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Overview

Our goal is to describe a point-free analogue of Nachbin’s notion of
an order-compactification of an ordered space.

Smirnov in 1952 characterized compactifications of completely regular
spaces in terms of proximities.

In 1990 Banaschewski defined compactifications of a frame and
described them in terms of strong inclusions on the frame.

Schauerte in 1993 extended Banaschewski’s work to the biframe
setting, defining bi-compactifications of a biframe and describing
them in terms of strong inclusions on the biframe.

We will generalize Schauerte’s work by defining a proximity on a
biframe. This will capture the concept of an order-compactification in
the spatial case.
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Spatial definitions

An ordered space is a triple (X , τ,≤) where τ is a topology and ≤ is
a partial order on X .

A bispace is a triple (X , τ1, τ2) where each τi is a topology on X .

If (X , τ,≤) is an ordered space and τu (resp. τd) is the set of all open
upsets (resp. downsets) of X , then (X , τu, τd) is a bispace.

If (X , τ1, τ2) is a bispace, let τ = τ1 ∨ τ2 be the patch topology and ≤1

the specialization order of τ1. Then (X , τ,≤1) is an ordered space.

We assume throughout that the topology of an ordered space is
strongly order convex; that is, τ = τu ∨ τd .
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Let (Y , τ,≤) be an ordered space. We call it a Nachbin space if Y is
compact and ≤ is closed in the product topology. This latter
condition is equivalent to an order-theoretic separation axiom called
order-Hausdorff.

A bispace (X , τ1, τ2) is compact if the patch topology τ is compact.
It is regular if each is T0 and for each U ∈ τi , we have
U = ⋃{V ∈ τi ∶ clk(V ) ⊆ U} (i ≠ k).

There is an isomorphism between the category Nach of Nachbin
spaces and order-preserving continuous maps and the category
KRBSp of compact regular bispaces and bi-continuous maps. Under
this isomorphism (X , τ,≤) goes to (X , τu, τd) and (X , τ1, τ2) goes to
(X , τ1 ∨ τ2,≤1).
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Nachbin defined an order-compactification of an ordered space X to
be a pair (Y , e) with Y a Nachbin space and e ∶ X → Y a topological
and order embedding onto a dense subspace of Y .

A bi-compactification of a bispace X is a bispace embedding
e ∶ X → Y onto a patch dense subspace of a compact regular bispace
Y .

If (Y , e) is a bi-compactification of (X , τ1, τ2), then it is an
order-compactification of (X , τ1 ∨ τ2,≤1).

However, an order-compactification of (X , τ,≤) may not be a
bi-compactification of (X , τu, τd), as the following example shows.
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Example. Let X = N with the discrete topology and trivial order. Let Y
be the one-point compactification of X , with order given by 0 ≤∞ as the
only nontrivial relation. Then Y is an order-compactification of X .

However, since {0} is an open upset of X but there is no open upset of Y
contracting to it, Y is not a bi-compactification of X .

∞

0 1 2
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Distinction between compactifications

Let (Y , e) be an order-compactification of (X , τ,≤). Then each open
set U of X has the form e−1(V ) for some open set V of Y , and each
upset U of X has the form e−1(V ) for some upset V of Y . However,
as the previous example shows, an open upset U of X may not have
the form e−1(V ) for some open upset V of Y . This distinguishes
order-compactifications and bi-compactifications.

If (Y , e) is an order-compactification of X , then X has two bispace
structures; one is (X , τu, τd), and the other is (X , τ ′u, τ ′d), where τ ′u is
the set of open upsets of the form e−1(V ) for an open upset V of Y .
In general the second is smaller.
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Ordered spaces and biframes

A biframe is a triple L = (L0,L1,L2) with Li subframes of a frame L0

such that L0 is generated by L1 ∪ L2.

If (X , τ1, τ2) is a bispace and τ = τ1 ∨ τ2, then (τ, τ1, τ2) is a biframe.

In particular, if (X , τ,≤) is strongly order convex, then
Ω(X ) = (τ, τu, τd) is a biframe.
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A biframe M is compact if 1 = ⋁S implies there is a finite subset T
of S with 1 = ⋁T .

Let ¬i be the pseudocomplement on Mi .

If x , y ∈Mi , define the well inside relation x ≺i y if ¬kx ∨ y = 1
(i ≠ k).

M is regular if, for i = 1,2, each y ∈Mi can be written
y = ⋁{x ∈Mi ∶ x ≺i y}.

