Tools and Techniques

Main Results

Conclusions 000000000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

MODAL LOGICS OF METRIC SPACES

Joel Lucero-Bryan Khalifa University, Abu Dhabi, U.A.E. joel.lucero-bryan@kustar.ac.ae

Joint work with: Guram Bezhanishvili and David Gabelaia

ToLo 4 Tbilisi, Georgia

25 June 2014

Tools and Techniques

Main Results

Conclusions 000000000000

MODAL LANGUAGE AND INTERPRETATION

A TOPOLOGICAL	INTERPRETATION (IN SPACE .	X)
---------------	------------------	------------	---	---

Variable :	р	'is'	Α	: Subset
Negation :	_	'is'	X-	: Complement
Disjunction :	\vee	'is'	U	: Union
Diamond :	\diamond	'is'	С	: Closure

S4 AND KURATOWSKI CLOSURE

 $\begin{array}{ccc} \Diamond (p \lor q) \leftrightarrow \Diamond p \lor \Diamond q & \text{'is'} & \mathbf{c}(A \cup B) = \mathbf{c}A \cup \mathbf{c}B \\ & \Diamond \bot \leftrightarrow \bot & \text{'is'} & \mathbf{c} \varnothing = \varnothing \\ & p \to \Diamond p & \text{'is'} & A \subseteq \mathbf{c}A \\ & \Diamond \Diamond p \to \Diamond p & \text{'is'} & \mathbf{c}A \subseteq \mathbf{c}A \end{array}$

Tools and Techniques

Main Results

Conclusions 000000000000

MODAL LANGUAGE AND INTERPRETATION

A TOPOLOGICAL	INTERPRETATION (IN SPACE .	X)
---------------	------------------	------------	---	---

Variable :	р	ʻis'	Α	: Subset
Negation :	_	'is'	Х-	: Complement
Disjunction :	\vee	'is'	U	: Union
Diamond :	\diamond	'is'	С	: Closure

S4 AND KURATOWSKI CLOSURE

$$\begin{array}{ccc} \Diamond (p \lor q) \leftrightarrow \Diamond p \lor \Diamond q & \text{`is'} & \mathbf{c}(A \cup B) = \mathbf{c}A \cup \mathbf{c}B \\ \Diamond \bot \leftrightarrow \bot & \text{`is'} & \mathbf{c}\emptyset = \emptyset \\ p \to \Diamond p & \text{`is'} & A \subseteq \mathbf{c}A \\ \Diamond \Diamond p \to \Diamond p & \text{`is'} & \mathbf{c}\mathbf{c}A \subseteq \mathbf{c}A \end{array}$$

Tools and Techniques

Main Results

Conclusions 000000000000

HISTORICAL DEVELOPMENT

Theorem (McKinsey and Tarski 1944)

The logic of all topological spaces is S4.

Theorem (McKinsey and Tarski 1944)

The logic of any separable dense-in-itself metric space is **S4**.

COROLLARIES

 $Log(\mathbb{R}) = S4,$ $Log(\mathbb{Q}) = S4,$ and Log(C) = S4.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Tools and Techniques

Main Results

Conclusions 00000000000

HISTORICAL DEVELOPMENT

THEOREM (MCKINSEY AND TARSKI 1944)

The logic of all topological spaces is S4.

THEOREM (MCKINSEY AND TARSKI 1944)

The logic of any separable dense-in-itself metric space is S4.

COROLLARIES

 $Log(\mathbb{R}) = S4,$ $Log(\mathbb{Q}) = S4,$ and Log(C) = S4.

Tools and Techniques

Main Results

Conclusions 000000000000

HISTORICAL DEVELOPMENT

Theorem (McKinsey and Tarski 1944)

The logic of all topological spaces is S4.

Theorem (McKinsey and Tarski 1944)

The logic of any separable dense-in-itself metric space is S4.

COROLLARIES

 $Log(\mathbb{R}) = S4$, $Log(\mathbb{Q}) = S4$, and Log(C) = S4.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Tools and Techniques

Main Results

Conclusions 000000000000

STRENGTHENING M&T'S RESULTS

Theorem (Rasiowa and Sikorski 1963)

The logic of any dense-in-itself metric space is S4.

Special Case (Bezhanishvili and Harding 2011)

Characterized the logics of metric Stone spaces.

GOAL

Characterize the logic of each metric space.

Approach

Weakly Scattered

Tools and Techniques

Main Results

Conclusions 000000000000

STRENGTHENING M&T'S RESULTS

Theorem (Rasiowa and Sikorski 1963)

The logic of any dense-in-itself metric space is S4.

Special Case (Bezhanishvili and Harding 2011)

Characterized the logics of metric Stone spaces.

GOAL

Characterize the logic of each metric space.

Approach

Weakly Scattered

Tools and Techniques

Main Results

ヘロト ヘ部ト ヘヨト ヘヨト

э

Conclusions 000000000000

STRENGTHENING M&T'S RESULTS

Theorem (Rasiowa and Sikorski 1963)

The logic of any dense-in-itself metric space is S4.

Special Case (Bezhanishvili and Harding 2011)

Characterized the logics of metric Stone spaces.

Goal

Characterize the logic of each metric space.

Approach

X Weakly Scattered Not Weakly Scattered

Tools and Techniques

Main Results

Conclusions 000000000000

STRENGTHENING M&T'S RESULTS

Theorem (Rasiowa and Sikorski 1963)

The logic of any dense-in-itself metric space is S4.

Special Case (Bezhanishvili and Harding 2011)

Characterized the logics of metric Stone spaces.

Goal

Characterize the logic of each metric space.

Approach

Tools and Techniques

Main Results

Conclusions 000000000000

STRENGTHENING M&T'S RESULTS

Theorem (Rasiowa and Sikorski 1963)

The logic of any dense-in-itself metric space is S4.

Special Case (Bezhanishvili and Harding 2011)

Characterized the logics of metric Stone spaces.

Goal

Characterize the logic of each metric space.

Approach

Tools and Techniques

Main Results

Conclusions 000000000000

STRENGTHENING M&T'S RESULTS

Theorem (Rasiowa and Sikorski 1963)

The logic of any dense-in-itself metric space is S4.

Special Case (Bezhanishvili and Harding 2011)

Characterized the logics of metric Stone spaces.

Goal

Characterize the logic of each metric space.

Approach

Tools and Techniques

Main Results

Conclusions 00000000000

Some Definitions

- x ∈ X isolated: {x} is open iso(X): set of isolated points in X
- 2 X dense-in-itself (dii): $iso(X) = \emptyset$
- It is scattered: $iso(Y) \neq \emptyset$ for every subspace $Y(\neq \emptyset)$ of X
- **)** X is weakly scattered: $\mathbf{c}(iso X) = X$

Tools and Techniques

Main Results

Conclusions 000000000000

Some Definitions

- x ∈ X isolated: {x} is open iso(X): set of isolated points in X
- **2** X dense-in-itself (dii): $iso(X) = \emptyset$
 - ${}_{ extsf{0}}$ X is scattered: $\operatorname{iso}(Y)
 eq arnothing$ for every subspace Y(
 eq arnothing) of X
 - **)** X is weakly scattered: $\mathbf{c}(iso X) = X$

Tools and Techniques

Main Results

Conclusions 000000000000

Some Definitions

- x ∈ X isolated: {x} is open iso(X): set of isolated points in X
- **2** X dense-in-itself (dii): $iso(X) = \emptyset$
- **③** X is scattered: $iso(Y) \neq \emptyset$ for every subspace $Y(\neq \emptyset)$ of X
 - X is weakly scattered: $\mathbf{c}(\mathrm{iso}X) = X$

Tools and Techniques

Main Results

Conclusions 000000000000

Some Definitions

- x ∈ X isolated: {x} is open iso(X): set of isolated points in X
- **2** X dense-in-itself (dii): $iso(X) = \emptyset$
- **③** X is scattered: $iso(Y) \neq \emptyset$ for every subspace $Y(\neq \emptyset)$ of X
- X is weakly scattered: $\mathbf{c}(\mathrm{iso}X) = X$

Tools and Techniques

Main Results

Conclusions 00000000000

MAIN TOOLS: FRAMES

$S4\text{-}\mathrm{FRAME}$

• Frame
$$\mathfrak{F} = (W, R)$$
: $W \neq \emptyset$ and $R \subseteq W \times W$

3 S4-Frame \mathfrak{F} : *R* is reflexive and transitive

3 Rooted $\mathfrak{F}: \exists r \in W, \forall w \in W, rRw$

FINITE MODEL PROPERTY (FMP)

Logic L has FMP: for any nontheorem φ of L, there is a finite frame \mathfrak{F} for L refuting φ .

