Modal Logics of Metric Spaces

Joel Lucero-Bryan
Khalifa University, Abu Dhabi, U.A.E. joel.lucero-bryan@kustar.ac.ae

Joint work with:
Guram Bezhanishvili and David Gabelaia

ToLo 4 Tbilisi, Georgia

25 June 2014

Modal Language and Interpretation

A Topological Interpretation (in space X)

Variable :	p	'is'	A	: Subset
Negation :	\neg	'is'	$X-$: Complement
Disjunction:	V	'is'	\cup	: Union
Diamond:	\diamond	'is'	c	$:$ Closure

S4 and Kuratowski Closure

Modal Language and Interpretation

A Topological Interpretation (in space X)

Variable :	p	'is'	A	: Subset
Negation:	\neg	'is'	$X-$: Complement
Disjunction:	\vee	'is'	\cup	: Union
Diamond :	\diamond	'is'	\mathbf{c}	$:$ Closure

S4 and Kuratowski Closure

$$
\begin{array}{rlll}
\diamond(p \vee q) \leftrightarrow \diamond p \vee \diamond q & \text { 'is' } & \mathbf{c}(A \cup B)=\mathbf{c} A \cup \mathbf{c} B \\
\diamond \perp \leftrightarrow \perp & \text { 'is' } & \mathbf{c} \varnothing=\varnothing \\
p \rightarrow \diamond p & \text { 'is' } & A \subseteq \mathbf{c} A \\
\diamond \diamond p \rightarrow \diamond p & \text { 'is' } & \mathbf{c c} A \subseteq \mathbf{c} A
\end{array}
$$

Historical Development

Theorem (McKinsey and Tarski 1944)

The logic of all topological spaces is $\mathbf{S 4}$.

```
Theorem (McKinsey and Tarski 1944)
The logic of any separable dense-in-itself metric space is S4.
```

Corollaries

$\log (\mathbb{Q})=$ S4, and
$\log (\mathbf{C})=\mathbf{S} 4$.

Historical Development

Theorem (McKinsey and Tarski 1944)

The logic of all topological spaces is $\mathbf{S 4}$.

Theorem (McKinsey and Tarski 1944)
The logic of any separable dense-in-itself metric space is $\mathbf{S 4}$.

Historical Development

Theorem (McKinsey and Tarski 1944)

The logic of all topological spaces is $\mathbf{S 4}$.

Theorem (McKinsey and Tarski 1944)
The logic of any separable dense-in-itself metric space is $\mathbf{S 4}$.

Corollaries
$\log (\mathbb{R})=\mathbf{S} 4$,
$\log (\mathbb{Q})=\mathbf{S 4}$, and
$\log (\mathbf{C})=\mathbf{S} 4$.

Strengthening M\&T's Results

Theorem (Rasiowa and Sikorski 1963)

The logic of any dense-in-itself metric space is $\mathbf{S 4}$.

```
Special Case (BezHanishvili and Harding 2011)
Characterized the logics of metric Stone spaces.
```


GOAL

```
Characterize the logic of each metric space.
```

APPROACH
, Weakly Scattered
Not Weakly Scätered

Strengthening M\&T's Results

Theorem (Rasiowa and Sikorski 1963)

The logic of any dense-in-itself metric space is $\mathbf{S 4}$.

Special Case (Bezhanishvili and Harding 2011)

Characterized the logics of metric Stone spaces.

Characterize the logic of each metric space.
\square
, Weakly Scattered

- Not Maakly Scattered

Strengthening M\&T's Results

Theorem (Rasiowa and Sikorski 1963)

The logic of any dense-in-itself metric space is $\mathbf{S 4}$.

Special Case (Bezhanishvili and Harding 2011)
Characterized the logics of metric Stone spaces.

GOAL
Characterize the logic of each metric space.
\square

Weakly Scattered

- Not Moakly Scattered

Strengthening M\&T's Results

Theorem (Rasiowa and Sikorski 1963)

The logic of any dense-in-itself metric space is $\mathbf{S 4}$.

Special Case (Bezhanishvili and Harding 2011)

Characterized the logics of metric Stone spaces.

GOAL

Characterize the logic of each metric space.

APPROACH

Weakly Scattered
Not Weakly Scattered

Strengthening M\&T's Results

Theorem (Rasiowa and Sikorski 1963)

The logic of any dense-in-itself metric space is $\mathbf{S 4}$.

Special Case (Bezhanishvili and Harding 2011)

Characterized the logics of metric Stone spaces.

GOAL

Characterize the logic of each metric space.

APPROACH

Not Weakly Scattered

Strengthening M\&T's Results

Theorem (Rasiowa and Sikorski 1963)

The logic of any dense-in-itself metric space is $\mathbf{S 4}$.

Special Case (Bezhanishvili and Harding 2011)

Characterized the logics of metric Stone spaces.

GOAL

Characterize the logic of each metric space.

APPROACH

Some Definitions

RECALL

(0) $x \in X$ isolated: $\{x\}$ is open iso (X) : set of isolated points in X
© X dense-in-itself (dii): iso $(X)=\varnothing$

- X is scattered: iso $(Y) \neq \varnothing$ for every subspace $Y(\neq \varnothing)$ of X
- X is weakly scattered: $\mathbf{c}($ iso $X)=X$

Some Definitions

RECALL

(0) $x \in X$ isolated: $\{x\}$ is open iso (X) : set of isolated points in X
(c) X dense-in-itself (dii): iso $(X)=\varnothing$

- X is scattered: iso $(Y) \neq \varnothing$ for every subspace $Y(\neq \varnothing)$ of X
- X is weakly scattered: $\mathrm{c}($ iso $X)=X$

Some Definitions

RECALL

(1) $x \in X$ isolated: $\{x\}$ is open iso (X) : set of isolated points in X
(0) X dense-in-itself (dii): iso $(X)=\varnothing$

- X is scattered: iso $(Y) \neq \varnothing$ for every subspace $Y(\neq \varnothing)$ of X
- X is weakly scattered: c(iso $X)=X$

Some Definitions

RECALL

(1) $x \in X$ isolated: $\{x\}$ is open iso (X) : set of isolated points in X
(0) X dense-in-itself (dii): iso $(X)=\varnothing$

- X is scattered: iso $(Y) \neq \varnothing$ for every subspace $Y(\neq \varnothing)$ of X
(1) X is weakly scattered: $\mathbf{c}($ iso $X)=X$

Main Tools: Frames

S4-FRAME

(1) Frame $\mathfrak{F}=(W, R): W \neq \varnothing$ and $R \subseteq W \times W$
(2) S4-Frame $\mathfrak{F}: R$ is reflexive and transitive
(3) Rooted $\mathfrak{F}: \exists r \in W, \forall w \in W, r R w$

Finite Modpl Property (FMP)
 Logic \mathbf{L} has FMP: for any nontheorem φ of \mathbf{L}, there is a finite frame \mathfrak{F} for \mathbf{L} refuting φ

All the logics at play herein have the FMP!
\square

Main Tools: Frames

S4-FRAME

(1) Frame $\mathfrak{F}=(W, R): W \neq \varnothing$ and $R \subseteq W \times W$
(2) S4-Frame $\mathfrak{F}: R$ is reflexive and transitive
© Rooted $\mathfrak{F}: \exists r \in W, \forall w \in W, r R w$
\square
Finite Model Property (FMP)
Logic \mathbf{L} has FMP: for any nontheorem φ of \mathbf{L}, there is a finite frame \mathfrak{F} for \mathbf{L} refuting φ

