Work

・ロト ・ 一下・ ・ ヨト・

Future Work

Topological Semantics for Knowledge

(McKinsey and Tarski, 1944)

$$(\mathcal{L}_{\mathcal{K}}) \varphi ::= \mathbf{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{K} \varphi$$

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

Our Work

Future Work

Topological Semantics for Knowledge

(McKinsey and Tarski, 1944)

 $(\mathcal{L}_{\mathcal{K}}) \varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathcal{K}\varphi$

 $\mathit{K} arphi :=$ the agent knows arphi

イロト イポト イヨト イヨト

Our Work

Future Work

Topological Semantics for Knowledge

(McKinsey and Tarski, 1944)

$$(\mathcal{L}_{\mathcal{K}}) \varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathcal{K}\varphi$$

 $\mathit{K} arphi :=$ the agent knows arphi

A topological model is a tuple $\mathcal{M} = (X, \tau, \nu)$ where X and τ as before and ν : Prop $\rightarrow \mathcal{P}(X)$ is valuation function.

< ロ > < 同 > < 臣 > < 臣 >

Our Work

Future Work

Topological Semantics for Knowledge

(McKinsey and Tarski, 1944)

$$(\mathcal{L}_{\mathcal{K}}) \varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathcal{K}\varphi$$

 $\mathit{K} arphi :=$ the agent knows arphi

A topological model is a tuple $\mathcal{M} = (X, \tau, \nu)$ where X and τ as before and ν : Prop $\rightarrow \mathcal{P}(X)$ is valuation function.

$$oldsymbol{x} \in \llbracket oldsymbol{K} arphi
rbrace^{\mathcal{M}}$$
 iff $\exists oldsymbol{U} \in au(oldsymbol{x} \in oldsymbol{U} \land oldsymbol{U} \subseteq \llbracket arphi
rbrace^{\mathcal{M}})$

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

< ロ > < 同 > < 臣 > < 臣 >

Our Work

Future Work

Topological Semantics for Knowledge

(McKinsey and Tarski, 1944)

$$(\mathcal{L}_{\mathcal{K}}) \varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathcal{K}\varphi$$

 $\mathit{K} arphi :=$ the agent knows arphi

A topological model is a tuple $\mathcal{M} = (X, \tau, \nu)$ where X and τ as before and ν : Prop $\rightarrow \mathcal{P}(X)$ is valuation function.

$$oldsymbol{x} \in \llbracket {\mathcal K} arphi
brace {\mathcal M}^{\mathcal M} ext{ iff } \exists oldsymbol{U} \in au(oldsymbol{x} \in oldsymbol{U} \, \wedge oldsymbol{U} \subseteq \llbracket arphi
brace {\mathcal M}^{\mathcal M})$$

i.e.,

$$\llbracket K \varphi \rrbracket = \operatorname{Int}(\llbracket \varphi \rrbracket)$$

イロト イポト イヨト イヨト

Our Work

Future Work

Topological Semantics for Knowledge

(McKinsey and Tarski, 1944)

$$(\mathcal{L}_{\mathcal{K}}) \varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathcal{K}\varphi$$

 $K \varphi :=$ the agent knows φ

A topological model is a tuple $\mathcal{M} = (X, \tau, \nu)$ where X and τ as before and ν : Prop $\rightarrow \mathcal{P}(X)$ is valuation function.

$$oldsymbol{x} \in \llbracket {\mathcal K} arphi
brace {\mathcal M}^{\mathcal M} ext{ iff } \exists oldsymbol{U} \in au(oldsymbol{x} \in oldsymbol{U} \, \wedge oldsymbol{U} \subseteq \llbracket arphi
brace {\mathcal M}^{\mathcal M})$$

i.e.,

$$\llbracket K\varphi \rrbracket = \operatorname{Int}(\llbracket \varphi \rrbracket)$$
$$\llbracket \langle K \rangle \varphi \rrbracket = \operatorname{Cl}(\llbracket \varphi \rrbracket) \quad (\langle K \rangle \varphi := \neg K \neg \varphi)$$

イロト イポト イヨト イヨト

Some History and Motivation ●○ ○○○	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Why knowledge is interpreted as interior?			