Tools and Techniques

Main Results

Conclusions 00000000000

MAIN TOOLS: FRAMES

S4- FRAME

• Frame
$$\mathfrak{F} = (W, R)$$
: $W \neq \emptyset$ and $R \subseteq W \times W$

- **2 S4**-Frame $\mathfrak{F}: R$ is reflexive and transitive
 - 3 Rooted $\mathfrak{F}: \exists r \in W, \forall w \in W, rRw$

FINITE MODEL PROPERTY (FMP)

Logic L has FMP: for any nontheorem φ of L, there is a finite frame \mathfrak{F} for L refuting φ .

Tools and Techniques

Main Results

Conclusions 00000000000

MAIN TOOLS: FRAMES

S4- FRAME

- Frame $\mathfrak{F} = (W, R)$: $W \neq \emptyset$ and $R \subseteq W \times W$
- **2** S4-Frame $\mathfrak{F}: R$ is reflexive and transitive
- **③** Rooted $\mathfrak{F}: \exists r \in W, \forall w \in W, rRw$

FINITE MODEL PROPERTY (FMP)

Logic L has FMP: for any nontheorem φ of L, there is a finite frame \mathfrak{F} for L refuting φ .

Tools and Techniques

Main Results

Conclusions 00000000000

MAIN TOOLS: FRAMES

S4-FRAME

- Frame $\mathfrak{F} = (W, R)$: $W \neq \emptyset$ and $R \subseteq W \times W$
- **2** S4-Frame $\mathfrak{F}: R$ is reflexive and transitive
- **③** Rooted $\mathfrak{F}: \exists r \in W, \forall w \in W, rRw$

FINITE MODEL PROPERTY (FMP)

Logic L has FMP: for any nontheorem φ of L, there is a finite frame \mathfrak{F} for L refuting φ .

Tools and Techniques

Main Results

Conclusions 00000000000

MAIN TOOLS: FRAMES

S4- FRAME

- Frame $\mathfrak{F} = (W, R)$: $W \neq \emptyset$ and $R \subseteq W \times W$
- **2** S4-Frame $\mathfrak{F}: R$ is reflexive and transitive
- **③** Rooted $\mathfrak{F}: \exists r \in W, \forall w \in W, rRw$

FINITE MODEL PROPERTY (FMP)

Logic L has FMP: for any nontheorem φ of L, there is a finite frame \mathfrak{F} for L refuting φ .

Tools and Techniques

Main Results

Conclusions 00000000000

MAIN TOOLS: FRAMES

S4- FRAME

- Frame $\mathfrak{F} = (W, R)$: $W \neq \emptyset$ and $R \subseteq W \times W$
- **2** S4-Frame $\mathfrak{F}: R$ is reflexive and transitive
- **③** Rooted $\mathfrak{F}: \exists r \in W, \forall w \in W, rRw$

FINITE MODEL PROPERTY (FMP)

Logic L has FMP: for any nontheorem φ of L, there is a finite frame \mathfrak{F} for L refuting φ .

Tools and Techniques

Main Results

Conclusions 00000000000

MAIN TOOLS: TRUTH PRESERVING OPERATIONS

TRUTH PRESERVING OPERATIONS

Open Subspace: $Y \subseteq X$ and Y open in XInterior Image: $f : X \to Y$ interior (continuous and open) and onto

VIEWING FRAMES AS SPACES

S4-frame $\mathfrak{F} = (W, R)$, Alexandroff topology τ_R : *R*-upsets in \mathfrak{F}

Tools and Techniques

Main Results

Conclusions 000000000000

MAIN TOOLS: TRUTH PRESERVING OPERATIONS

TRUTH PRESERVING OPERATIONS

Open Subspace: $Y \subseteq X$ and Y open in XInterior Image: $f : X \to Y$ interior (continuous and open) and onto $Log(X) \subseteq Log(Y)$, equivalently $Y \not\vDash \varphi$ implies $X \not\vDash \varphi$.

VIEWING FRAMES AS SPACES

S4-frame $\mathfrak{F} = (W, R)$, Alexandroff topology τ_R : *R*-upsets in \mathfrak{F}

Tools and Techniques

Main Results

Conclusions 00000000000

MAIN TOOLS: TRUTH PRESERVING OPERATIONS

TRUTH PRESERVING OPERATIONS

Open Subspace: $Y \subseteq X$ and Y open in XInterior Image: $f : X \to Y$ interior (continuous and open) and onto $Log(X) \subseteq Log(Y)$, equivalently $Y \not\vDash \varphi$ implies $X \not\vDash \varphi$.

VIEWING FRAMES AS SPACES

S4-frame $\mathfrak{F} = (W, R)$, Alexandroff topology τ_R : *R*-upsets in \mathfrak{F}

Tools and Techniques

Main Results

Conclusions 00000000000

MAIN TOOLS: TRUTH PRESERVING OPERATIONS

TRUTH PRESERVING OPERATIONS

Open Subspace: $Y \subseteq X$ and Y open in XInterior Image: $f : X \to Y$ interior (continuous and open) and onto $Log(X) \subseteq Log(Y)$, equivalently $Y \not\vDash \varphi$ implies $X \not\vDash \varphi$.

VIEWING FRAMES AS SPACES

S4-frame $\mathfrak{F} = (W, R)$, Alexandroff topology τ_R : *R*-upsets in \mathfrak{F}

Tools and Techniques

Main Results

Conclusions 00000000000

MAIN TOOLS: TRUTH PRESERVING OPERATIONS

TRUTH PRESERVING OPERATIONS

Open Subspace: $Y \subseteq X$ and Y open in XInterior Image: $f : X \to Y$ interior (continuous and open) and onto $Log(X) \subseteq Log(Y)$, equivalently $Y \not\vDash \varphi$ implies $X \not\vDash \varphi$.

VIEWING FRAMES AS SPACES

S4-frame $\mathfrak{F} = (W, R)$, Alexandroff topology τ_R : *R*-upsets in \mathfrak{F}

Tools and Techniques

Main Results

Conclusions 00000000000

MAIN TOOLS: TRUTH PRESERVING OPERATIONS

TRUTH PRESERVING OPERATIONS

Open Subspace: $Y \subseteq X$ and Y open in XInterior Image: $f : X \to Y$ interior (continuous and open) and onto $Log(X) \subseteq Log(Y)$, equivalently $Y \not\vDash \varphi$ implies $X \not\vDash \varphi$.

VIEWING FRAMES AS SPACES

S4-frame $\mathfrak{F} = (W, R)$, Alexandroff topology τ_R : *R*-upsets in \mathfrak{F}

Tools and Techniques

Main Results

Conclusions 000000000000

MAIN TOOLS: TRUTH PRESERVING OPERATIONS

TRUTH PRESERVING OPERATIONS

Open Subspace: $Y \subseteq X$ and Y open in XInterior Image: $f : X \to Y$ interior (continuous and open) and onto $Log(X) \subseteq Log(Y)$, equivalently $Y \not\vDash \varphi$ implies $X \not\vDash \varphi$.