All the logics at play herein have the FMP!
EXAMPLE: S4 \square

Main Tools: Frames

S4-FRAME

(1) Frame $\mathfrak{F}=(W, R): W \neq \varnothing$ and $R \subseteq W \times W$
(2) S4-Frame $\mathfrak{F}: R$ is reflexive and transitive
(3) Rooted $\mathfrak{F}: \exists r \in W, \forall w \in W, r R w$
\square
Finite Model Property (FMP)
Logic \mathbf{L} has FMP: for any nontheorem φ of \mathbf{L}, there is a finite frame \mathfrak{F} for \mathbf{L} refuting φ

All the logics at play herein have the FMP!
\square
\square

Main Tools: Frames

S4-FRAME

(1) Frame $\mathfrak{F}=(W, R): W \neq \varnothing$ and $R \subseteq W \times W$
(2) S4-Frame $\mathfrak{F}: R$ is reflexive and transitive
(3) Rooted $\mathfrak{F}: \exists r \in W, \forall w \in W, r R w$

Finite Model Property (FMP)

Logic \mathbf{L} has FMP: for any nontheorem φ of \mathbf{L}, there is a finite frame \mathfrak{F} for \mathbf{L} refuting φ.

All the logics at play herein have the FMP!
\square

Main Tools: Frames

S4-FRAME

(1) Frame $\mathfrak{F}=(W, R): W \neq \varnothing$ and $R \subseteq W \times W$
(2) S4-Frame $\mathfrak{F}: R$ is reflexive and transitive
(3) Rooted $\mathfrak{F}: \exists r \in W, \forall w \in W, r R w$

Finite Model Property (FMP)

Logic \mathbf{L} has FMP: for any nontheorem φ of \mathbf{L}, there is a finite frame \mathfrak{F} for \mathbf{L} refuting φ.

All the logics at play herein have the FMP!
EXAMPLE: S4 AND $\diamond p \wedge \diamond q \rightarrow \diamond(p \wedge q)$

Main Tools: Frames

S4-FRAME

(1) Frame $\mathfrak{F}=(W, R): W \neq \varnothing$ and $R \subseteq W \times W$
(2) S4-Frame $\mathfrak{F}: R$ is reflexive and transitive
(3) Rooted $\mathfrak{F}: \exists r \in W, \forall w \in W, r R w$

Finite Model Property (FMP)

Logic \mathbf{L} has FMP: for any nontheorem φ of \mathbf{L}, there is a finite frame \mathfrak{F} for \mathbf{L} refuting φ.

All the logics at play herein have the FMP!

Main Tools: Truth Preserving Operations

\square
Truth Preserving Operations
Open Subspace: $Y \subseteq X$ and Y open in X Interior Image: $f: X \rightarrow Y$ interior (continuous and open) and onto

Viewing Frames as Spaces
S4-frame $\mathfrak{F}=(W, R)$, Alexandroff topology $\tau_{R}: R$-upsets in \mathfrak{F}
Via τ_{R}, Kripke semantics is a special case of topological semantics. Move freely: (W, R) vs. $\left(W, \tau_{R}\right)$
\square
\qquad

Main Tools: Truth Preserving Operations

Truth Preserving Operations
Open Subspace: $Y \subseteq X$ and Y open in X Interior Image: $f: X \rightarrow Y$ interior (continuous and open) and onto $\log (X) \subseteq \log (Y)$, equivalently
\squareViewing Frames as SpacesS4-frame $\mathfrak{F}=(W, R)$, Alexandroff topology $\tau_{R}: R$-upsets in \mathfrak{F}Via τ_{R}, Kripke semantics is a special case of topological semantics.Move freely: (W, R) vs. $\left(W, \tau_{R}\right)$

\square
\qquad

Main Tools: Truth Preserving Operations

Truth Preserving Operations

Open Subspace: $Y \subseteq X$ and Y open in X Interior Image: $f: X \rightarrow Y$ interior (continuous and open) and onto $\log (X) \subseteq \log (Y)$, equivalently $Y \not \forall \varphi$ implies $X \not \models \varphi$.

> Viewing Frames as Spaces
> S4-frame $\mathfrak{F}=(W, R)$, Alexandroff topology $\tau_{R}: R$-upsets in \mathfrak{F}
> Via τ_{R}, Kripke semantics is a special case of topological semantics. Move freely: (W, R) vs. $\left(W, \tau_{R}\right)$

\square
\qquad

Main Tools: Truth Preserving Operations

Truth Preserving Operations

Open Subspace: $Y \subseteq X$ and Y open in X Interior Image: $f: X \rightarrow Y$ interior (continuous and open) and onto $\log (X) \subseteq \log (Y)$, equivalently $Y \not \forall \varphi$ implies $X \not \models \varphi$.

Viewing Frames as Spaces

S4-frame $\mathfrak{F}=(W, R)$, Alexandroff topology $\tau_{R}: R$-upsets in \mathfrak{F} Via τ_{R}, Kripke semantics is a special case of topological semantics. Move freely: (W, R) vs. $\left(W, \tau_{R}\right)$

Main Tools: Truth Preserving Operations

Truth Preserving Operations

Open Subspace: $Y \subseteq X$ and Y open in X
Interior Image: $f: X \rightarrow Y$ interior (continuous and open) and onto
$\log (X) \subseteq \log (Y)$, equivalently $Y \not \forall \varphi$ implies $X \not \vDash \varphi$.

Viewing Frames as Spaces

S4-frame $\mathfrak{F}=(W, R)$, Alexandroff topology $\tau_{R}: R$-upsets in \mathfrak{F} Via τ_{R}, Kripke semantics is a special case of topological semantics. Move freely: (W, R) vs. $\left(W, \tau_{R}\right)$

Main Tools: Truth Preserving Operations

Truth Preserving Operations

Open Subspace: $Y \subseteq X$ and Y open in X Interior Image: $f: X \rightarrow Y$ interior (continuous and open) and onto $\log (X) \subseteq \log (Y)$, equivalently $Y \not \forall \varphi$ implies $X \not \vDash \varphi$.

Viewing Frames as Spaces

S4-frame $\mathfrak{F}=(W, R)$, Alexandroff topology $\tau_{R}: R$-upsets in \mathfrak{F} Via τ_{R}, Kripke semantics is a special case of topological semantics. Move freely: (W, R) vs. $\left(W, \tau_{R}\right)$

Main Tools: Truth Preserving Operations

Truth Preserving Operations

Open Subspace: $Y \subseteq X$ and Y open in X Interior Image: $f: X \rightarrow Y$ interior (continuous and open) and onto $\log (X) \subseteq \log (Y)$, equivalently $Y \not \forall \varphi$ implies $X \not \models \varphi$.

Viewing Frames as Spaces

S4-frame $\mathfrak{F}=(W, R)$, Alexandroff topology $\tau_{R}: R$-upsets in \mathfrak{F} Via τ_{R}, Kripke semantics is a special case of topological semantics. Move freely: (W, R) vs. $\left(W, \tau_{R}\right)$

```
EXAMPLE: \mathbb{R}\mathrm{ AND }\diamondp\wedge\diamondq->\diamond(p\wedgeq)
```


Main Tools: Truth Preserving Operations

Truth Preserving Operations

Open Subspace: $Y \subseteq X$ and Y open in X Interior Image: $f: X \rightarrow Y$ interior (continuous and open) and onto $\log (X) \subseteq \log (Y)$, equivalently $Y \not \forall \varphi$ implies $X \not \models \varphi$.