A New Topological Semantics for (Dynamic) Doxastic Logic

◆□→ ◆圖→ ◆国→ ◆国→

Some	History	and	Motivation
000			

Our Work

Future Work

Why knowledge is interpreted as interior?

Theorem (McKinsey and Tarski, 1944)

S4 is sound and complete wrt the class of all topological spaces.

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

・ロト ・四ト ・ヨト ・ヨト

Some	History	and	Motivation
00 000			
000			

Stalnaker's Logic KB

Our Work

Future Work

Theorem (McKinsey and Tarski, 1944)

S4 is sound and complete wrt the class of all topological spaces.

Hence, topologically,

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

・ロト ・四ト ・ヨト ・ヨト

Some	History	and	Motivation
000			
000			

Stalnaker's Logic KB

Our Work

Future Work

Theorem (McKinsey and Tarski, 1944)

S4 is sound and complete wrt the class of all topological spaces.

Hence, topologically, knowledge is *truthful*

 $K\varphi \rightarrow \varphi,$

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

・ロト ・回 ト ・ヨト ・ヨト

Some	History	and	Motivation
00 000			
000			

Stalnaker's Logic KB

Our Work

Future Work

Theorem (McKinsey and Tarski, 1944)

S4 is sound and complete wrt the class of all topological spaces.

Hence, topologically, knowledge is *truthful*

$$K\varphi \to \varphi,$$

positively introspective

$$K\varphi \rightarrow KK\varphi,$$

イロト イポト イヨト イヨト

Some	History	and	Motivation
000			
000			

Stalnaker's Logic KB

Our Work

Future Work

Theorem (McKinsey and Tarski, 1944)

S4 is sound and complete wrt the class of all topological spaces.

Hence, topologically, knowledge is *truthful*

$$K\varphi \to \varphi,$$

positively introspective

 $K\varphi \rightarrow KK\varphi,$

but not necessarily negatively introspective

$$\neg K\varphi \rightarrow K\neg K\varphi.$$

Aybüke Özgün

イロト イポト イヨト イヨト

Some History and Motivation ○● ○○○	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Why knowledge is interpreted as interior?			

It provides a deeper insight into the evidential-based interpretation of knowledge:

→ E → < E →</p>

Some History and Motivation ○● ○○○	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Why knowledge is interpreted as interior?			

It provides a deeper insight into the evidential-based interpretation of knowledge:

• open sets $U \in \tau$ are pieces of evidence, and

Some History and Motivation ○● ○○○	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Why knowledge is interpreted as interior?			

It provides a deeper insight into the evidential-based interpretation of knowledge:

- open sets $U \in \tau$ are pieces of evidence, and
- open neighborhoods of the actual world are pieces of truthful evidence.

Some History and Motivation ○● ○○○	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Why knowledge is interpreted as interior?			

It provides a deeper insight into the evidential-based interpretation of knowledge:

- open sets $U \in \tau$ are pieces of evidence, and
- open neighborhoods of the actual world are pieces of truthful evidence.

Recall:

$$x \in \llbracket K \varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists U \in \tau (x \in U \land U \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}})$$

★ 글 ▶ ★ 글 ▶

Some History and Motivation	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Belief via Topology			

A New Topological Semantics for (Dynamic) Doxastic Logic

◆□→ ◆圖→ ◆国→ ◆国→

Some History and Motivation ○○ ●○○	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Belief via Topology			

Some History and Motivation ○○ ●○○	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Belief via Topology			

$$x \in \llbracket \langle B \rangle \varphi \rrbracket^{\mathcal{M}} \text{ iff } \forall U \in \tau (x \in U \to U \setminus \{x\} \cap \llbracket \varphi \rrbracket^{\mathcal{M}} \neq \emptyset)$$