VIEWING FRAMES AS SPACES

S4-frame $\mathfrak{F} = (W, R)$, Alexandroff topology τ_R : *R*-upsets in \mathfrak{F}

Tools and Techniques

Main Results

Conclusions 000000000000

MAIN TOOLS: TRUTH PRESERVING OPERATIONS

TRUTH PRESERVING OPERATIONS

Open Subspace: $Y \subseteq X$ and Y open in XInterior Image: $f : X \to Y$ interior (continuous and open) and onto $Log(X) \subseteq Log(Y)$, equivalently $Y \not\vDash \varphi$ implies $X \not\vDash \varphi$.

VIEWING FRAMES AS SPACES

S4-frame $\mathfrak{F} = (W, R)$, Alexandroff topology τ_R : *R*-upsets in \mathfrak{F}

Tools and Techniques

Main Results

Conclusions 000000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

ANOTHER EXAMPLE

MAPPING LEMMA (RASIOWA AND SIKORSKI 1963)

Any finite rooted **S4**-frame is an interior image of any dii metric space.

Tools and Techniques

Main Results

Conclusions 000000000000

ANOTHER EXAMPLE

MAPPING LEMMA (RASIOWA AND SIKORSKI 1963)

Any finite rooted **S4**-frame is an interior image of any dii metric space.

PELCZYNSKI COMPACTIFICATION OF ω

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへ⊙

Tools and Techniques

Main Results

Conclusions 000000000000

ANOTHER EXAMPLE

MAPPING LEMMA (RASIOWA AND SIKORSKI 1963)

Any finite rooted **S4**-frame is an interior image of any dii metric space.

Pelczynski Compactification of ω

Tools and Techniques

Main Results

Conclusions 000000000000

ANOTHER EXAMPLE

MAPPING LEMMA (RASIOWA AND SIKORSKI 1963)

Any finite rooted **S4**-frame is an interior image of any dii metric space.

Pelczynski Compactification of ω

Tools and Techniques

Conclusions 000000000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

CANTOR-BENDIXON DECOMPOSITION

THE CB THEOREM

Let X be a space. There are subspaces S and D of X such that S is scattered, D is dii, $X = S \cup D$, and $S \cap D = \emptyset$.

Tools and Techniques

Conclusions 000000000000

CANTOR-BENDIXON DECOMPOSITION

THE CB THEOREM

Let X be a space. There are subspaces S and D of X such that S is scattered, D is dii, $X = S \cup D$, and $S \cap D = \emptyset$.

QUASITREES, TREES AND TOP THIN QUASITREES

QUASITREES (QTREE)

- qtree $\mathfrak{F} = (W, R)$: rooted **S4**-frame satisfying $\forall u, v \in R^{-1}(w)$ either uRv or vRu
- ② Tree $\mathfrak{T} = (W, R)$: antisymmetric qtree
- ${}_{\bigcirc}$ Height of finite tree ${}_{\Im}{}_{:}$ greatest cardinality of a chain in ${}_{\Im}{}$

Top Thin Quasitrees (tt-qtrees)

tt-qtree $\mathfrak{F}\colon$ Built from finite qtree \mathfrak{G} by adding a 'new top' to each maximal cluster; denote \mathfrak{G} by \mathfrak{F}^-

QUASITREES, TREES AND TOP THIN QUASITREES

QUASITREES (QTREE)

- qtree $\mathfrak{F} = (W, R)$: rooted **S4**-frame satisfying $\forall u, v \in R^{-1}(w)$ either uRv or vRu
- **2** Tree $\mathfrak{T} = (W, R)$: antisymmetric qtree
- ${\small \textcircled{0}}$ Height of finite tree ${\frak T}:$ greatest cardinality of a chain in ${\frak T}$

Top Thin Quasitrees (tt-qtrees)

tt-qtree $\mathfrak{F}\colon$ Built from finite qtree \mathfrak{G} by adding a 'new top' to each maximal cluster; denote \mathfrak{G} by \mathfrak{F}^-

QUASITREES, TREES AND TOP THIN QUASITREES

QUASITREES (QTREE)

- qtree $\mathfrak{F} = (W, R)$: rooted **S4**-frame satisfying $\forall u, v \in R^{-1}(w)$ either uRv or vRu
- **2** Tree $\mathfrak{T} = (W, R)$: antisymmetric qtree
- ${\small \textcircled{0}}$ Height of finite tree ${\frak T}:$ greatest cardinality of a chain in ${\frak T}$

TOP THIN QUASITREES (TT-QTREES)

tt-qtree \mathfrak{F} : Built from finite qtree \mathfrak{G} by adding a 'new top' to each maximal cluster; denote \mathfrak{G} by \mathfrak{F}^-

Tools and Techniques

Main Results

Conclusions 000000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The Logics of Interest

LOGICS

S 4		
S4.1	=	$\mathbf{S4} + \Box \Diamond p \rightarrow \Diamond \Box p$
S4.Grz	=	$\mathbf{S4} + \mathbf{grz} = \mathbf{S4} + \Box(\Box(p \rightarrow \Box p) \rightarrow p) \rightarrow p$
S4.Grz _n	=	$S4.Grz + bd_n$

Formulas

$$\begin{aligned} \mathbf{bd}_1 &= & \Diamond \Box p_1 \to p_1 \\ \mathbf{bd}_{n+1} &= & \Diamond (\Box p_{n+1} \land \neg \mathbf{bd}_n) \to p_{n+1} \end{aligned}$$

Tools and Techniques

Main Results

Conclusions 000000000000

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

The Logics of Interest

LOGICS

S4		
S4.1	=	$\mathbf{S4} + \Box \Diamond p ightarrow \Diamond \Box p$
S4.Grz	=	$S4+grz=S4+\Box(\Box(ho ightarrow\Box ho) ightarrow ho) ightarrow ho$
S4.Grz _n	=	$S4.Grz + bd_n$

Formulas

$$\begin{array}{lll} \mathbf{bd}_1 &=& \Diamond \Box \rho_1 \to \rho_1 \\ \mathbf{bd}_{n+1} &=& \Diamond (\Box \rho_{n+1} \land \neg \mathbf{bd}_n) \to \rho_{n+1} \end{array}$$

Tools and Techniques

Main Results

Conclusions 000000000000

QTREES FOR LOGICS OF INTEREST AND MAIN RESULT

(KNOWN) LEMMA

- **S4** is the logic of finite rooted qtrees.
- **§ S4.1** is the logic of tt-qtrees.
- **§ S4.Grz** is the modal logic of finite trees.
- **§** S4.Grz_n is the modal logic of finite trees of height $\leq n$.

Theorem: Main Result (Brief Version)

The modal logics of metric spaces form the chain

 $\textbf{S4}.\textbf{Grz}_1 \supset \textbf{S4}.\textbf{Grz}_2 \supset \textbf{S4}.\textbf{Grz}_3 \supset \cdots \ \textbf{S4}.\textbf{Grz} \supset \textbf{S4}.\textbf{1} \supset \textbf{S4}.$

Tools and Techniques

Main Results

Conclusions 00000000000

QTREES FOR LOGICS OF INTEREST AND MAIN RESULT

(KNOWN) LEMMA

- **S4** is the logic of finite rooted qtrees.
- **§ S4.1** is the logic of tt-qtrees.
- **§ S4.Grz** is the modal logic of finite trees.
- **§** S4.Grz_n is the modal logic of finite trees of height $\leq n$.