Viewing Frames as Spaces

S4-frame $\mathfrak{F}=(W, R)$, Alexandroff topology $\tau_{R}: R$-upsets in \mathfrak{F} Via τ_{R}, Kripke semantics is a special case of topological semantics. Move freely: (W, R) vs. $\left(W, \tau_{R}\right)$

```
EXAMPLE: \mathbb{R AND }\diamondp\wedge\diamondq->\diamond(p\wedgeq)
```


Another Example

Mapping Lemma (Rasiowa And Sikorski 1963)

Any finite rooted S4-frame is an interior image of any dii metric space.

Pelczynski Compactification of ω

Another Example

Mapping Lemma (Rasiowa and Sikorski 1963)

Any finite rooted $\mathbf{S 4}$-frame is an interior image of any dii metric space.

Pelczynski Compactification of ω

Another Example

Mapping Lemma (Rasiowa and Sikorski 1963)

Any finite rooted $\mathbf{S 4}$-frame is an interior image of any dii metric space.

Pelczynski Compactification of ω

Another Example

Mapping Lemma (Rasiowa and Sikorski 1963)

Any finite rooted $\mathbf{S 4}$-frame is an interior image of any dii metric space.

Pelczynski Compactification of ω

Cantor-Bendixon Decomposition

The CB Theorem

Let X be a space.
There are subspaces S and D of X such that S is scattered, D is dii, $X=S \cup D$, and $S \cap D=\varnothing$.

Cantor-Bendixon Decomposition

The CB Theorem

Let X be a space.
There are subspaces S and D of X such that
S is scattered, D is dii, $X=S \cup D$, and $S \cap D=\varnothing$.

Quasitrees, Trees and Top Thin Quasitrees

QUASITREES (QTREE)

(1) qtree $\mathfrak{F}=(W, R)$: rooted $\mathbf{S} 4$-frame satisfying $\forall u, v \in R^{-1}(w)$ either $u R v$ or $v R u$
(3) Tree $\mathfrak{T}=(W, R):$ antisymmetric qtree
© Height of finite tree \mathfrak{T} : greatest cardinality of a chain in \mathfrak{T}
Top Thin Quastrmbes (TT-Qtrebs)
tt-qtree \mathfrak{F} : Built from finite qtree \mathfrak{G} by adding a 'new top' to each maximal cluster; denote \mathfrak{G} by \mathfrak{F}^{-}

Quasitrees, Trees and Top Thin Quasitrees

QUASITREES (QTREE)

(1) qtree $\mathfrak{F}=(W, R)$: rooted $\mathbf{S 4}$-frame satisfying $\forall u, v \in R^{-1}(w)$ either $u R v$ or $v R u$
(2) Tree $\mathfrak{T}=(W, R)$: antisymmetric qtree
(3) Height of finite tree \mathfrak{T} : greatest cardinality of a chain in \mathfrak{T}

Quasitrees, Trees and Top Thin Quasitrees

QUASITREES (QTREE)

(1) qtree $\mathfrak{F}=(W, R)$: rooted $\mathbf{S} 4$-frame satisfying $\forall u, v \in R^{-1}(w)$ either $u R v$ or $v R u$
(2) Tree $\mathfrak{T}=(W, R)$: antisymmetric qtree
(3) Height of finite tree \mathfrak{T} : greatest cardinality of a chain in \mathfrak{T}

Top Thin Quasitrees (TT-Qtrees)

tt-qtree \mathfrak{F} : Built from finite qtree \mathfrak{G} by adding a 'new top' to each maximal cluster; denote \mathfrak{G} by \mathfrak{F}^{-}

$\mathfrak{G}=\mathfrak{F}^{-}$

The Logics of Interest

Logics

S4
$\mathbf{S 4 . 1}=\mathbf{S} 4+\square \diamond p \rightarrow \diamond \square p$
$\mathbf{S 4 . G r z}=\mathbf{S 4}+\mathbf{g r z}=\mathbf{S} 4+\square(\square(p \rightarrow \square p) \rightarrow p) \rightarrow p$
$\mathbf{S 4 . G r z}{ }_{n}=\mathbf{S 4 . G r z}+\mathbf{b d}_{n}$

FORMULAS

The Logics of Interest

Logics

S4
$\mathbf{S 4 . 1}=\mathbf{S} 4+\square \diamond p \rightarrow \diamond \square p$
$\mathbf{S 4 . G r z}=\mathbf{S 4}+\mathbf{g r z}=\mathbf{S} 4+\square(\square(p \rightarrow \square p) \rightarrow p) \rightarrow p$
$\mathbf{S 4 . G r z}{ }_{n}=\mathbf{S 4 . G r z}+\mathbf{b d}_{n}$

FORMULAS

$$
\begin{aligned}
\mathbf{b d}_{1} & =\diamond \square p_{1} \rightarrow p_{1} \\
\mathbf{b d}_{n+1} & =\diamond\left(\square p_{n+1} \wedge \neg \mathbf{b} \mathbf{d}_{n}\right) \rightarrow p_{n+1}
\end{aligned}
$$

Qtrees for Logics of Interest and Main Result

(Known) Lemma

(1) S4 is the logic of finite rooted qtrees.
(2) S4.1 is the logic of tt-qtrees.
(3) S4.Grz is the modal logic of finite trees.
(1) $\mathbf{S 4 . G r z}_{n}$ is the modal logic of finite trees of height $\leq n$.

$$
\begin{aligned}
& \text { Theorem: Main Result (Brief Version) } \\
& \text { The modal logics of metric spaces form the chain } \\
& \mathrm{S} 4 . \mathrm{Grz}_{1} \supset \mathrm{~S} 4 . \mathrm{Grz}_{2} \supset \mathrm{~S} 4 . \mathrm{Grz}_{3} \supset \ldots \mathrm{~S} 4 . \mathrm{Grz} \supset \mathrm{~S} 4.1 \supset \mathrm{~S} 4 .
\end{aligned}
$$

Qtrees for Logics of Interest and Main Result

(Known) Lemma

(1) S4 is the logic of finite rooted qtrees.
(2) S4.1 is the logic of tt-qtrees.
(3) S4.Grz is the modal logic of finite trees.
(1) $\mathbf{S 4 . G r z}_{n}$ is the modal logic of finite trees of height $\leq n$.

Theorem: Main Result (Brief Version)

The modal logics of metric spaces form the chain

Case I

Theorem

S4 is the logic of any non-weakly scattered metric space X.

Proof Sketch

Finite rooted qtree $\mathfrak{F}: \mathfrak{F} \not \forall \varphi$

$Y \not \forall \varphi$
$\mathbf{S 4}=\log (Y) \supseteq \log (X) \supseteq \mathbf{S} 4$.

CASE I

Theorem

S4 is the logic of any non-weakly scattered metric space X.

Proof Sketch

$Y=X-\mathbf{c}(\operatorname{iso}(X))$ is nonempty open dii subspace of X.

φ : nontheorem of S 4

Finite rooted qtree $\mathfrak{F}: \mathfrak{F} \not \neq \varphi$
\mathfrak{F} is interior image of Y
$\mathrm{S} 4=\log (Y) \supseteq \log (X) \supseteq \mathrm{S} 4$.