Some History and Motivation ^{OO} ^{OO}	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Belief via Topology			

$$x \in \llbracket \langle B \rangle \varphi \rrbracket^{\mathcal{M}} \text{ iff } \forall U \in \tau (x \in U \to U \setminus \{x\} \cap \llbracket \varphi \rrbracket^{\mathcal{M}} \neq \emptyset)$$

$$\llbracket \langle \boldsymbol{B} \rangle \varphi \rrbracket = \boldsymbol{d}(\llbracket \varphi \rrbracket)$$

i.e.,

ヨト イヨト

A D > A B >

Some History and Motivation ^{OO} ^{OO}	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Belief via Topology			

$$x \in \llbracket \langle B \rangle \varphi \rrbracket^{\mathcal{M}} \text{ iff } \forall U \in \tau (x \in U \to U \setminus \{x\} \cap \llbracket \varphi \rrbracket^{\mathcal{M}} \neq \emptyset)$$
$$\llbracket \langle B \rangle \langle \varphi \rrbracket = d(\llbracket \varphi \rrbracket)$$

$$\llbracket \langle \boldsymbol{B} \rangle \varphi \rrbracket = \boldsymbol{d}(\llbracket \varphi \rrbracket)$$

 $x \in \llbracket B \varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists U \in \tau (x \in U \land U \setminus \{x\} \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}})$

i.e.,

Some History and Motivation o	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Belief via Topology			

$$x \in \llbracket \langle B \rangle \varphi \rrbracket^{\mathcal{M}} \text{ iff } \forall U \in \tau (x \in U \to U \setminus \{x\} \cap \llbracket \varphi \rrbracket^{\mathcal{M}} \neq \emptyset)$$

i.e.,
$$\llbracket \langle B \rangle \varphi \rrbracket = d(\llbracket \varphi \rrbracket)$$

$$\llbracket \langle \mathbf{D} / \boldsymbol{\varphi} \rrbracket = \mathbf{Q} (\llbracket \boldsymbol{\varphi} \rrbracket)$$

$$x \in \llbracket B\varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists U \in \tau (x \in U \land U \setminus \{x\} \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}})$$

$$\llbracket B\varphi \rrbracket = t(\llbracket \varphi \rrbracket)$$

Aybüke Özgün

A New Topological Semantics for (Dynamic) Doxastic Logic

i.e.,

Some History and Motivation ○○ ○●○	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Belief via Topology			

A New Topological Semantics for (Dynamic) Doxastic Logic

<ロ> <四> <四> <三> <三> <三> <三>

Some History and Motivation ○○ ○●○	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Belief via Topology			

• it entails *the necessity of error*: there is at least one false belief in all worlds of every topological model.

・ 同 ト ・ ヨ ト ・ ヨ ト

Some History and Motivation ○○ ○●○	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Belief via Topology			

• it entails *the necessity of error*: there is at least one false belief in all worlds of every topological model.

2 it supports "knowledge as (justified) true belief" view:

(▲ 글) (▲ 글)

Some History and Motivation ○○ ○●○	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Belief via Topology			

• it entails *the necessity of error*: there is at least one false belief in all worlds of every topological model.

2 it supports "knowledge as (justified) true belief" view:

$$x \in \llbracket B\varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists U \in \tau (x \in U \land U \setminus \{x\} \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}})$$

코 > 《 코 >

Some History and Motivation ○○ ○●○	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Belief via Topology			

- it entails *the necessity of error*: there is at least one false belief in all worlds of every topological model.
- 2 it supports "knowledge as (justified) true belief" view:

$$\begin{array}{l} x \in \llbracket B \varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists U \in \tau (x \in U \land U \setminus \{x\} \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}}) \\ x \in \llbracket K \varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists U \in \tau (x \in U \land U \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}}) \end{array}$$

코 > 《 코 >

Some History and Motivation ○○ ○●○	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Belief via Topology			

• it entails *the necessity of error*: there is at least one false belief in all worlds of every topological model.