THEOREM: MAIN RESULT (BRIEF VERSION)

The modal logics of metric spaces form the chain

 $\text{S4.Grz}_1 \supset \text{S4.Grz}_2 \supset \text{S4.Grz}_3 \supset \cdots \ \text{S4.Grz} \supset \text{S4.1} \supset \text{S4.}$

Tools and Techniques

Main Results

Conclusions 000000000000

Non-Weakly Scattered Metric Spaces

CASE I

Theorem

S4 is the logic of any non-weakly scattered metric space X.

PROOF SKETCH

 $Y = X - \mathbf{c}(\mathrm{iso}(X)) \text{ is nonempty open dii subspace of } X.$ $\varphi: \text{ nontheorem of } \mathbf{S4}$ Finite rooted qtree $\mathfrak{F}: \mathfrak{F} \not\models \varphi$ $\mathfrak{F} \text{ is interior image of } Y$ $Y \not\models \varphi$ $\mathbf{S4} = \mathrm{Log}(Y) \supseteq \mathrm{Log}(X) \supseteq \mathbf{S4}.$

Tools and Techniques

Main Results

Conclusions 00000000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Non-Weakly Scattered Metric Spaces

CASE I

Theorem

S4 is the logic of any non-weakly scattered metric space X.

PROOF SKETCH

 $Y = X - \mathbf{c}(\operatorname{iso}(X)) \text{ is nonempty open dii subspace of } X.$ $\varphi: \text{ nontheorem of } \mathbf{S4}$ Finite rooted qtree $\mathfrak{F}: \mathfrak{F} \neq \varphi$ $\mathfrak{F} \text{ is interior image of } Y$ $Y \neq \varphi$ $\mathbf{S4} = \operatorname{Log}(Y) \supseteq \operatorname{Log}(X) \supseteq \mathbf{S4}.$

Tools and Techniques

Main Results

Conclusions 000000000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Non-Weakly Scattered Metric Spaces

CASE I

Theorem

S4 is the logic of any non-weakly scattered metric space X.

PROOF SKETCH

 $Y = X - \mathbf{c}(\mathrm{iso}(X)) \text{ is nonempty open dii subspace of } X.$ $\varphi: \text{ nontheorem of } \mathbf{S4}$ Finite rooted qtree $\mathfrak{F}: \mathfrak{F} \not\models \varphi$ $\mathfrak{F} \text{ is interior image of } Y$ $Y \not\models \varphi$ $\mathbf{S4} = \mathrm{Log}(Y) \supset \mathrm{Log}(X) \supset \mathbf{S4}.$

Main Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Non-Weakly Scattered Metric Spaces

CASE I

THEOREM

S4 is the logic of any non-weakly scattered metric space X.

PROOF SKETCH

 $Y = X - \mathbf{c}(iso(X))$ is nonempty open dii subspace of X. φ : nontheorem of **S4** Finite rooted gtree $\mathfrak{F}: \mathfrak{F} \not\models \varphi$

Main Results

Non-Weakly Scattered Metric Spaces

CASE I

Theorem

S4 is the logic of any non-weakly scattered metric space X.

PROOF SKETCH

 $Y = X - \mathbf{c}(iso(X))$ is nonempty open dii subspace of X. φ : nontheorem of **S4** Finite rooted gtree $\mathfrak{F}: \mathfrak{F} \not\models \varphi$ \mathfrak{F} is interior image of Y

Main Results

Non-Weakly Scattered Metric Spaces

CASE I

Theorem

S4 is the logic of any non-weakly scattered metric space X.

PROOF SKETCH

 $Y = X - \mathbf{c}(iso(X))$ is nonempty open dii subspace of X. φ : nontheorem of **S4** Finite rooted gtree $\mathfrak{F}: \mathfrak{F} \not\models \varphi$ \mathfrak{F} is interior image of Y $Y \not\models \varphi$

Main Results

Non-Weakly Scattered Metric Spaces

CASE I

Theorem

S4 is the logic of any non-weakly scattered metric space X.

PROOF SKETCH

 $Y = X - \mathbf{c}(iso(X))$ is nonempty open dii subspace of X. φ : nontheorem of **S4** Finite rooted gtree $\mathfrak{F}: \mathfrak{F} \not\models \varphi$ \mathfrak{F} is interior image of Y $Y \not\models \varphi$ $S4 = Log(Y) \supseteq Log(X) \supseteq S4.$

Tools and Techniques

Main Results

Conclusions 000000000000

Scattered Metric Spaces

CASE II: STRONGLY ZERO-DIMENSIONAL

TELGARSKI'S THEOREM

Each Scattered metric space is strongly zero-dimensional.

Two Useful Lemmas

- If F_1, \ldots, F_n are nonempty pairwise disjoint closed subsets of a strongly zero-dimensional normal space X, then there are pairwise disjoint clopen subsets U_1, \ldots, U_n of X such that $F_i \subseteq U_i$ and $X = U_1 \cup \cdots \cup U_n$.
- ② For any discrete subset A of a metric space X, there is a disjoint family of balls {B_{ε_a} : a ∈ A}.

Definition

Tools and Techniques

Main Results

Conclusions 000000000000

Scattered Metric Spaces

CASE II: STRONGLY ZERO-DIMENSIONAL

Telgarski's Theorem

Each Scattered metric space is strongly zero-dimensional.

Two Useful Lemmas

 If F₁,..., F_n are nonempty pairwise disjoint closed subsets of a strongly zero-dimensional normal space X, then there are pairwise disjoint clopen subsets U₁,..., U_n of X such that F_i ⊆ U_i and X = U₁ ∪ ··· ∪ U_n.

For any discrete subset A of a metric space X, there is a disjoint family of balls {B_{εa} : a ∈ A}.

Definition

Tools and Techniques

Main Results

Conclusions 000000000000

Scattered Metric Spaces

CASE II: STRONGLY ZERO-DIMENSIONAL

Telgarski's Theorem

Each Scattered metric space is strongly zero-dimensional.

Two Useful Lemmas

- If F₁,..., F_n are nonempty pairwise disjoint closed subsets of a strongly zero-dimensional normal space X, then there are pairwise disjoint clopen subsets U₁,..., U_n of X such that F_i ⊆ U_i and X = U₁ ∪ ··· ∪ U_n.
- ② For any discrete subset A of a metric space X, there is a disjoint family of balls {B_{ε_a} : a ∈ A}.

Definition

Tools and Techniques

Main Results

Conclusions 000000000000

Scattered Metric Spaces

CASE II: STRONGLY ZERO-DIMENSIONAL

Telgarski's Theorem

Each Scattered metric space is strongly zero-dimensional.

Two Useful Lemmas

- If F₁,..., F_n are nonempty pairwise disjoint closed subsets of a strongly zero-dimensional normal space X, then there are pairwise disjoint clopen subsets U₁,..., U_n of X such that F_i ⊆ U_i and X = U₁ ∪ ··· ∪ U_n.
- ② For any discrete subset A of a metric space X, there is a disjoint family of balls {B_{ε_a} : a ∈ A}.

DEFINITION

Tools and Techniques

Main Results

Conclusions 000000000000

Scattered Metric Spaces

CASE II: THE MAPPING

A MAPPING LEMMA

 $n \in \omega$,

 \mathfrak{T} : finite tree, height at most n+1,

X: scattered metric space;

If $X_n \neq \emptyset$ then there is an onto interior map $f : X_0 \cup \cdots \cup X_n \to \mathfrak{T}$ such that f(x) is the root of \mathfrak{T} for each $x \in X_n$.

Proof

By induction on $n \in \omega$

Illustrated by pictures

Tools and Techniques

Main Results

Conclusions 000000000000

Scattered Metric Spaces

CASE II: THE MAPPING

A MAPPING LEMMA

 $n \in \omega$,

 \mathfrak{T} : finite tree, height at most n+1,

X: scattered metric space;

If $X_n \neq \emptyset$ then there is an onto interior map $f : X_0 \cup \cdots \cup X_n \to \mathfrak{T}$ such that f(x) is the root of \mathfrak{T} for each $x \in X_n$.

