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Background Notions

• Topological space: (X , τ)

For any A ⊆ X , we denote,

• interior operator: Int(A)

• closure operator: Cl(A) := X \ Int(X \ A)

• derived set operator: d(A)

• co-derived set operator: t(A) := X \ d(X \ A)
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Topological Semantics for Knowledge
(McKinsey and Tarski, 1944)

(LK ) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ

Kϕ := the agent knows ϕ

A topological model is a tupleM = (X , τ, ν) where X and τ as
before and ν : Prop→ P(X ) is valuation function.

x ∈ [[Kϕ]]M iff ∃U ∈ τ(x ∈ U ∧ U ⊆ [[ϕ]]M)

i.e.,
[[Kϕ]] = Int([[ϕ]])

[[〈K 〉ϕ]] = Cl([[ϕ]]) (〈K 〉ϕ := ¬K¬ϕ)
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Why knowledge is interpreted as interior?

Theorem (McKinsey and Tarski, 1944)

S4 is sound and complete wrt the class of all topological
spaces.

Hence, topologically,
knowledge is truthful

Kϕ→ ϕ,

positively introspective

Kϕ→ KKϕ,

but not necessarily negatively introspective

¬Kϕ→ K¬Kϕ.
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Why knowledge is interpreted as interior?

Moreover...

It provides a deeper insight into the evidential-based
interpretation of knowledge:

• open sets U ∈ τ are pieces of evidence, and
• open neighborhoods of the actual world are pieces of

truthful evidence.

Recall:
x ∈ [[Kϕ]]M iff ∃U ∈ τ(x ∈ U ∧ U ⊆ [[ϕ]]M)
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Belief via Topology

Steinsvold (2006) proposes a topological semantics for belief in
terms of the co-derived set operator:

x ∈ [[〈B〉ϕ]]M iff ∀U ∈ τ(x ∈ U → U \ {x} ∩ [[ϕ]]M 6= ∅)

i.e.,
[[〈B〉ϕ]] = d([[ϕ]])

x ∈ [[Bϕ]]M iff ∃U ∈ τ(x ∈ U ∧ U \ {x} ⊆ [[ϕ]]M)

i.e.,
[[Bϕ]] = t([[ϕ]])
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Belief via Topology

Downsides:

1 it entails the necessity of error :
there is at least one false belief in all worlds of every
topological model.

2 it supports "knowledge as (justified) true belief" view:

x ∈ [[Bϕ]]M iff ∃U ∈ τ(x ∈ U ∧ U \ {x} ⊆ [[ϕ]]M)

x ∈ [[Kϕ]]M iff ∃U ∈ τ(x ∈ U ∧ U ⊆ [[ϕ]]M)

Kϕ := Bϕ ∧ ϕ

3 KD45 is sound and complete wrt dense-in-itself TD spaces
where d(A) is open for every A ⊆ X (i.e., DSO-spaces).
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Belief via Topology

Our Focus

Given the interior-based topological semantics for knowledge:

1 how can we construct a topological semantics for belief
which can also address the problem of understanding the
relation between knowledge and belief?

2 how to extend this setting to dynamic belief revision?
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Stalnaker’s Logic KB

(LKB) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕ

Epistemic-Doxastic Axioms
K (ϕ→ ψ)→ (Kϕ→ Kψ) Knowledge is additive

Kϕ→ ϕ Knowledge implies truth
Kϕ→ KKϕ Positive introspection for K
Bϕ→ ¬B¬ϕ Consistency of belief
Bϕ→ KBϕ (Strong) positive introspection of B
¬Bϕ→ K¬Bϕ (Strong) negative introspection of B

Kϕ→ Bϕ Knowledge implies Belief
Bϕ→ BKϕ Full Belief

Inference Rules
From ϕ and ϕ→ ψ infer ψ. Modus Ponens

From ϕ infer Kϕ. Necessitation
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• Belief as subjective certainty : an agent “fully” believes ϕ iff
she believes that she knows it.
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Stalnaker’s logic entails:

1 (Full) belief can be defined in terms of knowledge as

Bϕ↔ 〈K 〉Kϕ

2 KD45 as the logic of belief
3 S4.2 as the logic of knowledge
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Theorem (Folklore)

S4.2 is sound and complete wrt the class of extremally
disconnected spaces (under the interior semantics).

A space (X , τ) is called extremally disconnected (e.d.) if the
closure of each open subset of X is open.
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Topological Semantics for Full Belief

Our Proposal: Topological semantics for full belief

RECALL: `KB Bϕ↔ 〈K 〉Kϕ

Given an extremally disconnected space (X , τ), we interpret
belief as the closure of the interior operator :

[[Bϕ]] = Cl(Int([[ϕ]]))
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Topological Semantics for Full Belief

The Most General Extensional Semantics for Full
Belief

• An extensional model: (X ,K,B, ν)

[[Kϕ]]M = K[[ϕ]]M

[[Bϕ]]M = B[[ϕ]]M.