2 it supports "knowledge as (justified) true belief" view:

 $x \in \llbracket B\varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists U \in \tau (x \in U \land U \setminus \{x\} \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}})$ $x \in \llbracket K\varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists U \in \tau (x \in U \land U \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}})$

$$\mathbf{K}\varphi := \mathbf{B}\varphi \wedge \varphi$$

Some History and Motivation ○○ ○●○	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Belief via Topology			

• it entails *the necessity of error*: there is at least one false belief in all worlds of every topological model.

2 it supports "knowledge as (justified) true belief" view:

$$\begin{array}{l} x \in \llbracket B \varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists U \in \tau (x \in U \land U \setminus \{x\} \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}}) \\ x \in \llbracket K \varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists U \in \tau (x \in U \land U \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}}) \end{array}$$

$$\boldsymbol{K}\varphi := \boldsymbol{B}\varphi \wedge \varphi$$

3 KD45 is sound and complete wrt *dense-in-itself* T_D spaces where d(A) is open for every $A \subseteq X$ (i.e., *DSO*-spaces).

Some History and Motivation ○○ ○○●	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Belief via Topology			

Given the interior-based topological semantics for knowledge:

Some History and Motivation ○○ ○○●	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Belief via Topology			

Given the interior-based topological semantics for knowledge:

how can we construct a topological semantics for belief which can also address the problem of understanding the relation between knowledge and belief?

Some History and Motivation ○○ ○○●	Stalnaker's Logic KB	Our Work 0000 000000	Future Work
Belief via Topology			

Given the interior-based topological semantics for knowledge:

- how can we construct a topological semantics for belief which can also address the problem of understanding the relation between knowledge and belief?
- A how to extend this setting to dynamic belief revision?
| Some History and Motivation | Stalnaker's Logic KB | Our Work
0000
000000 | Future Work |
|-----------------------------|-----------------------------|----------------------------|-------------|
| | | | |
| Stalnaker's Logi | c KB | | |

 $(\mathcal{L}_{\mathsf{K}\mathsf{B}}) \varphi ::= \mathbf{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \mathsf{K}\varphi \mid \mathsf{B}\varphi$

Some History and Motivation	Stalnaker's Logic KB	Our Work	Future Work
00		0000	

$$(\mathcal{L}_{\mathcal{K}\mathcal{B}}) \varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathcal{K}\varphi \mid \mathcal{B}\varphi$$

Epistemic-Doxastic Axioms	
$ig K(arphi ightarrow \psi) ightarrow (Karphi ightarrow K\psi)$	Knowledge is additive
${m K}arphi ightarrow arphi$	Knowledge implies truth
${\it K}arphi ightarrow {\it K}{\it K}arphi$	Positive introspection for K
$m{B}arphi ightarrow eg m{B} eg arphi$	Consistency of belief
${m B}arphi o {m K} {m B}arphi$	(Strong) positive introspection of B
$ eg B arphi ightarrow {m K} eg B arphi$	(Strong) negative introspection of <i>B</i>
$oldsymbol{K}arphi ightarrowoldsymbol{B}arphi$	Knowledge implies Belief
$m{B}arphi ightarrow m{B} K arphi$	Full Belief
Inference Rules	
From φ and $\varphi \rightarrow \psi$ infer ψ .	Modus Ponens
From φ infer $K\varphi$.	Necessitation

・ロト ・回ト ・ヨト ・ヨト

Some History and Motivation	Stalnaker's Logic KB	Our Work	Future Work
00		0000	

$$(\mathcal{L}_{\mathcal{K}\mathcal{B}}) \varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathcal{K}\varphi \mid \mathcal{B}\varphi$$