Case I

THEOREM

S4 is the logic of any non-weakly scattered metric space X.

Proof Sketch

$Y=X-\mathbf{c}(\mathrm{iso}(X))$ is nonempty open dii subspace of X.
φ : nontheorem of S4
Finite rooted qtree $\mathfrak{F}: \mathfrak{F} \not \forall \varphi$

$\mathrm{S} 4=\log (Y) \supseteq \log (X) \supseteq \mathbf{S} 4$.

CASE I

THEOREM

S4 is the logic of any non-weakly scattered metric space X.

Proof Sketch

$Y=X-\mathbf{c}(\operatorname{iso}(X))$ is nonempty open dii subspace of X.
φ : nontheorem of S4
Finite rooted qtree $\mathfrak{F}: \mathfrak{F} \not \models \varphi$

CASE I

THEOREM

S4 is the logic of any non-weakly scattered metric space X.

Proof Sketch

$Y=X-\mathbf{c}(\mathrm{iso}(X))$ is nonempty open dii subspace of X.
φ : nontheorem of S4
Finite rooted qtree $\mathfrak{F}: \mathfrak{F} \not \neq \varphi$
\mathfrak{F} is interior image of Y
$\mathrm{S} 4=\log (Y) \supseteq \log (X) \supseteq \mathrm{S} 4$.

CASE I

THEOREM

S4 is the logic of any non-weakly scattered metric space X.

Proof Sketch

$Y=X-\mathbf{c}(\mathrm{iso}(X))$ is nonempty open dii subspace of X.
φ : nontheorem of S4
Finite rooted qtree $\mathfrak{F}: \mathfrak{F} \not \neq \varphi$
\mathfrak{F} is interior image of Y
$Y \not \forall \varphi$
$\mathrm{S} 4=\log (Y) \supseteq \log (X) \supseteq \mathrm{S} 4$

Case I

THEOREM

S4 is the logic of any non-weakly scattered metric space X.

Proof Sketch

$Y=X-\mathbf{c}(\mathrm{iso}(X))$ is nonempty open dii subspace of X.
φ : nontheorem of S4
Finite rooted qtree $\mathfrak{F}: \mathfrak{F} \not \neq \varphi$
\mathfrak{F} is interior image of Y
$Y \not \forall \varphi$
$\mathbf{S 4}=\log (Y) \supseteq \log (X) \supseteq \mathbf{S} 4$.