A biframe morphism f ∶M → L is dense if f (m) = 0 implies m = 0.

Schauerte defined a bi-compactification of a biframe L to be a pair
(M, f ) with M a compact regular biframe and f ∶M → L a dense
biframe homomorphism with f (Mi) = Li for i = 1,2.
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If (Y , e) is a bi-compactification of a bispace X , then
e−1 ∶ Ω(Y )→ Ω(X ) is a bi-compactification of Ω(X ).

The example above shows that if (Y , e) is an order-compactification
of an ordered space X , then e−1 ∶ Ω(Y )→ Ω(X ) need not be a
bi-compactification. The problem is that e−1 maps Ω(Y )u to a
proper subframe of Ω(X )u.

If we change Schauerte’s definition of bi-compactification to assume
that f (M0) = L0 but only f (Mi) ⊆ Li , we may not recover Nachbin’s
order-compactifications, as we see in the next example.
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Example. Let X = {x , y} be a two-point set with discrete topology τ
and trivial order. Let L = Ω(X ). Then L0 = L1 = L2 is the four-element
Boolean algebra. Let (Y , π) = (X , τ) and define order on Y by
letting x ≤ y as the only nontrivial inequality. Let i ∶ X → Y be the
identity and let M = Ω(Y ). Then M1 and M2 are the three-element
chain, and i−1 = f ∶M0 → L0 is an onto dense biframe homomorphism.
Moreover, f (Mi) is properly contained in Li . But (Y , i) is not an
order-compactification of X because x /≤ y but i(x) ≤ i(y).

M1 L1

Thus, simply dropping the condition that f (Mi) = Li for i = 1,2 does
not capture the concept of order-compactification.
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Points and Filters

Recall that if L is a frame, then a point of L is a frame
homomorphism from L to 2. Points are in 1-1 correspondence with
completely prime filters F , which are characterized by ⋁S ∈ F
implies there is s ∈ S with s ∈ F .

A filter F is Scott open if ⋁S ∈ F implies there is a finite subset T
of S with ⋁T ∈ F . A completely prime filter is then Scott open.
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Let e ∶ X → Y be an order-preserving topological embedding onto a
dense subspace of a Nachbin space Y , let f = e−1, and let L (resp.
M) be the biframe corresponding to X (resp. Y ). Then f ∶M → L is
a dense, onto biframe homomorphism.

Lemma. The following conditions are equivalent.

1 (Y , e) is an order-compactification of (X , τ,≤) (so e is
order-reflecting).

2 For i = 1,2, let Fi be a completely prime filter in Li and let
F1 ∨ F2 = L0. Then f −1(F1) ∨ f −1(F2) =M0.

3 For i = 1,2, let Fi be an open filter in Li and let F1 ∨ F2 = L0. Then
f −1(F1) ∨ f −1(F2) =M0.
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1 (Y , e) is an order-compactification of (X , τ,≤) (so e is
order-reflecting).

2 For i = 1,2, let Fi be a completely prime filter in Li and let
F1 ∨ F2 = L0. Then f −1(F1) ∨ f −1(F2) =M0.

3 For i = 1,2, let Fi be an open filter in Li and let F1 ∨ F2 = L0. Then
f −1(F1) ∨ f −1(F2) =M0.
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The lemma is the motivation for Condition 3 below.

Definition. A compactification of a biframe L = (L0,L1,L2) is a pair
(M, f ) such that

1 M = (M0,M1,M2) is a compact regular biframe.

2 f ∶M0 → L0 is a dense, onto biframe homomorphism.

3 For open filters F1 on L1 and F2 on L2, from F1 ∨F2 = L0 it follows that
f −1(F1) ∨ f −1(F2) =M0.

Thus, if (Y , e) is an order-compactification of an ordered space X ,
then e−1 is a compactification of the corresponding biframe.
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Proximities on a biframe

Banaschewski characterized compactifications of a frame in terms of
strong inclusions, that is, binary relations ⊲ on L satisfying

(B1) 0 ⊲ 0 and 1 ⊲ 1.

(B2) If a ⊲ b, then a ≺ b.

(B3) If a ≤ b ⊲ c ≤ d , then a ⊲ d .

(B4) If a,b ⊲ c , then a ∨ b ⊲ c .

(B5) If a ⊲ b, c , then a ⊲ b ∧ c .

(B6) If a ⊲ c , then there is b ∈ L with a ⊲ b ⊲ c .