Epistemic-Doxastic Axioms	
$egin{array}{c} K(arphi ightarrow \psi) ightarrow (K arphi ightarrow K \psi) \end{array}$	Knowledge is additive
${oldsymbol K}arphi ightarrow arphi$	Knowledge implies truth
${\it K}arphi ightarrow {\it K}{\it K}arphi$	Positive introspection for K
$m{B}arphi ightarrow eg m{B} eg arphi$	Consistency of belief
$m{B}arphi ightarrow m{K} m{B}arphi$	(Strong) positive introspection of B
$ eg B arphi ightarrow {m K} eg B arphi$	(Strong) negative introspection of <i>B</i>
$oldsymbol{K}arphi ightarrowoldsymbol{B}arphi$	Knowledge implies Belief
${\cal B}arphi o {\cal B} {\cal K}arphi$	Full Belief
Inference Rules	
From φ and $\varphi \rightarrow \psi$ infer ψ .	Modus Ponens
From φ infer $K\varphi$.	Necessitation

・ロト ・回ト ・ヨト ・ヨト

Some History and Motivation	Stalnaker's Log	jic KB Our Work	Future Wo
Epistemic-Doxast	tic Axioms		
$K(\varphi ightarrow \psi) ightarrow (K$	$\varphi \rightarrow K\psi$)	Knowledge is additive	
$K \varphi \rightarrow \varphi$	>	Knowledge implies truth	า
Karphi ightarrow Kk	$\langle \varphi $	Positive introspection for	ĸ
$Barphi ightarrow eg B \phi$	$\neg \varphi$	Consistency of belief	
$Barphi ightarrow extsf{KE}$	$B \varphi$ (4)	Strong) positive introspectio	n of B
$\neg B \varphi \rightarrow K \neg$	$B\varphi$ (S	Strong) negative introspectic	on of <i>B</i>
$K \varphi \rightarrow B$	φ	Knowledge implies Belie	əf
$B\varphi \rightarrow Bk$	6	Full Belief	

Inference RulesFrom φ and $\varphi \rightarrow \psi$ infer ψ .Modus PonensFrom φ infer $K\varphi$.Necessitation

Some F	listory and Motivation Stalnake	r's Logic KB	Our Work 0000 000000	Future Wo
	Epistemic-Doxastic Axioms			
	$\boxed{\mathbf{K}(\varphi \to \psi) \to (\mathbf{K}\varphi \to \mathbf{K}\psi)}$	Knowled	dge is additive	
	$K \varphi ightarrow \varphi$	Knowledg	ge implies truth	
	Karphi ightarrow KKarphi	Positive int	trospection for I	ĸ
	$egin{array}{c} Barphi ightarrow eg B eg arphi ightarrow eg B eg arphi ightarrow eg B eg arphi ightarrow eg arphi ightarrow $	Consist	ency of belief	
	$egin{array}{c} Barphi ightarrow {m K} Barphi \end{array}$	(Strong) positi	ve introspectior	ı of B
	$\neg B arphi ightarrow K \neg B arphi$	(Strong) negati	ive introspection	n of B
	Karphi ightarrow Barphi	Knowledg	je implies Beliet	f
	Barphi ightarrow BKarphi	Fi	ull Belief	
	Inference Rules			
	From φ and $\varphi \rightarrow \psi$ infer ψ .	Mod	us Ponens	

 Belief as subjective certainty: an agent "fully" believes φ iff she believes that she knows it.

Necessitation

From φ infer $K\varphi$.

Some History and Motivation	Stalnaker's Logic KB	Our Work 0000 000000	Future Work

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

イロン イロン イヨン イヨン

Some History and Motivation	Stalnaker's Logic KB	Our Work 0000 000000	Future Work

(Full) belief can be defined in terms of knowledge as

$$B\varphi \leftrightarrow \langle K \rangle K\varphi$$

A New Topological Semantics for (Dynamic) Doxastic Logic

Some History and Motivation	Stalnaker's Logic KB	Our Work 0000 000000	Future Work

(Full) belief can be defined in terms of knowledge as

$$B\varphi \leftrightarrow \langle K \rangle K\varphi$$

2 KD45 as the logic of belief

Some History and Motivation	Stalnaker's Logic KB	Our Work 0000 000000	Future Work

(Full) belief can be defined in terms of knowledge as

$$B\varphi \leftrightarrow \langle K \rangle K\varphi$$

2 KD45 as the logic of belief

3 S4.2 as the logic of knowledge

Some History and Motivation	Stalnaker's Logic KB	Our Work	Future Work

Theorem (Folklore)

S4.2 is sound and complete wrt the class of extremally disconnected spaces (under the interior semantics).