Proof

By induction on $n \in \omega$

Illustrated by pictures

Tools and Techniques

Main Results

Conclusions 000000000000

Scattered Metric Spaces

CASE II: THE MAPPING

A MAPPING LEMMA

 $n \in \omega$,

 \mathfrak{T} : finite tree, height at most n + 1,

X: scattered metric space;

If $X_n \neq \emptyset$ then there is an onto interior map $f : X_0 \cup \cdots \cup X_n \to \mathfrak{T}$ such that f(x) is the root of \mathfrak{T} for each $x \in X_n$.

Proof

By induction on $n \in \omega$

Illustrated by pictures

Tools and Techniques

Main Results

Conclusions 000000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Scattered Metric Spaces

CASE II: THE MAPPING-BASE CASE

Tools and Techniques

Main Results

Conclusions 000000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Scattered Metric Spaces

CASE II: THE MAPPING-BASE CASE

Tools and Techniques

Main Results

Conclusions 000000000000

Scattered Metric Spaces

CASE II: THE MAPPING-INDUCTIVE CASE

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Tools and Techniques

Main Results

Conclusions 000000000000

Scattered Metric Spaces

CASE II: THE MAPPING–INDUCTIVE CASE

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Tools and Techniques

Main Results

Conclusions 000000000000

Scattered Metric Spaces

CASE II: THE MAPPING–INDUCTIVE CASE

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

Tools and Techniques

Main Results

Conclusions 000000000000

Scattered Metric Spaces

CASE II: THE MAPPING–INDUCTIVE CASE

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Tools and Techniques

Main Results

Conclusions 000000000000

Scattered Metric Spaces

CASE II: THE MAPPING–INDUCTIVE CASE

 $F_1 \subseteq U_1 \qquad F_k \subseteq U_k$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $X_0 \cup \cdots \cup X_n = U_1 \cup \cdots \cup U_k$

Tools and Techniques

Main Results

Conclusions 000000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Scattered Metric Spaces

CASE II: THE MAPPING-INDUCTIVE CASE

Tools and Techniques

Main Results

Conclusions 000000000000

Scattered Metric Spaces

CASE II: THE MAPPING-INDUCTIVE CASE

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Tools and Techniques

Main Results

Conclusions 000000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Scattered Metric Spaces

CASE II: THE MAPPING-INDUCTIVE CASE

Tools and Techniques

Main Results

Conclusions 00000000000

Scattered Metric Spaces

CASE II: INFINITE RANK

THEOREM

S4.Grz is the logic of ...

• all scattered spaces. (Esakia 1981)

) any ordinal $lpha \geq \omega^\omega$. (Abashidze 1987/Blass 1990)

Theorem

S4.Grz is the logic of any scattered metric space X of infinite rank.

Proof Sketch

 $\begin{array}{l} X \vDash \mathsf{grz:} \text{ by above Lemma} \\ \varphi: \text{ nontheorem of } \mathbf{S4.Grz} \\ \text{Finite tree } \mathfrak{T} \text{ of height } n(\geq 1): \ \mathfrak{T} \nvDash \varphi \\ \mathfrak{T} \text{ is interior image of } X_0 \cup \cdots \cup X_{n-1}: \ X_0 \cup \cdots \cup X_{n-1} \nvDash \varphi \\ X_0 \cup \cdots \cup X_{n-1} \text{ open subspace of } X: \ X \nvDash \varphi \end{array}$

Tools and Techniques

Main Results

Conclusions 00000000000

Scattered Metric Spaces

CASE II: INFINITE RANK

Theorem

S4.Grz is the logic of ...

all scattered spaces. (Esakia 1981)

2 any ordinal $\alpha \geq \omega^{\omega}$. (Abashidze 1987/Blass 1990)

Theorem

S4.Grz is the logic of any scattered metric space X of infinite rank.

Proof Sketch

 $\begin{array}{l} X \vDash \mathsf{grz:} \text{ by above Lemma} \\ \varphi: \text{ nontheorem of } \mathbf{S4.Grz} \\ \text{Finite tree } \mathfrak{T} \text{ of height } n(\geq 1): \ \mathfrak{T} \nvDash \varphi \\ \mathfrak{T} \text{ is interior image of } X_0 \cup \cdots \cup X_{n-1}: \ X_0 \cup \cdots \cup X_{n-1} \nvDash \varphi \\ X_0 \cup \cdots \cup X_{n-1} \text{ open subspace of } X: \ X \nvDash \varphi \end{array}$

Tools and Techniques

Main Results

Conclusions 00000000000

Scattered Metric Spaces

CASE II: INFINITE RANK

Theorem

S4.Grz is the logic of ...

- all scattered spaces. (Esakia 1981)
- 2 any ordinal $\alpha \ge \omega^{\omega}$. (Abashidze 1987/Blass 1990)

Theorem

S4.Grz is the logic of any scattered metric space X of infinite rank.

PROOF SKETCH

 $\begin{array}{l} X \vDash \mathsf{grz:} \text{ by above Lemma} \\ \varphi: \text{ nontheorem of } \mathbf{S4.Grz} \\ \text{Finite tree } \mathfrak{T} \text{ of height } n(\geq 1): \ \mathfrak{T} \nvDash \varphi \\ \mathfrak{T} \text{ is interior image of } X_0 \cup \cdots \cup X_{n-1}: \ X_0 \cup \cdots \cup X_{n-1} \nvDash \varphi \\ X_0 \cup \cdots \cup X_{n-1} \text{ open subspace of } X: \ X \nvDash \varphi \end{array}$

Tools and Techniques

Main Results

Conclusions 00000000000

Scattered Metric Spaces

CASE II: INFINITE RANK

Theorem

S4.Grz is the logic of ...

- all scattered spaces. (Esakia 1981)
- 2 any ordinal $\alpha \ge \omega^{\omega}$. (Abashidze 1987/Blass 1990)

Theorem

S4.Grz is the logic of any scattered metric space X of infinite rank.

PROOF SKETCH

$X \vDash \mathbf{grz}$: by above Lemma

 φ : nontheorem of **S4.Grz** Finite tree \mathfrak{T} of height $n(\geq 1)$: $\mathfrak{T} \not\models \varphi$ \mathfrak{T} is interior image of $X_0 \cup \cdots \cup X_{n-1}$: $X_0 \cup \cdots \cup X_{n-1} \not\models \varphi$ $X_0 \cup \cdots \cup X_{n-1}$ open subspace of X: $X \not\models \varphi$

Tools and Techniques

Main Results

Conclusions 00000000000

Scattered Metric Spaces

CASE II: INFINITE RANK

Theorem

S4.Grz is the logic of ...

- all scattered spaces. (Esakia 1981)
- 2 any ordinal $\alpha \ge \omega^{\omega}$. (Abashidze 1987/Blass 1990)

Theorem

S4.Grz is the logic of any scattered metric space X of infinite rank.

Proof Sketch

 $X \models \mathbf{grz}: \text{ by above Lemma}$ $\varphi: \text{ nontheorem of } \mathbf{S4.Grz}$ Finite tree \mathfrak{T} of height $n(\geq 1): \mathfrak{T} \nvDash \varphi$ \mathfrak{T} is interior image of $X_0 \cup \cdots \cup X_{n-1}: X_0 \cup \cdots \cup X_{n-1} \nvDash \varphi$ $X_0 \cup \cdots \cup X_{n-1}$ open subspace of $X: X \nvDash \varphi$
Tools and Techniques

Main Results

Conclusions 00000000000

Scattered Metric Spaces

CASE II: INFINITE RANK

Theorem

S4.Grz is the logic of ...

