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Modal Language and Interpretation

A Topological Interpretation (in space X )

Variable : p ‘is’ A : Subset
Negation : ¬ ‘is’ X− : Complement

Disjunction : ∨ ‘is’ ∪ : Union
Diamond : ♦ ‘is’ c : Closure

S4 and Kuratowski Closure

♦(p ∨ q)↔ ♦p ∨ ♦q ‘is’ c(A ∪ B) = cA ∪ cB
♦⊥ ↔ ⊥ ‘is’ c∅ = ∅
p → ♦p ‘is’ A ⊆ cA

♦♦p → ♦p ‘is’ ccA ⊆ cA
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Historical Development

Theorem (McKinsey and Tarski 1944)

The logic of all topological spaces is S4.

Theorem (McKinsey and Tarski 1944)

The logic of any separable dense-in-itself metric space is S4.

Corollaries

Log(R) = S4,
Log(Q) = S4, and
Log(C) = S4.



Introduction Tools and Techniques Main Results Conclusions

Historical Development

Theorem (McKinsey and Tarski 1944)

The logic of all topological spaces is S4.

Theorem (McKinsey and Tarski 1944)

The logic of any separable dense-in-itself metric space is S4.

Corollaries

Log(R) = S4,
Log(Q) = S4, and
Log(C) = S4.



Introduction Tools and Techniques Main Results Conclusions

Historical Development

Theorem (McKinsey and Tarski 1944)

The logic of all topological spaces is S4.

Theorem (McKinsey and Tarski 1944)

The logic of any separable dense-in-itself metric space is S4.

Corollaries

Log(R) = S4,
Log(Q) = S4, and
Log(C) = S4.



Introduction Tools and Techniques Main Results Conclusions

Strengthening M&T’s Results

Theorem (Rasiowa and Sikorski 1963)

The logic of any dense-in-itself metric space is S4.

Special Case (Bezhanishvili and Harding 2011)

Characterized the logics of metric Stone spaces.

Goal

Characterize the logic of each metric space.

Approach
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@R Not Weakly Scattered

Weakly Scattered
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Some Definitions

Recall

1 x ∈ X isolated: {x} is open
iso(X ): set of isolated points in X

2 X dense-in-itself (dii): iso(X ) = ∅
3 X is scattered: iso(Y ) 6= ∅ for every subspace Y (6= ∅) of X

4 X is weakly scattered: c(isoX ) = X
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Main Tools: Frames

S4-Frame

1 Frame F = (W ,R): W 6= ∅ and R ⊆W ×W

2 S4-Frame F: R is reflexive and transitive

3 Rooted F: ∃r ∈W , ∀w ∈W , rRw

Finite Model Property (FMP)

Logic L has FMP: for any nontheorem ϕ of L, there is a finite
frame F for L refuting ϕ.

All the logics at play herein have the FMP!

Example: S4 and ♦p ∧ ♦q → ♦(p ∧ q)

•

• •
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Main Tools: Truth Preserving Operations

Truth Preserving Operations

Open Subspace: Y ⊆ X and Y open in X
Interior Image: f : X → Y interior (continuous and open) and onto

Log(X ) ⊆ Log(Y ), equivalently Y 6� ϕ implies X 6� ϕ.

Viewing Frames as Spaces

S4-frame F = (W ,R), Alexandroff topology τR : R-upsets in F

Via τR , Kripke semantics is a special case of topological semantics.
Move freely: (W ,R) vs. (W , τR)

Example: R and ♦p ∧ ♦q → ♦(p ∧ q)

•

•
�

•
-

@
@@I

�
���



Introduction Tools and Techniques Main Results Conclusions

Main Tools: Truth Preserving Operations

Truth Preserving Operations

Open Subspace: Y ⊆ X and Y open in X
Interior Image: f : X → Y interior (continuous and open) and onto

Log(X ) ⊆ Log(Y ), equivalently Y 6� ϕ implies X 6� ϕ.

Viewing Frames as Spaces

S4-frame F = (W ,R), Alexandroff topology τR : R-upsets in F

Via τR , Kripke semantics is a special case of topological semantics.
Move freely: (W ,R) vs. (W , τR)

Example: R and ♦p ∧ ♦q → ♦(p ∧ q)

•

•
�

•
-

@
@@I

�
���



Introduction Tools and Techniques Main Results Conclusions

Main Tools: Truth Preserving Operations

Truth Preserving Operations

Open Subspace: Y ⊆ X and Y open in X
Interior Image: f : X → Y interior (continuous and open) and onto

Log(X ) ⊆ Log(Y ), equivalently Y 6� ϕ implies X 6� ϕ.