Case II: Strongly Zero-Dimensional

Telgarski's Theorem
 Each Scattered metric space is strongly zero-dimensional.
 ``` Two UsEPUL LEMMAS
 (1) If F

\mp@subsup{F}{1}{},···,\mp@subsup{F}{n}{}\mathrm{ are nonempty pairwise disjoint closed subsets of
 a strongly zero-dimensional normal space }X\mathrm{ , then there are
 pairwise disjoint clopen subsets }\mp@subsup{U}{1}{},···,\mp@subsup{U}{n}{}\mathrm{ of }X\mathrm{ such that
 Fi\subseteq}\subseteq\mp@subsup{U}{i}{}\mathrm{ and }X=\mp@subsup{U}{1}{}\cup\cdots\cupU\mp@subsup{U}{n}{
 (a) For any discrete subset }A\mathrm{ of a metric space }X\mathrm{ , there is a
 disjoint family of balls {B\mp@subsup{\varepsilon}{a}{}}:a\inA```}

\section*{DEFINITION}

Strongly zero-dimensional \(X\) : completely regular space such that every finite cover of \(X\) consisting of cozero-sets has a finite pairwise disjoint open refinement

\section*{Case II: Strongly Zero-Dimensional}

\section*{Telgarski's Theorem}

Each Scattered metric space is strongly zero-dimensional.

\section*{Two Useful Lemmas}
(1) If \(F_{1}, \ldots, F_{n}\) are nonempty pairwise disjoint closed subsets of a strongly zero-dimensional normal space \(X\), then there are pairwise disjoint clopen subsets \(U_{1}, \ldots, U_{n}\) of \(X\) such that \(F_{i} \subseteq U_{i}\) and \(X=U_{1} \cup \cdots \cup U_{n}\).
(2) For any discrete subset \(A\) of a metric space \(X\), there is a disjoint family of balls \(\left\{B_{\varepsilon_{a}}: a \in A\right\}\)

> DEFINITION
> Strongly zero-dimensional \(X\) : completely regular space such that every finite cover of \(X\) consisting of cozero-sets has a finite pairwise disjoint open refinement

\section*{Case II: Strongly Zero-Dimensional}

\section*{Telgarski's Theorem}

Each Scattered metric space is strongly zero-dimensional.

\section*{Two Useful Lemmas}
(1) If \(F_{1}, \ldots, F_{n}\) are nonempty pairwise disjoint closed subsets of a strongly zero-dimensional normal space \(X\), then there are pairwise disjoint clopen subsets \(U_{1}, \ldots, U_{n}\) of \(X\) such that \(F_{i} \subseteq U_{i}\) and \(X=U_{1} \cup \cdots \cup U_{n}\).
(2) For any discrete subset \(A\) of a metric space \(X\), there is a disjoint family of balls \(\left\{B_{\varepsilon_{a}}: a \in A\right\}\).

\footnotetext{
Dencmos
Strongly zero-dimensional \(X\) : completely regular space such that every finite cover of \(X\) consisting of cozero-sets has a finite pairwise disjoint open refinement
}

\section*{Case II: Strongly Zero-Dimensional}

\section*{Telgarski's Theorem}

Each Scattered metric space is strongly zero-dimensional.

\section*{Two Useful Lemmas}
(1) If \(F_{1}, \ldots, F_{n}\) are nonempty pairwise disjoint closed subsets of a strongly zero-dimensional normal space \(X\), then there are pairwise disjoint clopen subsets \(U_{1}, \ldots, U_{n}\) of \(X\) such that \(F_{i} \subseteq U_{i}\) and \(X=U_{1} \cup \cdots \cup U_{n}\).
(2) For any discrete subset \(A\) of a metric space \(X\), there is a disjoint family of balls \(\left\{B_{\varepsilon_{a}}: a \in A\right\}\).

\section*{DEFINITION}

Strongly zero-dimensional \(X\) : completely regular space such that every finite cover of \(X\) consisting of cozero-sets has a finite pairwise disjoint open refinement

\section*{Case II: The Mapping}

\section*{A Mapping Lemma}
\(n \in \omega\),
\(\mathfrak{T}\) : finite tree, height at most \(n+1\),
\(X\) : scattered metric space;
If \(X_{n} \neq \varnothing\) then there is an onto interior map \(f: X_{0} \cup \cdots \cup X_{n} \rightarrow \mathfrak{T}\) such that \(f(x)\) is the root of \(\mathfrak{T}\) for each \(x \in X_{n}\).

Proof
By induction on \(n \in \omega\)
Illustrated by pictures

\section*{Case II: The Mapping}

A Mapping Lemma
\(n \in \omega\),
\(\mathfrak{T}\) : finite tree, height at most \(n+1\),
\(X\) : scattered metric space;
If \(X_{n} \neq \varnothing\) then there is an onto interior map \(f: X_{0} \cup \cdots \cup X_{n} \rightarrow \mathfrak{T}\) such that \(f(x)\) is the root of \(\mathfrak{T}\) for each \(x \in X_{n}\).

Proof
By induction on \(n \in \omega\)
Illustrated by pictures

\section*{Case II: The Mapping}

\section*{A Mapping Lemma}
\(n \in \omega\),
\(\mathfrak{T}\) : finite tree, height at most \(n+1\),
\(X\) : scattered metric space;
If \(X_{n} \neq \varnothing\) then there is an onto interior map \(f: X_{0} \cup \cdots \cup X_{n} \rightarrow \mathfrak{T}\) such that \(f(x)\) is the root of \(\mathfrak{T}\) for each \(x \in X_{n}\).

\section*{Proof}

By induction on \(n \in \omega\)
Illustrated by pictures

\section*{Case II: The Mapping-Base Case}

\section*{Case II: The Mapping-Base Case}

\section*{Case II: The Mapping-Inductive Case}

\section*{Case II: The Mapping-Inductive Case}

\section*{Scattered Metric Spaces}

\section*{Case II: The Mapping-Inductive Case}

\section*{Scattered Metric Spaces}

\section*{Case II: The Mapping-Inductive Case}

\[
X_{n+1} \subseteq \mathbf{c} F_{i}
\]

\section*{Scattered Metric Spaces}

\section*{Case II: The Mapping-Inductive Case}

\section*{Case II: Infinite Rank}

\section*{Theorem}

S4.Grz is the logic of ...
(1) all scattered spaces. (Esakia 1981)
(3) any ordinal \(\alpha \geq \omega^{\omega}\). (Abashidze 1987/Blass 1990)

\section*{Theorem}

S4.Grz is the logic of any scattered metric space \(X\) of infinite rank.
Proof Sketch
\(X \vDash\) grz: by above Lemma
\(\varphi\) : nontheorem of S4.Grz
Finite tree \(\mathfrak{T}\) of height \(n(\geq 1)\) : \(\mathfrak{T} \not \forall \varphi\)
\(\mathfrak{T}\) is interior image of \(X_{0} \cup \cdots \cup X_{n-1}: X_{0} \cup \cdots \cup X_{n-1} \not \forall \varphi\)
\(X_{0} \cup \cdots \cup X_{n-1}\) open subspace of \(X: X \nvdash \varphi\)

\section*{Case II: Infinite Rank}

\section*{TheOREM}

S4.Grz is the logic of ...
(1) all scattered spaces. (Esakia 1981)
(2) any ordinal \(\alpha \geq \omega^{\omega}\). (Abashidze 1987/Blass 1990)

\section*{Theorem}

S4. Grz is the logic of any scattered metric space \(X\) of infinite rank

\section*{PROOF SkETCH}
\(X \vDash\) grz: by above Lemma
\(\varphi\) : nontheorem of S4.Grz
Finite tree \(\mathfrak{T}\) of height \(n(\geq 1): \mathfrak{T} \nvdash \varphi\)
\(\mathfrak{T}\) is interior image of \(X_{0} \cup \cdots \cup X_{n-1}: X_{0} \cup \cdots \cup X_{n-1} \nLeftarrow \varphi\)
\(X_{0} \cup \cdots \cup X_{n-1}\) open subspace of \(X: X \not \forall \varphi\)

\section*{Case II: Infinite Rank}

\section*{THEOREM}

S4.Grz is the logic of ...
(1) all scattered spaces. (Esakia 1981)
(2) any ordinal \(\alpha \geq \omega^{\omega}\). (Abashidze 1987/Blass 1990)

\section*{Theorem}

S4.Grz is the logic of any scattered metric space \(X\) of infinite rank.

\section*{Case II: Infinite Rank}

\section*{TheOREM}

S4.Grz is the logic of ...
(1) all scattered spaces. (Esakia 1981)
(2) any ordinal \(\alpha \geq \omega^{\omega}\). (Abashidze 1987/Blass 1990)

\section*{THEOREM}

S4.Grz is the logic of any scattered metric space \(X\) of infinite rank.

\section*{Proof Sketch}
\(X \vDash\) grz: by above Lemma
\(\varphi\) : nontheorem of S4.Grz
Finite tree \(\mathfrak{T}\) of height \(n(\geq 1): \mathfrak{T} \not \nmid \varphi\) \(\mathfrak{T}\) is interior image of \(X_{0} \cup\) \(X_{0} \cup \cdots \cup X_{n-1}\) open subspace of \(X: X \not \forall \varphi\)

\section*{Case II: Infinite Rank}

\section*{TheOREM}

S4.Grz is the logic of ...
(1) all scattered spaces. (Esakia 1981)
(2) any ordinal \(\alpha \geq \omega^{\omega}\). (Abashidze 1987/Blass 1990)

\section*{THEOREM}

S4.Grz is the logic of any scattered metric space \(X\) of infinite rank.

\section*{Proof Sketch}
\(X \vDash\) grz: by above Lemma
\(\varphi\) : nontheorem of S4.Grz
Finite tree \(\mathfrak{T}\) of height \(n(\geq 1)\) : \(\mathfrak{T} \not \forall \varphi\) \(\mathfrak{T}\) is interior image of \(X_{0} \cup\) \(X_{0} \cup \cdots \cup X_{n-1}\) open subspace of \(X\) :

\section*{Case II: Infinite Rank}

\section*{TheOREM}

S4.Grz is the logic of ...
(1) all scattered spaces. (Esakia 1981)
(2) any ordinal \(\alpha \geq \omega^{\omega}\). (Abashidze 1987/Blass 1990)

\section*{THEOREM}

S4.Grz is the logic of any scattered metric space \(X\) of infinite rank.

\section*{Proof Sketch}
\(X \vDash\) grz: by above Lemma
\(\varphi\) : nontheorem of S4.Grz
Finite tree \(\mathfrak{T}\) of height \(n(\geq 1): \mathfrak{T} \not \forall \varphi\)

\section*{Case II: Infinite Rank}

\section*{TheOREM}

S4.Grz is the logic of ...
(1) all scattered spaces. (Esakia 1981)
(2) any ordinal \(\alpha \geq \omega^{\omega}\). (Abashidze 1987/Blass 1990)

\section*{Theorem}

S4.Grz is the logic of any scattered metric space \(X\) of infinite rank.

\section*{Proof Sketch}
\(X \vDash\) grz: by above Lemma
\(\varphi\) : nontheorem of S4.Grz
Finite tree \(\mathfrak{T}\) of height \(n(\geq 1): \mathfrak{T} \not \forall \varphi\)
\(\mathfrak{T}\) is interior image of \(X_{0} \cup \cdots \cup X_{n-1}\) :

\section*{Case II: Infinite Rank}

\section*{TheOREM}

S4.Grz is the logic of ...
(1) all scattered spaces. (Esakia 1981)
(2) any ordinal \(\alpha \geq \omega^{\omega}\). (Abashidze 1987/Blass 1990)

\section*{Theorem}

S4.Grz is the logic of any scattered metric space \(X\) of infinite rank.

\section*{Proof Sketch}
\(X \vDash\) grz: by above Lemma
\(\varphi\) : nontheorem of S4.Grz
Finite tree \(\mathfrak{T}\) of height \(n(\geq 1): \mathfrak{T} \not \forall \varphi\)
\(\mathfrak{T}\) is interior image of \(X_{0} \cup \cdots \cup X_{n-1}: X_{0} \cup \cdots \cup X_{n-1} \not \models \varphi\)

\section*{Case II: Infinite Rank}

\section*{Theorem}

S4.Grz is the logic of ...
(1) all scattered spaces. (Esakia 1981)
(2) any ordinal \(\alpha \geq \omega^{\omega}\). (Abashidze 1987/Blass 1990)

\section*{Theorem}

S4.Grz is the logic of any scattered metric space \(X\) of infinite rank.

\section*{Proof Sketch}
\(X \vDash\) grz: by above Lemma
\(\varphi\) : nontheorem of S4.Grz
Finite tree \(\mathfrak{T}\) of height \(n(\geq 1): \mathfrak{T} \not \forall \varphi\)
\(\mathfrak{T}\) is interior image of \(X_{0} \cup \cdots \cup X_{n-1}: X_{0} \cup \cdots \cup X_{n-1} \not \vDash \varphi\)
\(X_{0} \cup \cdots \cup X_{n-1}\) open subspace of \(X\) :

\section*{Case II: Infinite Rank}

\section*{Theorem}

S4.Grz is the logic of ...
(1) all scattered spaces. (Esakia 1981)
(2) any ordinal \(\alpha \geq \omega^{\omega}\). (Abashidze 1987/Blass 1990)

\section*{Theorem}

S4.Grz is the logic of any scattered metric space \(X\) of infinite rank.

\section*{Proof Sketch}
\(X \vDash\) grz: by above Lemma
\(\varphi\) : nontheorem of S4.Grz
Finite tree \(\mathfrak{T}\) of height \(n(\geq 1): \mathfrak{T} \not \models \varphi\)
\(\mathfrak{T}\) is interior image of \(X_{0} \cup \cdots \cup X_{n-1}: X_{0} \cup \cdots \cup X_{n-1} \not \vDash \varphi\)
\(X_{0} \cup \cdots \cup X_{n-1}\) open subspace of \(X: X \not \forall \varphi\)

\section*{Case II: Finite Rank}

\section*{LEMMA}

In any scattered space \(X\) and any \(n \in \omega\), the interpretation of \(\mathbf{b d}_{n+1}\) contains \(X_{0} \cup \cdots \cup X_{n}\).

Theorem
\(\mathbf{S 4 .} \mathbf{G r z}_{n}\) is the logic of any scattered metric space \(X\) of rank \(n \in \omega\).

Proof Sketch
\(X=X_{0} \cup \cdots \cup X_{n-1} \vDash\) bd \(_{n}:\) by above Lemma
\(X \vDash\) grz: by Lemma on previous slide
\(\varphi\) : nontheorem of \(\mathbf{S 4} . \mathbf{G r z}_{n}\)
Finite tree \(\mathfrak{T}\) of height \(\leq n: \mathfrak{T} \not \forall \varphi\)
\(\mathfrak{T}\) is interior image of \(X\)
\(X \not \forall \varphi\)

\section*{Case II: Finite Rank}

\section*{LEMMA}

In any scattered space \(X\) and any \(n \in \omega\), the interpretation of \(\mathbf{b d}_{n+1}\) contains \(X_{0} \cup \cdots \cup X_{n}\).

\section*{Theorem}
\(\mathbf{S 4 . G r z}{ }_{n}\) is the logic of any scattered metric space \(X\) of rank \(n \in \omega\).
```