イロン イボン イヨン イヨン

Some History and Motivation	Stalnaker's Logic KB	Our Work	Futi
00 000		0000 000000	

Theorem (Folklore)

S4.2 is sound and complete wrt the class of extremally disconnected spaces (under the interior semantics).

A space (X, τ) is called extremally disconnected (e.d.) if the closure of each open subset of X is open.

re Work

Topological Semantics for Full Belief

Our Proposal: Topological semantics for full belief

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

Our Proposal: Topological semantics for full belief

 $\mathsf{RECALL}: \vdash_{\mathsf{KB}} B\varphi \leftrightarrow \langle \mathsf{K} \rangle \mathsf{K} \varphi$

・ロト ・四ト ・ヨト ・ヨト

Our Proposal: Topological semantics for full belief

 $\mathsf{RECALL}: \vdash_{\mathsf{KB}} B\varphi \leftrightarrow \langle K \rangle K\varphi$

Given an extremally disconnected space (X, τ) , we interpret belief as *the closure of the interior operator*:

 $\llbracket B\varphi \rrbracket = \operatorname{Cl}(\operatorname{Int}(\llbracket \varphi \rrbracket))$

< 口 > < 同 > < 臣 > < 臣 >

Aybüke Özgün

A New Topological Semantics for (Dynamic) Doxastic Logic

The Most General Extensional Semantics for Full Belief

• An extensional model: (X, K, B, ν)

$$\begin{bmatrix} \mathcal{K}\varphi \end{bmatrix}^{\mathcal{M}} = \mathbf{K} \llbracket \varphi \end{bmatrix}^{\mathcal{M}} \\ \begin{bmatrix} \mathcal{B}\varphi \end{bmatrix}^{\mathcal{M}} = \mathbf{B} \llbracket \varphi \end{bmatrix}^{\mathcal{M}}$$

Theorem

An extensional semantics (X, K, B) validates all the axioms and rules of Stalnaker's system **KB** iff it is a topological extensional semantics given by an extremally disconnected topology τ on X, such that K = Int and B = Cl(Int).

Our Work

Future Work

Topological Semantics for Full Belief

Unimodal Cases: S4.2 and KD45

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

Our Work

Future Work

Topological Semantics for Full Belief

Unimodal Cases: S4.2 and KD45

Aybüke Özgün

Our Work

Future Work

Topological Semantics for Full Belief

Unimodal Cases: S4.2 and KD45

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○

Topological Semantics for Full Belief

Stalnaker's Logic KB

Our Work

Future Work

Unimodal Cases: S4.2 and KD45

 Known: S4.2 is sound and complete wrt the class of extremally disconnected spaces.

ヘロン 人間 とくほ とくほ とう

Our Work

Future Work

Topological Semantics for Full Belief

Unimodal Case: Completeness for KD45

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

Our Work

Future Work

Topological Semantics for Full Belief

Unimodal Case: Completeness for KD45

$$(\mathcal{L}_{\mathcal{B}}) \varphi ::= \mathbf{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{B}\varphi$$

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

Our Work

Future Work

Unimodal Case: Completeness for **KD45**

$$(\mathcal{L}_{\mathcal{B}}) \varphi ::= \mathbf{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{B}\varphi$$

Theorem

KD45 is sound and complete wrt the class of extremally disconnected spaces.

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

・ロト ・四ト ・ヨト ・ヨト

Topological Semantics for Full Belief

Stalnaker's Logic KB

Our Work

Future Work

Unimodal Case: Completeness for **KD45**

$$(\mathcal{L}_{B}) \varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid B\varphi$$

Theorem

KD45 is sound and complete wrt the class of extremally disconnected spaces.