- all scattered spaces. (Esakia 1981)
- 2 any ordinal $\alpha \ge \omega^{\omega}$. (Abashidze 1987/Blass 1990)

Theorem

S4.Grz is the logic of any scattered metric space X of infinite rank.

Proof Sketch

Tools and Techniques

Main Results

Conclusions 00000000000

Scattered Metric Spaces

CASE II: INFINITE RANK

Theorem

S4.Grz is the logic of ...

- all scattered spaces. (Esakia 1981)
- 2 any ordinal $\alpha \ge \omega^{\omega}$. (Abashidze 1987/Blass 1990)

Theorem

S4.Grz is the logic of any scattered metric space X of infinite rank.

Proof Sketch

Tools and Techniques

Main Results

Conclusions 00000000000

Scattered Metric Spaces

CASE II: INFINITE RANK

Theorem

S4.Grz is the logic of ...

- all scattered spaces. (Esakia 1981)
- 2 any ordinal $\alpha \ge \omega^{\omega}$. (Abashidze 1987/Blass 1990)

Theorem

S4.Grz is the logic of any scattered metric space X of infinite rank.

Proof Sketch

Tools and Techniques

Main Results

Conclusions 00000000000

Scattered Metric Spaces

CASE II: INFINITE RANK

Theorem

S4.Grz is the logic of ...

- all scattered spaces. (Esakia 1981)
- 2 any ordinal $\alpha \ge \omega^{\omega}$. (Abashidze 1987/Blass 1990)

Theorem

S4.Grz is the logic of any scattered metric space X of infinite rank.

Proof Sketch

Tools and Techniques

Main Results

Conclusions 00000000000

Scattered Metric Spaces

CASE II: INFINITE RANK

Theorem

S4.Grz is the logic of ...

- all scattered spaces. (Esakia 1981)
- 2 any ordinal $\alpha \ge \omega^{\omega}$. (Abashidze 1987/Blass 1990)

THEOREM

S4.Grz is the logic of any scattered metric space X of infinite rank.

Proof Sketch

Tools and Techniques

Main Results

Conclusions 00000000000

Scattered Metric Spaces

CASE II: FINITE RANK

Lemma

In any scattered space X and any $n \in \omega$, the interpretation of \mathbf{bd}_{n+1} contains $X_0 \cup \cdots \cup X_n$.

Theorem

S4.Grz_n is the logic of any scattered metric space X of rank $n \in \omega$.

PROOF SKETCH

 $X = X_0 \cup \cdots \cup X_{n-1} \models \mathbf{bd}_n$: by above Lemma $X \models \mathbf{grz}$: by Lemma on previous slide φ : nontheorem of **S4.Grz**_n Finite tree \mathfrak{T} of height $\leq n$: $\mathfrak{T} \nvDash \varphi$ \mathfrak{T} is interior image of X $X \nvDash \varphi$

Tools and Techniques

Main Results

Conclusions 00000000000

Scattered Metric Spaces

CASE II: FINITE RANK

Lemma

In any scattered space X and any $n \in \omega$, the interpretation of \mathbf{bd}_{n+1} contains $X_0 \cup \cdots \cup X_n$.

Theorem

S4.Grz_n is the logic of any scattered metric space X of rank $n \in \omega$.

PROOF SKETCH

 $X = X_0 \cup \cdots \cup X_{n-1} \models \mathbf{bd}_n$: by above Lemma $X \models \mathbf{grz}$: by Lemma on previous slide φ : nontheorem of **S4.Grz**_n Finite tree \mathfrak{T} of height $\leq n$: $\mathfrak{T} \nvDash \varphi$ \mathfrak{T} is interior image of X $X \nvDash \varphi$

Tools and Techniques

Main Results

Conclusions 00000000000

Scattered Metric Spaces

CASE II: FINITE RANK

Lemma

In any scattered space X and any $n \in \omega$, the interpretation of \mathbf{bd}_{n+1} contains $X_0 \cup \cdots \cup X_n$.

Theorem

S4.Grz_n is the logic of any scattered metric space X of rank $n \in \omega$.

PROOF SKETCH

 $X = X_0 \cup \cdots \cup X_{n-1} \vDash \mathbf{bd}_n$: by above Lemma

 $X \vDash \mathbf{grz}$: by Lemma on previous slide

 φ : nontheorem of **S4.Grz**_n Finite tree \mathfrak{T} of height $\leq n$: $\mathfrak{T} \not\models \varphi$ \mathfrak{T} is interior image of X X $\nvDash \varphi$

Tools and Techniques

Main Results

Conclusions 00000000000

Scattered Metric Spaces

CASE II: FINITE RANK

Lemma

In any scattered space X and any $n \in \omega$, the interpretation of \mathbf{bd}_{n+1} contains $X_0 \cup \cdots \cup X_n$.

Theorem

S4.Grz_n is the logic of any scattered metric space X of rank $n \in \omega$.

PROOF SKETCH

 $X = X_0 \cup \cdots \cup X_{n-1} \vDash \mathbf{bd}_n$: by above Lemma

 $X \models \mathbf{grz}$: by Lemma on previous slide

φ : nontheorem of **S4.Grz**_n

Finite tree ${\mathfrak T}$ of height \leq n: ${\mathfrak T}
ot\in arphi$

 ${\mathfrak T}$ is interior image of X

 $X \not\models \varphi$

Tools and Techniques

Main Results

Conclusions 00000000000

Scattered Metric Spaces

CASE II: FINITE RANK

Lemma

In any scattered space X and any $n \in \omega$, the interpretation of \mathbf{bd}_{n+1} contains $X_0 \cup \cdots \cup X_n$.

Theorem

S4.Grz_n is the logic of any scattered metric space X of rank $n \in \omega$.

PROOF SKETCH

 $X = X_0 \cup \cdots \cup X_{n-1} \vDash \mathbf{bd}_n: \text{ by above Lemma}$ $X \vDash \mathbf{grz}: \text{ by Lemma on previous slide}$ $\varphi: \text{ nontheorem of } \mathbf{S4.Grz}_n$ Finite tree \mathfrak{T} of height $\leq n: \mathfrak{T} \nvDash \varphi$ $\mathfrak{T} \text{ is interior image of } X$ $X \nvDash \varphi$

Tools and Techniques

Main Results

Conclusions 00000000000

Scattered Metric Spaces

CASE II: FINITE RANK

Lemma

In any scattered space X and any $n \in \omega$, the interpretation of \mathbf{bd}_{n+1} contains $X_0 \cup \cdots \cup X_n$.

Theorem

S4.Grz_n is the logic of any scattered metric space X of rank $n \in \omega$.

PROOF SKETCH

$$\begin{split} X &= X_0 \cup \cdots \cup X_{n-1} \vDash \mathbf{bd}_n: \text{ by above Lemma} \\ X &\vDash \mathbf{grz}: \text{ by Lemma on previous slide} \\ \varphi: \text{ nontheorem of } \mathbf{S4.Grz}_n \\ \text{Finite tree } \mathfrak{T} \text{ of height } \leq n: \ \mathfrak{T} \nvDash \varphi \\ \mathfrak{T} \text{ is interior image of } X \\ X \nvDash \varphi \end{split}$$

Tools and Techniques

Main Results

Conclusions 00000000000

Scattered Metric Spaces

CASE II: FINITE RANK

Lemma

In any scattered space X and any $n \in \omega$, the interpretation of \mathbf{bd}_{n+1} contains $X_0 \cup \cdots \cup X_n$.

Theorem

S4.Grz_n is the logic of any scattered metric space X of rank $n \in \omega$.