PrOOF Sketch
X=X
X\vDashgrz: by Lemma on previous slide
\varphi: nontheorem of S4.Grz
Finite tree }\mathfrak{T}\mathrm{ of height }\leqn:\Im
T}\mathrm{ is interior image of }
X\notF\varphi

```

\section*{Case II: Finite Rank}

\section*{LEMMA}

In any scattered space \(X\) and any \(n \in \omega\), the interpretation of \(\mathbf{b d}_{n+1}\) contains \(X_{0} \cup \cdots \cup X_{n}\).

\section*{Theorem}
\(\mathbf{S 4 . G r z}{ }_{n}\) is the logic of any scattered metric space \(X\) of rank \(n \in \omega\).

\section*{Proof Sketch}
\(X=X_{0} \cup \cdots \cup X_{n-1} \vDash\) bd \(_{n}\) : by above Lemma
\(X \vDash\) grz: by Lemma on previous slide

\section*{\(\varphi\) : nontheorem of S4.Grz}

Finite tree \(\mathfrak{T}\) of height \(\leq n: \mathfrak{T} \not \vDash \varphi\)
\(\mathfrak{T}\) is interior image of \(X\) \(X \nvdash \varphi\)

\section*{Case II: Finite Rank}

\section*{LEMMA}

In any scattered space \(X\) and any \(n \in \omega\), the interpretation of \(\mathbf{b d}_{n+1}\) contains \(X_{0} \cup \cdots \cup X_{n}\).

\section*{Theorem}
\(\mathbf{S 4 . G r z}{ }_{n}\) is the logic of any scattered metric space \(X\) of rank \(n \in \omega\).

\section*{Proof Sketch}
\(X=X_{0} \cup \cdots \cup X_{n-1} \vDash\) bd \(_{n}\) : by above Lemma
\(X \vDash\) grz: by Lemma on previous slide
\(\varphi\) : nontheorem of \(\mathbf{S 4 . G r z}{ }_{n}\)
Finite tree \(\mathfrak{T}\) of height \(\leq n: \mathfrak{T} \not \forall \varphi\)
\(\mathfrak{T}\) is interior image of \(X\)
\(X \not \forall \varphi\)

\section*{Case II: Finite Rank}

\section*{LEMMA}

In any scattered space \(X\) and any \(n \in \omega\), the interpretation of \(\mathbf{b d}_{n+1}\) contains \(X_{0} \cup \cdots \cup X_{n}\).

\section*{Theorem}
\(\mathbf{S 4 . G r z}{ }_{n}\) is the logic of any scattered metric space \(X\) of rank \(n \in \omega\).

\section*{Proof Sketch}
\(X=X_{0} \cup \cdots \cup X_{n-1} \vDash\) bd \(_{n}\) : by above Lemma
\(X \vDash\) grz: by Lemma on previous slide
\(\varphi\) : nontheorem of \(\mathbf{S}^{\mathbf{S}} \mathbf{G r z}_{n}\)
Finite tree \(\mathfrak{T}\) of height \(\leq n: \mathfrak{T} \not \not \varphi\)
\(\mathfrak{T}\) is interior image of \(X\)
\(X \nvdash \varphi\)

\section*{Case II: Finite Rank}

\section*{LEMMA}

In any scattered space \(X\) and any \(n \in \omega\), the interpretation of \(\mathbf{b d}_{n+1}\) contains \(X_{0} \cup \cdots \cup X_{n}\).

\section*{Theorem}
\(\mathbf{S 4 . G r z}{ }_{n}\) is the logic of any scattered metric space \(X\) of rank \(n \in \omega\).

\section*{Proof Sketch}
\(X=X_{0} \cup \cdots \cup X_{n-1} \vDash\) bd \(_{n}\) : by above Lemma
\(X \vDash\) grz: by Lemma on previous slide
\(\varphi\) : nontheorem of \(\mathbf{S 4}^{\mathbf{G}} \mathbf{G r z}_{n}\)
Finite tree \(\mathfrak{T}\) of height \(\leq n: \mathfrak{T} \not \vDash \varphi\)
\(\mathfrak{T}\) is interior image of \(X\)

\section*{Case II: Finite Rank}

\section*{LEMMA}

In any scattered space \(X\) and any \(n \in \omega\), the interpretation of \(\mathbf{b d}_{n+1}\) contains \(X_{0} \cup \cdots \cup X_{n}\).

\section*{Theorem}
\(\mathbf{S 4 . G r z}{ }_{n}\) is the logic of any scattered metric space \(X\) of rank \(n \in \omega\).

\section*{Proof Sketch}
\(X=X_{0} \cup \cdots \cup X_{n-1} \vDash\) bd \(_{n}\) : by above Lemma
\(X \vDash\) grz: by Lemma on previous slide
\(\varphi\) : nontheorem of \(\mathbf{S 4 . G r z}{ }_{n}\)
Finite tree \(\mathfrak{T}\) of height \(\leq n: \mathfrak{T} \not \vDash \varphi\)
\(\mathfrak{T}\) is interior image of \(X\)
\(X \not \forall \varphi\)

\section*{Case III: The Mapping}

\section*{A Mapping Lemma}

Any tt-qtree \(\mathfrak{F}\) is an interior image of any weakly scattered non-scattered metric space \(X\).
```