Viewing Frames as Spaces

S4-frame F = (W ,R), Alexandroff topology τR : R-upsets in F

Via τR , Kripke semantics is a special case of topological semantics.
Move freely: (W ,R) vs. (W , τR)

Example: R and ♦p ∧ ♦q → ♦(p ∧ q)

•

•
�

•
-

@
@@I

�
���



Introduction Tools and Techniques Main Results Conclusions

Main Tools: Truth Preserving Operations

Truth Preserving Operations

Open Subspace: Y ⊆ X and Y open in X
Interior Image: f : X → Y interior (continuous and open) and onto

Log(X ) ⊆ Log(Y ), equivalently Y 6� ϕ implies X 6� ϕ.

Viewing Frames as Spaces

S4-frame F = (W ,R), Alexandroff topology τR : R-upsets in F

Via τR , Kripke semantics is a special case of topological semantics.
Move freely: (W ,R) vs. (W , τR)

Example: R and ♦p ∧ ♦q → ♦(p ∧ q)

•

•
�

•
-

@
@@I

�
���



Introduction Tools and Techniques Main Results Conclusions

Main Tools: Truth Preserving Operations

Truth Preserving Operations

Open Subspace: Y ⊆ X and Y open in X
Interior Image: f : X → Y interior (continuous and open) and onto

Log(X ) ⊆ Log(Y ), equivalently Y 6� ϕ implies X 6� ϕ.

Viewing Frames as Spaces

S4-frame F = (W ,R), Alexandroff topology τR : R-upsets in F

Via τR , Kripke semantics is a special case of topological semantics.
Move freely: (W ,R) vs. (W , τR)

Example: R and ♦p ∧ ♦q → ♦(p ∧ q)

•

•
�

•
-

@
@@I

�
���



Introduction Tools and Techniques Main Results Conclusions

Main Tools: Truth Preserving Operations

Truth Preserving Operations

Open Subspace: Y ⊆ X and Y open in X
Interior Image: f : X → Y interior (continuous and open) and onto

Log(X ) ⊆ Log(Y ), equivalently Y 6� ϕ implies X 6� ϕ.

Viewing Frames as Spaces

S4-frame F = (W ,R), Alexandroff topology τR : R-upsets in F

Via τR , Kripke semantics is a special case of topological semantics.
Move freely: (W ,R) vs. (W , τR)

Example: R and ♦p ∧ ♦q → ♦(p ∧ q)

•

•
�

•
-

@
@@I

�
���



Introduction Tools and Techniques Main Results Conclusions

Main Tools: Truth Preserving Operations

Truth Preserving Operations

Open Subspace: Y ⊆ X and Y open in X
Interior Image: f : X → Y interior (continuous and open) and onto

Log(X ) ⊆ Log(Y ), equivalently Y 6� ϕ implies X 6� ϕ.

Viewing Frames as Spaces

S4-frame F = (W ,R), Alexandroff topology τR : R-upsets in F

Via τR , Kripke semantics is a special case of topological semantics.
Move freely: (W ,R) vs. (W , τR)

Example: R and ♦p ∧ ♦q → ♦(p ∧ q)

•

•
�

•
-

@
@@I

�
���



Introduction Tools and Techniques Main Results Conclusions

Main Tools: Truth Preserving Operations

Truth Preserving Operations

Open Subspace: Y ⊆ X and Y open in X
Interior Image: f : X → Y interior (continuous and open) and onto

Log(X ) ⊆ Log(Y ), equivalently Y 6� ϕ implies X 6� ϕ.

Viewing Frames as Spaces

S4-frame F = (W ,R), Alexandroff topology τR : R-upsets in F

Via τR , Kripke semantics is a special case of topological semantics.
Move freely: (W ,R) vs. (W , τR)

Example: R and ♦p ∧ ♦q → ♦(p ∧ q)

•@
@@I

�
���

•
�

•
-•



Introduction Tools and Techniques Main Results Conclusions

Another Example

Mapping Lemma (Rasiowa and Sikorski 1963)

Any finite rooted S4-frame is an interior image of any dii metric
space.

Pelczynski Compactification of ω
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Cantor-Bendixon Decomposition

The CB Theorem

Let X be a space.
There are subspaces S and D of X such that
S is scattered, D is dii, X = S ∪ D, and S ∩ D = ∅.

D S

X0 = iso(X )

X1 = iso(dX )

X2 = iso(d2X )
.
.
.

Xω = iso(dωX )
.
.
.
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Quasitrees, Trees and Top Thin Quasitrees

Quasitrees (qtree)

1 qtree F = (W ,R): rooted S4-frame satisfying
∀u, v ∈ R−1(w) either uRv or vRu

2 Tree T = (W ,R): antisymmetric qtree

3 Height of finite tree T: greatest cardinality of a chain in T

Top Thin Quasitrees (tt-qtrees)

tt-qtree F: Built from finite qtree G by adding a ‘new top’ to each
maximal cluster; denote G by F−

G = F− F
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The Logics of Interest

Logics

S4

S4.1 = S4 + �♦p → ♦�p

S4.Grz = S4 + grz = S4 + �(�(p → �p)→ p)→ p

S4.Grzn = S4.Grz + bdn

Formulas

bd1 = ♦�p1 → p1

bdn+1 = ♦(�pn+1 ∧ ¬bdn)→ pn+1
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Qtrees for Logics of Interest and Main
Result