(B7) If a ⊲ b, then ¬b ⊲ ¬a.

(B8) If b ∈ L, then b = ⋁{a ∈ L ∶ a ⊲ b}.
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Banaschewski’s work has been generalized in two ways. Schaeuerte
extended the notion of strong inclusion to the biframe setting and
used it to characterize bi-compactifications. Together with Harding
we generalized the notion of strong inclusion to that of a proximity on
a frame and used it to characterize stable compactifications.

Schauerte generalized Banaschewski by defining a strong inclusion on
a biframe L as a pair of relations (⊲1,⊲2) with ⊲i a relation on Li .
Except for a more complicated negation axiom, the axioms are the
same as Banaschewski’s.

Recently Picado-Pultr defined a strong inclusion on a frame,
essentially making Schauerte’s definition frame theoretic rather than
bi-frame theoretic.

Our notion of proximity on a biframe is a modification of
Picado-Pultr’s ideas and provides a common ground for the two cases
above.
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Associated subframes

If (⊲1,⊲2) is a pair of relations on a biframe L, set

L′i = {b ∈ Li ∶ b =⋁{a ∈ Li ∶ a ⊲i b}.

Then L′i is a subframe of Li (assuming appropriate properties of the
relations).

Define a ⊲0 b if there are ui ∈ L0 with a ⊲i ui and u1 ∧ u2 ≤ b.

If F is a filter on Li , then F ′ ∶= F ∩ L′i is a filter on F ′i .
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Definition. A proximity on a biframe L is a pair ⊲ = (⊲1,⊲2) of
relations on L0 satisfying

(P1) 0 ⊲i 0 and 1 ⊲i 1.

(P2) If a ⊲i b, then a ≺i b.

(P3) If a ≤ b ⊲i c ≤ d , then a ⊲i d .

(P4) If a,b ⊲i c , then a ∨ b ⊲i c .

(P5) If a ⊲i b, c , then a ⊲i b ∧ c .

(P6) If a ⊲i c , then there is b ∈ L′i with a ⊲i b ⊲i c .

(P7) If a ⊲i b, then ¬kb ⊲k ¬ka.

(P8) b = ⋁{a ∈ L0 ∶ a ⊲0 b}.

(P9) For i = 1,2, let Fi be an open filter in Li and let F1 ∨ F2 = L0. Then
F ′

1 ∨ F ′

2 = L0.

If ⊲ is a proxmity on L we call (L,⊲) a proximity biframe.
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The difference between this definition and Picado-Pultr’s is that we
start with a biframe while they start with a frame. That the biframe
(L0,L

′

1,L
′

2) they (and we) get is different than (L0,L1,L2) turns out
to be the difference between compactifications and
bi-compactifications.

If L′i = Li for i = 1,2, then our definition is essentially the same as
Schauerte’s.
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Proximities from compactifications

If (M, f ) is a compatification of L, let r be the right adjoint of f .
That is, r(b) = ⋁{x ∈M0 ∶ f (x) ≤ b}.

Proposition. Let (M, f ) be a compactification of L. For a,b ∈ L0 and
i = 1,2, define a ⊲i b if r(a) ≺i r(b). Then ⊲ = (⊲1,⊲2) is a proximity
on L. Moreover, L′i = f (Mi).

In particular, if M is compact regular, then (≺1,≺2) is a proximity,
and is the unique proximity on M.

If Y is a Nachbin space and M is the corresponding biframe, then ≺1

is given by U ≺1 V if ↑ cl(U) ⊆ V .

If Y is an order-compactification of X and ∆ = Y ∖X , then the
induced proximity on the biframe of X is given by U ⊲1 V if
↑ cl(U) ⊆ int(V ∪∆), where closure and interior is computed in Y .
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Compactifications from proximities

Definition. Let (L,⊲) be a proximity biframe. For i = 1,2, we call an
ideal I of L0 an i-round ideal if for each a ∈ I there is b ∈ I with
a ⊲i b. Let Ri be the set of all i-round ideals of L0.

Definition. Let R0 be the subframe of the frame of ideals of L0

generated by R1 ∪R2, and set R(L,⊲) = (R0,R1,R2). We call an
ideal I in R0 a round ideal.

If b ∈ L0, then
↡ib ∶= {a ∈ L0 ∶ a ⊲i b}

is an i-round ideal.