Key Idea of Proof
X=S\cupD
\mathfrak{F}}
\existsg:D->\mp@subsup{\mathfrak{F}}{}{-};
Extend g}\mathrm{ to }f:X->\mathfrak{F}\mathrm{ such that }f(S)=\operatorname{max}(\mathfrak{F})\mathrm{ .
Proceed by induction on the height of }\mathfrak{F}\mathrm{ .

```

\section*{Case III: The Mapping}

\section*{A Mapping Lemma}

Any tt-qtree \(\mathfrak{F}\) is an interior image of any weakly scattered non-scattered metric space \(X\).
```

Key Idea of Proof
X=S\cupD;
\mathfrak{F}}
\existsg:D->\mp@subsup{\mathfrak{F}}{}{-};
Extend g}\mathrm{ to }f:X->\tilde{F}\mathrm{ such that }f(S)=max(F)
Proceed by induction on the height of }\mathfrak{F}\mathrm{ .

```

\section*{Case III: The Mapping}

\section*{A Mapping Lemma}

Any tt-qtree \(\mathfrak{F}\) is an interior image of any weakly scattered non-scattered metric space \(X\).
```

Key Idea of Proof
$X=S \cup D$;
$\mathfrak{F}^{-}=\mathfrak{F}-\max (\mathfrak{F}) ;$
Extend $g$ to $f: X \rightarrow \mathfrak{F}$ such that $f(S)=\max (\mathfrak{F})$.
Proceed by induction on the height of $\mathfrak{F}$.

```

\section*{Case III: The Mapping}

\section*{A Mapping Lemma}

Any tt-qtree \(\mathfrak{F}\) is an interior image of any weakly scattered non-scattered metric space \(X\).
```

Key Idea of Proof
$X=S \cup D$;
$\mathfrak{F}^{-}=\mathfrak{F}-\max (\mathfrak{F}) ;$
$\exists g: D \rightarrow \mathfrak{F}^{-}$;
Extend $g$ to $f: X \rightarrow \mathfrak{F}$ such that $f(S)=\max (\mathfrak{F})$.
Proceed by induction on the height of $\mathfrak{F}$.

```

\section*{Case III: The Mapping}

\section*{A Mapping Lemma}

Any tt-qtree \(\mathfrak{F}\) is an interior image of any weakly scattered non-scattered metric space \(X\).
```

Key Idea of Proof
$X=S \cup D$;
$\mathfrak{F}^{-}=\mathfrak{F}-\max (\mathfrak{F}) ;$
$\exists g: D \rightarrow \mathfrak{F}^{-}$;
Extend $g$ to $f: X \rightarrow \mathfrak{F}$ such that $f(S)=\max (\mathfrak{F})$.

```
Proceed by induction on the height of \(\mathfrak{F}\)

\section*{Case III: The Mapping}

\section*{A Mapping Lemma}

Any tt-qtree \(\mathfrak{F}\) is an interior image of any weakly scattered non-scattered metric space \(X\).
```