• The class of extremally disconnected spaces is *strictly* larger than the class of *DSO*-spaces.

Some History and Motivation	Stalnaker's Logic KB	Our Work ○○○○ ●○○○○○	Future Work
Dynamic Belief Revision: Updates			

 $\varphi := \boldsymbol{\rho} \mid \neg \varphi \mid \varphi \land \varphi \mid \boldsymbol{K} \varphi \mid \boldsymbol{B} \varphi \mid \langle ! \varphi \rangle \varphi$

Some History and Motivation oo ooo	Stalnaker's Logic KB	Our Work ○○○○ ●○○○○○	Future Work
Dynamic Belief Revision: Updates			

$$\varphi := p \mid \neg \varphi \mid \varphi \land \varphi \mid K\varphi \mid B\varphi \mid \langle !\varphi \rangle \varphi$$

⟨!φ⟩ψ := φ is true and after the agent learns φ, ψ becomes true.

Some History and Motivation	Stalnaker's Logic KB	Our Work ○○○○ ●○○○○○	Future Work
Dynamic Belief Revision: Updates			

$$\varphi := \pmb{\rho} \mid \neg \varphi \mid \varphi \land \varphi \mid \pmb{K}\varphi \mid \pmb{B}\varphi \mid \langle !\varphi \rangle \varphi$$

⟨!φ⟩ψ := φ is true and after the agent learns φ, ψ becomes true.

$$\mathcal{M} = (X, \tau, \nu)$$
 $\mathcal{M}_{\varphi} = (\llbracket \varphi \rrbracket, \tau_{\llbracket \varphi \rrbracket}, \nu_{\llbracket \varphi \rrbracket})$

 $\langle |\varphi \rangle$

•
$$\llbracket \varphi \rrbracket = \llbracket \varphi \rrbracket^{\mathcal{N}}$$

•
$$\tau_{\llbracket \varphi \rrbracket} = \{ U \cap \llbracket \varphi \rrbracket : U \in \tau \}$$

• $\nu_{\llbracket \varphi \rrbracket}(p) = \nu(p) \cap \llbracket \varphi \rrbracket$ for any $p \in \operatorname{Prop}$

코어 세 코어

Some History and Motivation	Stalnaker's Logic KB	Our Work ○○○○ ○●○○○○	Future Work
Dynamic Belief Revision: Updates			

$$\varphi := \pmb{\rho} \mid \neg \varphi \mid \varphi \land \varphi \mid \pmb{K}\varphi \mid \pmb{B}\varphi \mid \langle !\varphi \rangle \varphi$$

⟨!φ⟩ψ := φ is true and after the agent learns φ, ψ becomes true.

$$\mathcal{M} = (X, \tau, \nu) \qquad \qquad \mathcal{M}_{\varphi} = (\llbracket \varphi \rrbracket, \tau_{\llbracket \varphi \rrbracket}, \nu_{\llbracket \varphi \rrbracket})$$

Given a topological model *M* = (*X*, *τ*, *ν*), the additional semantic clause reads

$$x \in \llbracket \langle ! \varphi \rangle \psi \rrbracket^{\mathcal{M}}$$
 iff $x \in \llbracket \varphi \rrbracket$ and $x \in \llbracket \psi \rrbracket^{\mathcal{M}_{\varphi}}$

Our Work

Dynamic Belief Revision: Updates

Updates on E.D. spaces: inconsistent beliefs!

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

Updates on E.D. spaces: inconsistent beliefs!

Figure: not e.d. $(\llbracket \neg p \rrbracket^{\mathcal{M}}, \tau_{\neg p})$

・ロン ・ 同 と ・ ヨ と ・ ヨ と

Updates on E.D. spaces: inconsistent beliefs!

• $x_1 \models Bq \land B \neg q$ (against *Consistency of Beliefs*)

イロン イボン イヨン イヨン

Updates on E.D. spaces: inconsistent beliefs!