(Known) Lemma

1 S4 is the logic of finite rooted qtrees.

2 S4.1 is the logic of tt-qtrees.

3 S4.Grz is the modal logic of finite trees.

4 S4.Grzn is the modal logic of finite trees of height ≤ n.

Theorem: Main Result (Brief Version)

The modal logics of metric spaces form the chain

S4.Grz1 ⊃ S4.Grz2 ⊃ S4.Grz3 ⊃ · · · S4.Grz ⊃ S4.1 ⊃ S4.
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Non-Weakly Scattered Metric Spaces

Case I

Theorem

S4 is the logic of any non-weakly scattered metric space X .

Proof Sketch

Y = X − c(iso(X )) is nonempty open dii subspace of X .
ϕ: nontheorem of S4
Finite rooted qtree F: F 6� ϕ
F is interior image of Y
Y 6� ϕ
S4 = Log(Y ) ⊇ Log(X ) ⊇ S4.
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Scattered Metric Spaces

Case II: Strongly Zero-Dimensional

Telgarski’s Theorem

Each Scattered metric space is strongly zero-dimensional.

Two Useful Lemmas

1 If F1, . . . ,Fn are nonempty pairwise disjoint closed subsets of
a strongly zero-dimensional normal space X , then there are
pairwise disjoint clopen subsets U1, . . . ,Un of X such that
Fi ⊆ Ui and X = U1 ∪ · · · ∪ Un.

2 For any discrete subset A of a metric space X , there is a
disjoint family of balls {Bεa : a ∈ A}.

Definition

Strongly zero-dimensional X : completely regular space such that
every finite cover of X consisting of cozero-sets has a finite
pairwise disjoint open refinement
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Scattered Metric Spaces

Case II: The Mapping

A Mapping Lemma

n ∈ ω,
T: finite tree, height at most n + 1,
X : scattered metric space;
If Xn 6= ∅ then there is an onto interior map f : X0 ∪ · · · ∪ Xn → T
such that f (x) is the root of T for each x ∈ Xn.

Proof

By induction on n ∈ ω
Illustrated by pictures
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Scattered Metric Spaces

Case II: Infinite Rank

Theorem

S4.Grz is the logic of ...

1 all scattered spaces. (Esakia 1981)

2 any ordinal α ≥ ωω. (Abashidze 1987/Blass 1990)

Theorem

S4.Grz is the logic of any scattered metric space X of infinite rank.

Proof Sketch

X � grz: by above Lemma
ϕ: nontheorem of S4.Grz
Finite tree T of height n(≥ 1): T 6� ϕ
T is interior image of X0 ∪ · · · ∪ Xn−1: X0 ∪ · · · ∪ Xn−1 6� ϕ
X0 ∪ · · · ∪ Xn−1 open subspace of X : X 6� ϕ
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Scattered Metric Spaces

Case II: Finite Rank

Lemma

In any scattered space X and any n ∈ ω, the interpretation of
bdn+1 contains X0 ∪ · · · ∪ Xn.

Theorem

S4.Grzn is the logic of any scattered metric space X of rank n ∈ ω.

Proof Sketch

X = X0 ∪ · · · ∪ Xn−1 � bdn: by above Lemma
X � grz: by Lemma on previous slide
ϕ: nontheorem of S4.Grzn
Finite tree T of height ≤ n: T 6� ϕ
T is interior image of X
X 6� ϕ
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Weakly Scattered Non-Scattered Metric Spaces

Case III: The Mapping

A Mapping Lemma

Any tt-qtree F is an interior image of any weakly scattered
non-scattered metric space X .

Key Idea of Proof

X = S ∪ D;
F− = F−max(F);
∃g : D → F−;
Extend g to f : X → F such that f (S) = max(F).
Proceed by induction on the height of F.
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Weakly Scattered Non-Scattered Metric Spaces

Case III

(Known) Lemma

S4.1 is the logic of all weakly scattered spaces.

Theorem

S4.1 is the logic any weakly scattered non-scattered metric space
X .

Proof Sketch

X � S4.1: by above Lemma
ϕ: nontheorem of S4.1
tt-qtree F: F 6� ϕ
F is interior image of X
X 6� ϕ
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Modal Logics of Metric Spaces

Theorem: Main Result (Full Version)

Let X be a (nonempty) metric space.

1 If X is not weakly scattered, then Log(X ) = S4.

2 If X is weakly scattered but not scattered, then
Log(X ) = S4.1.

3 If X is scattered and has infinite rank, then Log(X ) = S4.Grz.

4 If X is scattered and has rank n ∈ ω − {0}, then
Log(X ) = S4.Grzn.
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Open Question

Generalize to paracompact spaces?
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The End

We are happy to distribute a pre-published version of the paper
containing complete details on the results presented today, please
inquire!

Thanks...

... for your attention!
And

... to the organizers!
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