If a ∈ L0, then

↡0b =⋁{↡1u1 ∩ ↡2u2 ∶ u1 ∧ u2 ⊲0 b}

is a round ideal.
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An ideal I is i-round iff I = ⋁{↡ib ∶ b ∈ I}, and I is round iff
I = ⋁{↡0b ∶ b ∈ I}.

If I , J are round ideals, then I ≺i J iff there are a,b ∈ J with a ⊲i b and
I ⊆ ↡ia.

If I , J are round ideals, then I ≺0 J iff there are a,b ∈ J with a ⊲0 b
and I ⊆ ↡0a.

If I is a round ideal, it need not be the case that a ∈ I implies there is
b ∈ I with a ⊲0 b. However, I is generated by {a ∈ I ∶ ∃b ∈ I , a ⊲0 b}.
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Let R0 be the frame of round ideals of L and let Ri be the subframe
of i-round ideals. Then R = (R0,R1,R2) is a compact regular
biframe.

Proposition. Let ⊲ be a proximity on a biframe L. Define
f ∶R0 → L0 by f (I ) = ⋁ I . Then (R, f ) is a compactification of L.
Moreover, the right adjoint r ∶ L0 →R0 of f ∶R0 → L0 is given by
r(b) = ↡0b for all b ∈ L0.

Corollary. A biframe has a compactification iff it has a proximity.
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Equivalent compatifications

Two compactifications (M, f ) and (M ′, f ′) of a biframe L are
equivalent if there is a biframe isomorphism k ∶M0 →M ′

0 with
f = f ′ ○ k .

We denote by [M, f ] the equivalence class of a compactification
(M, f ), and define a partial order by [M, f ] ≤ [M ′, f ′] if there is a
biframe homomorphism k ∶M0 →M ′

0 with f = f ′ ○ k .

M0
k //

f   

M ′

0

f ′~~
L0
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Main theorem

The set of all proximities on L is a poset by setting ⊲ ≤ ⊲′ if ⊲1 ⊆ ⊲′1
and ⊲2 ⊆ ⊲′2.

Theorem. Let L be a biframe. Then the poset of compactifications
of L is isomorphic to the poset of proxmities on L.

If (M, f ) is a compactification of L, we saw how to get a proximity
from it, via a ⊲i b iff r(a) ≺i r(b).

Going the other direction, if ⊲ = (⊲1,⊲2) is a proximity on L, then
R(L,⊲) is a compactification of L, and is equivalent to any
compactification of L inducing ⊲.
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Schauerte’s theorem

Theorem (Schauerte). Let L be a biframe.

1 L has a bi-compactification iff L has a strong inclusion. Moreover, the
poset of bi-compactifications is isomorphic to the poset of strong
inclusions.

2 Let Y be a compact regular bispace and let e ∶ X → Y be a
bicontinuous map. Then (Y , e) is a bi-compactification of X iff
(Ω(Y ), e−1) is a bi-compactification of the biframe Ω(X ).

3 The poset B(X ) of bi-compactifications of X is isomorphic to the
poset of bi-compactifications of the biframe Ω(X )

4 B(X ) is isomorphic to the poset of strong inclusions on the biframe
Ω(X ).
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The spatial case

The spatial version of our main theorem is:

1 Let Y be a Nachbin space and let e ∶ X → Y be an order-preserving
continuous map. Then (Y , e) is an order-compactification of X iff
(Ω(Y ), e−1) is a compactification of the biframe Ω(X ).

2 The poset of order-compactifications of X is isomorphic to the poset of
compactifications of the biframe Ω(X ).

3 The poset of order-compactifications of X is isomorphic to the poset of
proximities on the biframe Ω(X ).
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Blatter-Seever theorem

Blatter and Seever in 1976 proved that the poset of
order-compactifications of an ordered space X is isomorphic to the
poset of quasi-proximities on the powerset P(X ).

If ⊲1 is a quasi-proximity on P(X ), then there is a dual
quasi-proximity ⊲2 given by A ⊲2 B iff (X ∖B) ⊲1 (X ∖A).
Restricting the ⊲i to open sets yields a proximity on Ω(X ).

Conversely, given a proximity ⊲ on Ω(X ), we obtain a quasi-proximity
on P(X ) by defining A ⊲1 B if there are U,V ∈ τ1 with
A ⊆ U ⊲1 V ⊆ B.