- $x_1 \models Bq \land B \neg q$ (against *Consistency of Beliefs*)
- $x_1 \not\models Bq \land B \neg q \rightarrow B(q \land \neg q)$ (against *Normality*)

イロン イボン イヨン

Some History and Motivation	Stalnaker's Logic KB	Our Work ○○○○ ○○○●○○	Future Work
Dynamic Belief Revision: Updates			

Hereditarily Extremally Disconnected Space (h.e.d.)
 All Tapalagian Space

イロト イポト イヨト イヨト

Aybüke Özgün

2 All Topological Spaces

A New Topological Semantics for (Dynamic) Doxastic Logic

Some History and Motivation	Stalnaker's Logic KB	Our Work ○○○○ ○○○○●○	Future Wo
Dynamic Belief Revision: Updates			

Updates on H.E.D. spaces

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

Some History and Motivation oo ooo	Stalnaker's Logic KB	Our Work ○○○○ ○○○○●○	Future Work
Dynamic Belief Revision: Updates			

Updates on H.E.D. spaces

Aybüke Özgün

イロン イ理 とく ヨン・

Some History and Motivation oo ooo	Stalnaker's Logic KB	Our Work ○○○○ ○○○○●○
Dynamic Belief Revision: Updates		

Future Work

Updates on H.E.D. spaces

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○

Some History and Motivation	Stalnaker's Logic KB	Our Work ○○○○ ○○○○●○	Future Work
Dynamic Belief Revision: Updates			

Updates on H.E.D. spaces

• **S4.3** is the logic of h.e.d. spaces (under the interior semantics).

・ 同 ト ・ ヨ ト ・ ヨ ト …
Our Work

Future Work

Dynamic Belief Revision: Updates

Updates on all topological spaces

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

イロト イポト イヨト イヨト

Our Work

Future Work

Updates on all topological spaces

Axioms of S4
$$K(\varphi \rightarrow \psi) \rightarrow (K\varphi \rightarrow K\psi)$$
 $K\varphi \rightarrow \varphi$ $K\varphi \rightarrow KK\varphi$

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

イロト イポト イヨト イヨト

Our Work

Future Work

Updates on all topological spaces

Axioms of S4
$$K(\varphi \rightarrow \psi) \rightarrow (K\varphi \rightarrow K\psi)$$
 $K\varphi \rightarrow \varphi$ $K\varphi \rightarrow KK\varphi$

Axioms of wKD45
$$B(\varphi \rightarrow \psi) \rightarrow (B\varphi \rightarrow B\psi)$$
 $B\varphi \rightarrow \langle B \rangle \varphi$ $B\varphi \rightarrow BB\varphi$ $B\langle B \rangle B\varphi \rightarrow B\varphi$

イロト イポト イヨト イヨ

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

Our Work

A B A B A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Future Work

Updates on all topological spaces

Axioms of S4Axioms of wKD45
$$K(\varphi \rightarrow \psi) \rightarrow (K\varphi \rightarrow K\psi)$$

 $K\varphi \rightarrow \varphi$
 $K\varphi \rightarrow KK\varphi$ $B(\varphi \rightarrow \psi) \rightarrow (B\varphi \rightarrow B\psi)$
 $B\varphi \rightarrow \langle B \rangle \varphi$
 $B\varphi \rightarrow BB\varphi$
 $B\langle B \rangle B\varphi \rightarrow B\varphi$

• **S4** is the logic of all topological spaces.

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

Some History and Motivation	Stalnaker's Logic KB	Our Work 0000 000000	Future Work

Future Work

- Multi-agent case
- Action models
- Different Dynamic attitudes
- Relation with topo-logic and effort modality

Some History and Motivation oo ooo	Stalnaker's Logic KB	Our Work 0000 000000	Future Work

Thank you!

A New Topological Semantics for (Dynamic) Doxastic Logic

Aybüke Özgün

メロト メロト メヨト メヨト