Theorem
An extensional semantics (X ,K,B) validates all the axioms and
rules of Stalnaker’s system KB iff it is a topological extensional
semantics given by an extremally disconnected topology τ on
X, such that K = Int and B = Cl(Int).
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Topological Semantics for Full Belief

Unimodal Cases: S4.2 and KD45

Axioms of S4.2
K (ϕ→ ψ)→ (Kϕ→ Kψ)

Kϕ→ ϕ
Kϕ→ KKϕ

〈K 〉Kϕ→ K 〈K 〉ϕ

Axioms of KD45
B(ϕ→ ψ)→ (Bϕ→ Bψ)

Bϕ→ 〈B〉ϕ
Bϕ→ BBϕ
〈B〉ϕ→ B〈B〉ϕ

• Known: S4.2 is sound and complete wrt the class of
extremally disconnected spaces.
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Topological Semantics for Full Belief

Unimodal Case: Completeness for KD45

(LB) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Bϕ

Theorem
KD45 is sound and complete wrt the class of extremally
disconnected spaces.

• The class of extremally disconnected spaces is strictly
larger than the class of DSO-spaces.
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Dynamic Belief Revision: Updates

Updates
ϕ := p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕ | 〈!ϕ〉ϕ

• 〈!ϕ〉ψ := ϕ is true and after the agent learns ϕ, ψ becomes
true.

M = (X , τ, ν)

〈!ϕ〉−−→

Mϕ = ([[ϕ]], τ[[ϕ]], ν[[ϕ]])

• [[ϕ]] = [[ϕ]]M

• τ[[ϕ]] = {U ∩ [[ϕ]] : U ∈ τ}
• ν[[ϕ]](p) = ν(p) ∩ [[ϕ]] for any p ∈ Prop

A New Topological Semantics for (Dynamic) Doxastic Logic Aybüke Özgün



Some History and Motivation Stalnaker’s Logic KB Our Work Future Work

Dynamic Belief Revision: Updates

Updates
ϕ := p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕ | 〈!ϕ〉ϕ

• 〈!ϕ〉ψ := ϕ is true and after the agent learns ϕ, ψ becomes
true.

M = (X , τ, ν)

〈!ϕ〉−−→

Mϕ = ([[ϕ]], τ[[ϕ]], ν[[ϕ]])

• [[ϕ]] = [[ϕ]]M

• τ[[ϕ]] = {U ∩ [[ϕ]] : U ∈ τ}
• ν[[ϕ]](p) = ν(p) ∩ [[ϕ]] for any p ∈ Prop

A New Topological Semantics for (Dynamic) Doxastic Logic Aybüke Özgün



Some History and Motivation Stalnaker’s Logic KB Our Work Future Work

Dynamic Belief Revision: Updates

Updates
ϕ := p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕ | 〈!ϕ〉ϕ

• 〈!ϕ〉ψ := ϕ is true and after the agent learns ϕ, ψ becomes
true.

M = (X , τ, ν)

〈!ϕ〉−−→

Mϕ = ([[ϕ]], τ[[ϕ]], ν[[ϕ]])

• [[ϕ]] = [[ϕ]]M

• τ[[ϕ]] = {U ∩ [[ϕ]] : U ∈ τ}
• ν[[ϕ]](p) = ν(p) ∩ [[ϕ]] for any p ∈ Prop

A New Topological Semantics for (Dynamic) Doxastic Logic Aybüke Özgün



Some History and Motivation Stalnaker’s Logic KB Our Work Future Work

Dynamic Belief Revision: Updates

Updates
ϕ := p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕ | 〈!ϕ〉ϕ

• 〈!ϕ〉ψ := ϕ is true and after the agent learns ϕ, ψ becomes
true.

M = (X , τ, ν)

〈!ϕ〉−−→

Mϕ = ([[ϕ]], τ[[ϕ]], ν[[ϕ]])

• Given a topological modelM = (X , τ, ν), the additional
semantic clause reads

x ∈ [[〈!ϕ〉ψ]]M iff x ∈ [[ϕ]] and x ∈ [[ψ]]Mϕ .
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Dynamic Belief Revision: Updates

Updates on E.D. spaces: inconsistent beliefs!

Figure: e.d.

(X , τ)

Figure: not e.d.

([[¬p]]M, τ¬p)

• x1 |= Bq ∧ B¬q (against Consistency of Beliefs)
• x1 6|= Bq ∧ B¬q → B(q ∧ ¬q) (against Normality )
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Dynamic Belief Revision: Updates

Solutions

1 Hereditarily Extremally Disconnected Space (h.e.d.)
2 All Topological Spaces
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Dynamic Belief Revision: Updates

Updates on H.E.D. spaces

Axioms of KD45
B(ϕ→ ψ)→ (Bϕ→ Bψ)

Bϕ→ 〈B〉ϕ
Bϕ→ BBϕ
〈B〉ϕ→ B〈B〉ϕ

Axioms of S4.3
K (ϕ→ ψ)→ (Kϕ→ Kψ)

Kϕ→ ϕ
Kϕ→ KKϕ

K (Kϕ→ ψ) ∨ K (Kψ → ϕ)

• S4.3 is the logic of h.e.d. spaces (under the interior
semantics).
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Updates on all topological spaces
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Future Work

• Multi-agent case
• Action models
• Different Dynamic attitudes
• Relation with topo-logic and effort modality
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Thank you!
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