PROOF SKETCH

$$\begin{split} X &= X_0 \cup \cdots \cup X_{n-1} \vDash \mathbf{bd}_n: \text{ by above Lemma} \\ X &\vDash \mathbf{grz}: \text{ by Lemma on previous slide} \\ \varphi: \text{ nontheorem of } \mathbf{S4.Grz}_n \\ \text{Finite tree } \mathfrak{T} \text{ of height } \leq n: \ \mathfrak{T} \nvDash \varphi \\ \mathfrak{T} \text{ is interior image of } X \\ X \nvDash \varphi \end{split}$$

Tools and Techniques

Main Results

Conclusions 00000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III: THE MAPPING

A MAPPING LEMMA

Any tt-qtree \mathfrak{F} is an interior image of any weakly scattered non-scattered metric space X.

KEY IDEA OF PROOF

 $\begin{array}{l} X = S \cup D; \\ \mathfrak{F}^- = \mathfrak{F} - \max(\mathfrak{F}); \\ \exists g : D \to \mathfrak{F}^-; \\ \text{Extend } g \text{ to } f : X \to \mathfrak{F} \text{ such that } f(S) = \max(\mathfrak{F}). \end{array}$ Proceed by induction on the height of \mathfrak{F} .

Tools and Techniques

Main Results

Conclusions 00000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III: THE MAPPING

A MAPPING LEMMA

Any tt-qtree \mathfrak{F} is an interior image of any weakly scattered non-scattered metric space X.

Key Idea of Proof

$$\begin{split} & X = S \cup D; \\ & \mathfrak{F}^- = \mathfrak{F} - \max(\mathfrak{F}); \\ & \exists g : D \to \mathfrak{F}^-; \\ & \text{Extend } g \text{ to } f : X \to \mathfrak{F} \text{ such that } f(S) = \max(\mathfrak{F}) \\ & \text{Proceed by induction on the height of } \mathfrak{F}. \end{split}$$

Tools and Techniques

Main Results

Conclusions 00000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III: THE MAPPING

A MAPPING LEMMA

Any tt-qtree \mathfrak{F} is an interior image of any weakly scattered non-scattered metric space X.

Key Idea of Proof

$$\begin{split} & X = S \cup D; \\ & \mathfrak{F}^- = \mathfrak{F} - \max(\mathfrak{F}); \\ & \exists g : D \to \mathfrak{F}^-; \\ & \text{Extend } g \text{ to } f : X \to \mathfrak{F} \text{ such that } f(S) = \max(\mathfrak{F}) \\ & \text{Proceed by induction on the height of } \mathfrak{F}. \end{split}$$

Tools and Techniques

Main Results

Conclusions 00000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III: THE MAPPING

A MAPPING LEMMA

Any tt-qtree \mathfrak{F} is an interior image of any weakly scattered non-scattered metric space X.

Key Idea of Proof

$$\begin{split} X &= S \cup D; \\ \mathfrak{F}^- &= \mathfrak{F} - \max(\mathfrak{F}); \\ \exists g : D \to \mathfrak{F}^-; \\ \text{Extend } g \text{ to } f : X \to \mathfrak{F} \text{ such that } f(S) = \max(\mathfrak{F}) \\ \text{Proceed by induction on the height of } \mathfrak{F}. \end{split}$$

Tools and Techniques

Main Results

Conclusions 00000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III: THE MAPPING

A MAPPING LEMMA

Any tt-qtree \mathfrak{F} is an interior image of any weakly scattered non-scattered metric space X.

Key Idea of Proof

 $\begin{array}{l} X = S \cup D; \\ \mathfrak{F}^- = \mathfrak{F} - \max(\mathfrak{F}); \\ \exists g : D \to \mathfrak{F}^-; \\ \text{Extend } g \text{ to } f : X \to \mathfrak{F} \text{ such that } f(S) = \max(\mathfrak{F}). \end{array}$ Proceed by induction on the height of \mathfrak{F} .

Tools and Techniques

Main Results

Conclusions 000000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III: THE MAPPING

A MAPPING LEMMA

Any tt-qtree \mathfrak{F} is an interior image of any weakly scattered non-scattered metric space X.

Key Idea of Proof

 $\begin{array}{l} X = S \cup D; \\ \mathfrak{F}^- = \mathfrak{F} - \max(\mathfrak{F}); \\ \exists g : D \to \mathfrak{F}^-; \\ \text{Extend } g \text{ to } f : X \to \mathfrak{F} \text{ such that } f(S) = \max(\mathfrak{F}). \end{array}$ Proceed by induction on the height of \mathfrak{F} .

Tools and Techniques

Main Results

Conclusions 000000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III: THE MAPPING-BASE CASE

Tools and Techniques

Main Results

Conclusions 000000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III: THE MAPPING-BASE CASE

Tools and Techniques

Main Results

Conclusions 000000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III: THE MAPPING-BASE CASE

Tools and Techniques

Main Results

Weakly Scattered Non-Scattered Metric Spaces

CASE III: THE MAPPING–INDUCTIVE CASE

Tools and Techniques

Main Results

Conclusions 000000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III: THE MAPPING-INDUCTIVE CASE

Tools and Techniques

Main Results

Conclusions 000000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III: THE MAPPING-INDUCTIVE CASE

Tools and Techniques

Main Results

Conclusions 000000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III: THE MAPPING-INDUCTIVE CASE

 $S \cap \mathbf{c}_Y U_i$ closed in S

Tools and Techniques

Main Results

Conclusions 000000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III: THE MAPPING-INDUCTIVE CASE

Tools and Techniques

Main Results

Conclusions 000000000000

≣ *•* ९२.०

Weakly Scattered Non-Scattered Metric Spaces

CASE III: THE MAPPING-INDUCTIVE CASE

 g_i : the restriction of g to D_i

Tools and Techniques

Main Results

Conclusions 000000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III: THE MAPPING-INDUCTIVE CASE

 f_i the extension of g_i given by inductive hypothesis

Tools and Techniques

Main Results

Conclusions 000000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III: THE MAPPING-INDUCTIVE CASE

f is defined by 'the colors' $(\square) (\square)$

Tools and Techniques

Main Results

Conclusions 000000000000

イロト 不得 トイヨト イヨト

3

Weakly Scattered Non-Scattered Metric Spaces

CASE III

(KNOWN) LEMMA

S4.1 is the logic of all weakly scattered spaces.

Theorem

\$4.1 is the logic any weakly scattered non-scattered metric space *X*.

PROOF SKETCH

 $X \vDash S4.1$: by above Lemma φ : nontheorem of S4.1 tt-qtree $\mathfrak{F}: \mathfrak{F} \nvDash \varphi$ \mathfrak{F} is interior image of X $X \nvDash \varphi$

Tools and Techniques

Main Results

Conclusions 000000000000

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Weakly Scattered Non-Scattered Metric Spaces

CASE III

(KNOWN) LEMMA

S4.1 is the logic of all weakly scattered spaces.

Theorem

S4.1 is the logic any weakly scattered non-scattered metric space X.

Proof Sketch

 $X \vDash S4.1: \text{ by above Lemma}$ $\varphi: \text{ nontheorem of } S4.1$ $\texttt{tt-qtree } \mathfrak{F}: \mathfrak{F} \nvDash \varphi$ $\mathfrak{F} \text{ is interior image of } X$ $X \nvDash \varphi$

Tools and Techniques

Main Results

Conclusions 000000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III

(KNOWN) LEMMA

S4.1 is the logic of all weakly scattered spaces.

Theorem

S4.1 is the logic any weakly scattered non-scattered metric space X.

PROOF SKETCH

 $X \models$ **S4.1**: by above Lemma φ : nontheorem of **S4.1** tt-qtree $\mathfrak{F}: \mathfrak{F} \not\models \varphi$ \mathfrak{F} is interior image of X

 $X \not\models \varphi$

Tools and Techniques

Main Results

Conclusions 000000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III

(KNOWN) LEMMA

 ${f S4.1}$ is the logic of all weakly scattered spaces.

Theorem

S4.1 is the logic any weakly scattered non-scattered metric space X.