Blatter and Seever’s arguments are analytic in nature. Our results
yield an alternate point-free proof of their result.
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Complete regularity

Definition. (Nachbin 1965) X is a completely regular ordered
space if

1 x /≤ y implies there is a continuous order-preserving f ∶ X → [0,1] with
f (x) = 1 and f (y) = 0,

2 x /∈ F and F closed imply that there are continuous f ,g ∶ X → [0,1]
with f order-preserving, g order-reversing, f (x) = g(x) = 1, and
F ⊆ f −1(0) ∪ g−1(0).
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Strict complete regularity

Definition. (Lawson 1991) X is a strictly completely regular
ordered space if

1 X is strongly order convex,

2 ↑x and ↓x are closed for each x ∈ X ,

3 x ∉ F and F a closed downset imply that there is a continuous
order-preserving f ∶ X → [0,1] with f (x) = 1 and F ⊆ f −1(0)
(and dually for upsets).
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Lawson (1991) proved that (X , τ,≤) is a strictly completely regular
ordered space iff (X , τu, τd) is a completely regular bispace, which
happens iff (X , τu, τd) has a bi-compactification.

Each strictly completely regular ordered space is completely regular
ordered.

Künzi (1990) gave an example of a completely regular ordered space
that is not strictly completely regular. Thus, strictly completely
regular is stronger than completely regular.
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The rather inside relation on biframes

Let L be a biframe. For i = 1,2, we define ≺≺i on L0 by a ≺≺i b if there
is a family {cp} ⊆ Li for p ∈ Q ∩ [0,1] such that a ≤ c0, c1 ≤ b, and
cp ≺i cq whenever p < q.

Let
L′i = {b ∈ Li ∶ b =⋁{a ∈ Li ∶ a ≺≺i b}}.

Then L′i is a subframe of Li .

Set a ≺≺0 b iff there are ui ∈ L′i with a ≺≺i ui and u1 ∧ u2 ≤ b.

For each filter Fi of Li , let F ′i = Fi ∩ L′i . Then F ′i is a filter of L′i .
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Definition. Let L be a biframe.

1 We call L strictly completely regular if b = ⋁{a ∈ Li ∶ a ≺≺i b} for each
i = 1,2 and b ∈ Li .

2 We call L completely regular if

(a) b = ⋁{a ∈ L0 ∶ a ≺≺0 b} for each b ∈ L0,

(b) if F1 is an open filter in L1, F2 is an open filter in F2, and F1 ∨ F2 = L0,
then F ′1 ∨ F ′2 = L0.

If L is strictly completely regular, then it is completely regular, and
Condition (1b) is redundant since L′i = Li .

Künzi’s example shows that there exist completely regular biframes
that are not strictly completely regular.
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Theorem. Let L be a biframe.

1 L has a compactification iff L is completely regular.

2 L has a bi-compactification iff L is strictly completely regular.

In the spatial case:

1 Ω(X ) is a completely regular biframe iff X is a completely regular
ordered space.

2 Ω(X ) is a strictly completely regular biframe iff X is a strictly
completely regular ordered space.
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Corollary.

1 (Nachbin 1965) Let (X , τ,≤) be an ordered space. Then (X , τ,≤) has
an order-compactification iff (X , τ, ≤) is completely regular.

2 (Salbany 1974) Let (X , τ1, τ2) be a bispace. Then (X , τ1, τ2) has a
bi-compactification iff (X , τ1, τ2) is completely regular.

Thus, if a biframe L is completely regular, then ⊲ = (≺≺1,≺≺2) is a
proximity on L. In fact, ⊲ is the largest proximity on L. Therefore, the
compactification of L corresponding to ⊲ = (≺≺1,≺≺2) is the largest
compactification of L.

If L corresponds to a completely regular ordered space (X , τ,≤), then
the largest compactification of L corresponds to the Nachbin
order-compactification of (X , τ,≤), which is the largest
order-compactification of (X , τ,≤).
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Putting together our previous results, we have the following:

If L is a biframe, then the following are equivalent:

1 L has a compactification,

2 L is completely regular,

3 L has a proximity.

The following are equivalent:

1 L has a bi-compactification,

2 L is strictly completely regular,

3 L has a strong inclusion.
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If X is an ordered space, then the following are equivalent

1 X has an order-compactification,

2 X is completely regular,

3 Ω(X ) has a proximity.

The following are equivalent

1 X has a bi-compactification,

2 X is strictly completely regular,

3 Ω(X ) has a strong inclusion.
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Thanks to the organizers for their work on this conference.

Thank you for your attention.

ToLo picture drawn by Marcel Erné
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