Key Idea of Proof
$X=S \cup D$;
$\mathfrak{F}^{-}=\mathfrak{F}-\max (\mathfrak{F}) ;$
$\exists g: D \rightarrow \mathfrak{F}^{-}$;
Extend $g$ to $f: X \rightarrow \mathfrak{F}$ such that $f(S)=\max (\mathfrak{F})$.
Proceed by induction on the height of $\mathfrak{F}$.

```

\section*{Weakly Scattered Non-Scattered Metric Spaces}

\section*{Case III: The Mapping-Base Case}

\section*{Case III: The Mapping-Base Case}

\section*{Weakly Scattered Non-Scattered Metric Spaces}

\section*{Case III: The Mapping-Base Case}

\section*{Weakly Scattered Non-Scattered Metric Spaces}

\section*{Case III: The Mapping-Inductive Case}

\section*{Weakly Scattered Non-Scattered Metric Spaces}

\section*{Case III: The Mapping-Inductive Case}

\section*{Weakly Scattered Non-Scattered Metric Spaces}

\section*{Case III: The Mapping-Inductive Case}

\section*{Weakly Scattered Non-Scattered Metric Spaces}

\section*{Case III: The Mapping-Inductive Case}

\(D_{i} \subseteq U_{i}\) open in \(Y\)
\(c_{Y} U_{i}\) pairwise disjoint
\(S \cap \mathbf{c}_{Y} U_{i}\) closed in \(S\)

\section*{Weakly Scattered Non-Scattered Metric Spaces}

\section*{Case III: The Mapping-Inductive Case}

\(S_{i}\) clopen partition of \(S\) \(\mathbf{c}_{Y} S_{i}=S_{i} \cup D_{i}\)

\section*{Weakly Scattered Non-Scattered Metric Spaces}

\section*{Case III: The Mapping-Inductive Case}

\(g_{i}\) : the restriction of \(g\) to \(D_{i}\)

\section*{Case III: The Mapping-Inductive Case}

\(f_{i}\) the extension of \(g_{i}\) given by inductive hypothesis

\section*{Case III: The Mapping-Inductive Case}

\(f\) is defined by 'the colors'

\section*{Case III}

\section*{(Known) Lemma}

S4.1 is the logic of all weakly scattered spaces.

\section*{Theorem}

S4. 1 is the logic any weakly scattered non-scattered metric space \(X\)

Proof Sketch
\(X \vDash \mathbf{S 4 . 1}\) : by above Lemma
\(\varphi\) : nontheorem of S4.1
tt-qtree \(\mathfrak{F}: \mathfrak{F} \not \models \varphi\)
\(\mathfrak{F}\) is interior image of \(X\)
\(X \not \forall \varphi\)

\section*{Case III}

\section*{(Known) Lemma}

S4.1 is the logic of all weakly scattered spaces.

\section*{THEOREM}

S4.1 is the logic any weakly scattered non-scattered metric space \(X\).

\section*{PROOF SKETCH}
\(X \vDash \mathbf{S 4}\) 1. by above Lemma
\(\varphi\) : nontheorem of S4.1
tt-qtree \(\mathfrak{F}: \mathfrak{F} \not \models \varphi\)
\(\mathfrak{F}\) is interior image of \(X\)
\(X \not \forall \varphi\)

\section*{Case III}

\section*{(Known) Lemma}

S4.1 is the logic of all weakly scattered spaces.

\section*{Theorem}

S4.1 is the logic any weakly scattered non-scattered metric space \(X\).

\section*{Proof Sketch}
\(X \vDash\) S4.1: by above Lemma
nontheorem of S4.1
tt-qtree \(\mathfrak{F}: \mathfrak{F} \not \neq \varphi\)
\(\mathfrak{F}\) is interior image of \(X\) \(X \not \forall \varphi\)

\section*{Case III}

\section*{(Known) Lemma}

S4.1 is the logic of all weakly scattered spaces.

\section*{Theorem}

S4.1 is the logic any weakly scattered non-scattered metric space \(X\).

\section*{Proof Sketch}
\(X \vDash\) S4.1: by above Lemma
\(\varphi\) : nontheorem of S4.1
tt-qtree \(\mathfrak{F}: \mathfrak{F} \not \forall \varphi\)
\(\mathfrak{F}\) is interior image of \(X\) \(X \nvdash \varphi\)

\section*{Case III}

\section*{(Known) Lemma}

S4.1 is the logic of all weakly scattered spaces.

\section*{Theorem}

S4.1 is the logic any weakly scattered non-scattered metric space \(X\).

\section*{Proof Sketch}
\(X \vDash\) S4.1: by above Lemma
\(\varphi\) : nontheorem of S4.1
tt-qtree \(\mathfrak{F}: \mathfrak{F} \not \models \varphi\)
\(\mathfrak{F}\) is interior image of \(X\)

\section*{Case III}

\section*{(Known) Lemma}

S4.1 is the logic of all weakly scattered spaces.

\section*{Theorem}

S4.1 is the logic any weakly scattered non-scattered metric space \(X\).

\section*{Proof Sketch}
\(X \vDash\) S4.1: by above Lemma
\(\varphi\) : nontheorem of S4.1
tt-qtree \(\mathfrak{F}: \mathfrak{F} \not \models \varphi\)
\(\mathfrak{F}\) is interior image of \(X\)
\(X \neq \varphi\)

\section*{Case III}

\section*{(Known) Lemma}

S4.1 is the logic of all weakly scattered spaces.

\section*{THEOREM}

S4.1 is the logic any weakly scattered non-scattered metric space \(X\).

\section*{Proof Sketch}
\(X \vDash\) S4.1: by above Lemma
\(\varphi\) : nontheorem of S4.1
tt-qtree \(\mathfrak{F}: \mathfrak{F} \not \models \varphi\)
\(\mathfrak{F}\) is interior image of \(X\)
\(X \not \forall \varphi\)

\section*{Modal Logics of Metric Spaces}

\section*{Theorem: Main Result (Full Version)}

Let \(X\) be a (nonempty) metric space.
(1) If \(X\) is not weakly scattered, then \(\log (X)=\mathbf{S} 4\).
(2) If \(X\) is weakly scattered but not scattered, then \(\log (X)=\mathbf{S 4 . 1}\)
(3) If \(X\) is scattered and has infinite rank, then \(\log (X)=\mathbf{S 4 . G r z}\).
(1) If \(X\) is scattered and has rank \(n \in \omega-\{0\}\), then \(\log (X)=\mathbf{S 4 . G r z}{ }_{n}\).

\section*{Main Result: Picture}

\section*{Metric Spaces}

Non-weakly
scattered
spaces
Weakly scattered spaces

\section*{Main Result: Picture}

\section*{Metric Spaces}

Non-weakly
scattered
spaces
Weakly scattered spaces
Scattered spaces

\section*{Main Result: Picture}

\section*{}

Metric Spaces
Non-weakly scattered
spaces
Weakly scattered spaces
Scattered spaces

Rank \(=1\)
S4.Grz \({ }_{1}\)

\section*{Main Result: Picture}

\section*{\(\mathbf{S 4 . G r z}{ }_{1} \supset \mathbf{S 4 . G r z} z_{2} \supset \mathbf{S 4 . G r z}{ }_{3} \supset \ldots\) S4.Grz \(\supset \mathbf{S 4 . 1} \supset \mathbf{S 4}\)}

Metric Spaces
Non-weakly scattered
spaces
Weakly scattered spaces
Scattered spaces
\[
\text { Rank } \leq 2
\]

S4.Grz \({ }_{2}\)
Rank \(=1\)
S4.Grz \({ }_{1}\)

\section*{Main Result: Picture}

\section*{}

Metric Spaces
Non-weakly scattered spaces

Weakly scattered spaces
Scattered spaces

Rank \(\leq 3\)
S4. \(\mathrm{Grz}_{3}\)
Rank \(\leq 2\)
S4. \(\mathrm{Grz}_{2}\)
Rank \(=1\)
S4. \(\mathrm{Grz}_{1}\)

\section*{Main Result: Picture}

\section*{\(\mathbf{S 4 . G r z}{ }_{1} \supset \mathbf{S 4 . G r z} z_{2} \supset \mathbf{S 4 . G r z}{ }_{3} \supset \ldots\) S4.Grz \(\supset \mathbf{S 4 . 1} \supset \mathbf{S 4}\)}

Metric Spaces
Non-weakly scattered spaces

Weakly scattered spaces
Scattered spaces
S4.Grz
\(\because\)
Rank \(\leq 3\)
S4. \(\mathrm{Grz}_{3}\)
Rank \(\leq 2\)
Rank \(=1\)
S4. Grz \(_{1}\)

\section*{Main Result: Picture}

\section*{\(\mathbf{S 4 . G r z}{ }_{1} \supset \mathbf{S 4 . G r z}{ }_{2} \supset \mathbf{S 4 . G r z}{ }_{3} \supset \ldots\) S4.Grz \(\supset \mathbf{S 4 . 1} \supset \mathbf{S 4}\)}

Metric Spaces
Non-weakly scattered spaces

Weakly scattered spaces
S4.1
Scattered spaces
S4.Grz
\(\because\)
Rank \(\leq 3\)
S4. \(\mathrm{Grz}_{3}\)
Rank \(\leq 2\)
Rank \(=1\)
S4.Grz \({ }_{1}\)

\section*{Main Result: Picture}

\section*{\(\mathbf{S 4 . G r z}{ }_{1} \supset \mathbf{S 4 . G r z} z_{2} \supset \mathbf{S 4 . G r z}{ }_{3} \supset \ldots\) S4.Grz \(\supset \mathbf{S 4 . 1} \supset \mathbf{S} 4\)}

Metric Spaces
Non-weakly scattered spaces

Weakly scattered spaces
S4.1
Scattered spaces
S4.Grz

\section*{Main Result: Picture}

\section*{}

Metric Spaces
Non-weakly scattered spaces
\begin{tabular}{|c|c|c|}
\hline & Weakly scattered spaces & S4.1 \\
\hline & Scattered spaces & S4.Grz \\
\hline & Rank \(\leq 3\) & S4.Grz \({ }_{3}\) \\
\hline & Rank \(\leq 2\) & S4.Grz \({ }_{2}\) \\
\hline S4 & Rank \(=1\) & S4.Grz \({ }_{1}\) \\
\hline
\end{tabular}

Weakly scattered spaces
S4.1
Scattered spaces
S4.Grz

\section*{Open Question}

Generalize to paracompact spaces?

\section*{The End}

We are happy to distribute a pre-published version of the paper containing complete details on the results presented today, please inquire!
for your attention! And
to the organizers!

\section*{The End}

We are happy to distribute a pre-published version of the paper containing complete details on the results presented today, please inquire!

\section*{Thanks...}
... for your attention!
And
... to the organizers!```