PROOF SKETCH

 $X \models$ S4.1: by above Lemma φ : nontheorem of S4.1 tt-qtree $\mathfrak{F}: \mathfrak{F} \not\models \varphi$ \mathfrak{F} is interior image of X $X \not\models \varphi$

Tools and Techniques

Main Results

Conclusions 000000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III

(KNOWN) LEMMA

S4.1 is the logic of all weakly scattered spaces.

Theorem

S4.1 is the logic any weakly scattered non-scattered metric space X.

PROOF SKETCH

 $X \models$ **S4.1**: by above Lemma φ : nontheorem of **S4.1** tt-qtree $\mathfrak{F}: \mathfrak{F} \nvDash \varphi$ \mathfrak{F} is interior image of X $X \nvDash \varphi$

Tools and Techniques

Main Results

Conclusions 000000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III

(KNOWN) LEMMA

 ${f S4.1}$ is the logic of all weakly scattered spaces.

Theorem

S4.1 is the logic any weakly scattered non-scattered metric space X.

PROOF SKETCH

 $X \models S4.1: \text{ by above Lemma}$ $\varphi: \text{ nontheorem of } S4.1$ $\text{tt-qtree } \mathfrak{F}: \mathfrak{F} \not\models \varphi$ $\mathfrak{F} \text{ is interior image of } X$ $X \not\models \varphi$

Tools and Techniques

Main Results

Conclusions 000000000000

Weakly Scattered Non-Scattered Metric Spaces

CASE III

(KNOWN) LEMMA

 ${f S4.1}$ is the logic of all weakly scattered spaces.

Theorem

S4.1 is the logic any weakly scattered non-scattered metric space X.

PROOF SKETCH

 $X \models S4.1: \text{ by above Lemma}$ $\varphi: \text{ nontheorem of } S4.1$ $\mathsf{tt-qtree} \ \mathfrak{F}: \ \mathfrak{F} \not\models \varphi$ $\mathfrak{F} \text{ is interior image of } X$ $X \not\models \varphi$
Tools and Techniques

Main Results

Conclusions •0000000000

MODAL LOGICS OF METRIC SPACES

THEOREM: MAIN RESULT (FULL VERSION)

Let X be a (nonempty) metric space.

- If X is not weakly scattered, then Log(X) = S4.
- If X is weakly scattered but not scattered, then Log(X) = S4.1.
- **3** If X is scattered and has infinite rank, then Log(X) = S4.Grz.
- If X is scattered and has rank $n \in \omega \{0\}$, then $Log(X) = S4.Grz_n$.

Tools and Techniques

Main Results

Conclusions 00000000000

MAIN RESULT: PICTURE

Metric Spaces	
Non-weakly scattered spaces	Weakly scattered spaces

Tools and Techniques

Main Results

Conclusions 00000000000

MAIN RESULT: PICTURE

Metric Spaces	
Non-weakly scattered	Weakly scattered spaces
spaces	Scattered spaces

Tools and Techniques

Main Results

MAIN RESULT: PICTURE

$\textbf{S4}.\textbf{Grz}_1 \supset \textbf{S4}.\textbf{Grz}_2 \supset \textbf{S4}.\textbf{Grz}_3 \supset \cdots \ \textbf{S4}.\textbf{Grz} \supset \textbf{S4}.\textbf{1} \supset \textbf{S4}$

Metric Spaces		
Non-weakly scattered	Weakly scattered spaces	
spaces	Scattered spaces	
	$\ensuremath{Rank} = 1$	S4.Grz ₁

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Tools and Techniques

Main Results

Conclusions 00000000000

MAIN RESULT: PICTURE

$\textbf{S4.Grz}_1 \supset \textbf{S4.Grz}_2 \supset \textbf{S4.Grz}_3 \supset \cdots \ \textbf{S4.Grz} \supset \textbf{S4.1} \supset \textbf{S4}$

Metric Spaces		
Non-weakly scattered	Weakly scattered spaces	
spaces	Scattered spaces	
	Rank < 2	
		S4.Grz ₂
	$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$S4.Grz_1$

Tools and Techniques

Main Results

Conclusions 00000000000

MAIN RESULT: PICTURE

$\text{S4.Grz}_1 \supset \text{S4.Grz}_2 \supset \text{S4.Grz}_3 \supset \cdots \ \text{S4.Grz} \supset \text{S4.1} \supset \text{S4}$

Metric Spaces		
Non-weakly scattered	Weakly scattered spaces	
spaces	Scattered spaces	
	Rank ≤ 3	S4.Grz ₃
	$ Rank \le 2$	$S4.Grz_2$
	Rank = 1	$S4.Grz_1$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Tools and Techniques

Main Results

Conclusions 000000000000

MAIN RESULT: PICTURE

$\textbf{S4.Grz}_1 \supset \textbf{S4.Grz}_2 \supset \textbf{S4.Grz}_3 \supset \cdots ~~ \textbf{S4.Grz} \supset \textbf{S4.1} \supset \textbf{S4}$

Metric Spaces		
Non-weakly scattered	Weakly scattered spaces	
spaces	Scattered spaces	S4.Grz
	Rank ≤ 3	S4.Grz ₃
	Rank ≤ 2	S4.Grz ₂
	Rank = 1	$S4.Grz_1$

Tools and Techniques

Main Results

Conclusions 0000000000000

MAIN RESULT: PICTURE

$\textbf{S4.Grz}_1 \supset \textbf{S4.Grz}_2 \supset \textbf{S4.Grz}_3 \supset \cdots \ \textbf{S4.Grz} \supset \textbf{S4.1} \supset \textbf{S4}$

Metric Spaces		
Non-weakly scattered	Weakly scattered spaces	S4 .1
spaces	Scattered spaces	S4.Grz
	$ Rank \leq 3$	$S4.Grz_3$
	Rank ≤ 2	S4.Grz ₂
	$ \qquad \qquad Rank = 1$	$S4.Grz_1$

Tools and Techniques

Main Results

Conclusions 00000000000000

MAIN RESULT: PICTURE

$\textbf{S4.Grz}_1 \supset \textbf{S4.Grz}_2 \supset \textbf{S4.Grz}_3 \supset \cdots \ \textbf{S4.Grz} \supset \textbf{S4.1} \supset \textbf{S4}$

Metric Spaces		
Non-weakly scattered	Weakly scattered sp	aces S4.1
spaces	Scattered spaces	S4.Grz
	Rank ≤ 3	S4.Grz ₃
	$ Rank \le 2$	S4.Grz ₂
S	4 Rank =	1 S4 . Grz ₁

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Tools and Techniques

Main Results

Conclusions 0000000000000

MAIN RESULT: PICTURE

$\textbf{S4.Grz}_1 \supset \textbf{S4.Grz}_2 \supset \textbf{S4.Grz}_3 \supset \cdots \ \textbf{S4.Grz} \supset \textbf{S4.1} \supset \textbf{S4}$

Metric Spaces			
Non-weakly scattered	Weak	ly scattered spaces	S4.1
spaces	Sca	attered spaces	S4.Grz
		Dault < 2	
		Rank ≤ 3	S4.Grz ₃
		Rank ≤ 2	S4.Grz ₂
S	4	Rank = 1	$S4.Grz_1$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Tools and Techniques

Main Results

Conclusions 000000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

OPEN QUESTION

Generalize to paracompact spaces?

Tools and Techniques

Main Results

Conclusions 0000000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The End

We are happy to distribute a pre-published version of the paper containing complete details on the results presented today, please inquire!

Тналкs... ... for your attention! And ... to the organizers!

Main Results

Conclusions 0000000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The End

We are happy to distribute a pre-published version of the paper containing complete details on the results presented today, please inquire!

THANKS		
	for your attention!	
	And	
	to the organizers!	