Evgeny Kuznetsov

Javakhishvili Tbilisi State University

TOLO IV June 26, 2014

What do we want

There is known an algebraic description of those homomorphisms $f^{-1} : \operatorname{Op}(Y) \to \operatorname{Op}(X)$ between Heyting algebras of open sets of topological spaces which correspond to *local homeomorphisms* $f : X \to Y$ between these spaces.

What do we want

There is known an algebraic description of those homomorphisms $f^{-1} : \operatorname{Op}(Y) \to \operatorname{Op}(X)$ between Heyting algebras of open sets of topological spaces which correspond to *local homeomorphisms* $f : X \to Y$ between these spaces.

The question we want to investigate is this.

- What is the analog of local homeomorphisms for Esakia spaces?
- What kind of Heyting algebra homomorphisms do they correspond to?

- Local homeomorphisms in topological semantics.
- Esakia duality (reminder)
- Common ground the finite case: strict p-morphisms.
- Infinite over finite Stone presheaves.
- Duality between gluing local homeomorphisms and HSP the variety \mathscr{V}_H of étale *H*-algebras.
- Special properties of \mathscr{V}_H .
- Conclusion.

Open continuous maps

Definition 1.

A continuous map $f : Y \to X$ between topological spaces is *open* if $f(U) \in Op(X)$ for any $U \in Op(X)$.

Open continuous maps

Definition 1.

A continuous map $f : Y \to X$ between topological spaces is *open* if $f(U) \in Op(X)$ for any $U \in Op(X)$.

If $f: Y \to X$ is an open continuous map, then $f^{-1}: \operatorname{Op}(X) \to \operatorname{Op}(Y)$ is a homomorphism of Heyting algebras (preserves implication)

Open continuous maps

Definition 1.

A continuous map $f : Y \to X$ between topological spaces is *open* if $f(U) \in Op(X)$ for any $U \in Op(X)$.

If $f: Y \to X$ is an open continuous map, then $f^{-1}: Op(X) \to Op(Y)$ is a homomorphism of Heyting algebras (preserves implication)

For a topological space *X*, let Op/X be the *category of open continuous maps over X*. Its objects are open continuous maps with codomain *X* and morphisms from $f : Y \to X$ to $f' : Y' \to X$ are open continuous maps $g : Y \to Y'$, such that $f' \circ g = f$.

Local homeomorphisms

Definition 2 (Local homeomorphism).

A continuous map $f : Y \to X$ between topological spaces is a *local homeomorphism* if for any point $y \in Y$ there exists an open U, such that $y \in U$ and $f|_U$ is a homeomorphism between U and f(U).

In particular, any local homeomorphism is an open map.

Local homeomorphisms

Proposition 1 (Folklore).

U

If $f: Y \to X$ is a local homeomorphism then the Heyting algebra homomorphism $f^{-1}: Op(X) \to Op(Y)$ satisfies

$$\bigcup_{\in \operatorname{Op}(X)} \left(V \leftrightarrow f^{-1}(U) \right) = Y$$

for any $V \in Op(Y)$.

Local homeomorphisms

For a topological space *X*, let *LH*/*X* be the *category of local* homeomorphisms over *X*. Its objects are local homeomorphisms with codomain *X* and morphisms from $f : Y \to X$ to $f' : Y' \to X$ are local homeomorphisms $g : Y \to Y'$, such that $f' \circ g = f$.

Local homeomorphisms

For a topological space *X*, let *LH*/*X* be the *category of local* homeomorphisms over *X*. Its objects are local homeomorphisms with codomain *X* and morphisms from $f : Y \to X$ to $f' : Y' \to X$ are local homeomorphisms $g : Y \to Y'$, such that $f' \circ g = f$.

It follows, that LH/X is a subcategory of Op/X. In fact it turns out to be a *full* subcategory.

Our main intuitive starting point is

Proposition 2 (see "Elephant" 4.2.4(e)).

For every topological space X, the category LH/X of local homeomorphisms over X is a topos.

Our main intuitive starting point is

Proposition 2 (see "Elephant" 4.2.4(e)).

For every topological space X, the category LH /X of local homeomorphisms over X is a topos.

Proposition 3 (Folklore?).

 $f: Y \to X$ is a local homeomorphism if and only if f is an open map and $\Delta_f: Y \to Y \times_X Y$ is also an open map.

Some results

Theorem 2.1.

LH / X is the smallest subcategory of Op / X which contains the object $1_X : X \to X$ (identity map of X) and is closed under coproducts, quotient objects, and subobjects.

Some results

Theorem 2.1.

LH / X is the smallest subcategory of Op / X which contains the object $1_X : X \to X$ (identity map of X) and is closed under coproducts, quotient objects, and subobjects.

Remark.

Coproduts in Op / X coincide with coproducts in the category of topological spaces and are given by disjoint unions. A quotient object of $f : Y \to X$ is given by an object $f' : Y' \to X$ and a surjective open map $q : Y \twoheadrightarrow Y'$, such that $f' \circ q = f$. A subobject of $f : Y \to X$ is any open subset $U \subseteq Y$ with the map $f \circ i$, where i is the embedding of U into Y.

Esakia spaces

Definition 3.

A *Priestley space* is an ordered Stone space $\mathcal{X} = (X, \leq)$ which satisfies the *Priestley separation axiom*

■ for every $x, y \in X$ with $x \leq y$ there is a clopen upset U such that $x \in U$ and $y \notin U$.

Definition 4.

 \leq is called *point-closed* if $\uparrow(x)$ is closed for every $x \in X$. \leq is called *clopen* if $\downarrow(C)$ is clopen for every clopen set *C*. A Priestley space $\mathcal{X} = (X, \leq)$ is an *Esakia space* if \leq is a point-closed clopen relation.

Esakia morphisms

Definition 5.

A monotone map $f : (Y, \leq_Y) \to (X, \leq_X)$ between ordered sets is a *p*-morphism if for arbitrary $y \in Y$ and arbitrary $f(y) \leq_X x \in X$ there exists an $y \leq_Y y'$ such that f(y') = x.

Definition 6.

An *Esakia morphism* $(Y, \leq_Y) \to (X, \leq_X)$ between Esakia spaces is a monotone continuous map which is a p-morphism.

Let \mathcal{HA} denote the category of Heyting algebras and their homomorphisms and let \mathcal{E} denote the category of Esakia spaces and Esakia morphisms.

Esakia duality

Let \mathcal{HA} denote the category of Heyting algebras and their homomorphisms and let \mathcal{E} denote the category of Esakia spaces and Esakia morphisms.

The following well known and important theorem holds:

Theorem 3.1 (Esakia).

There exists duality between category of Esakia spaces and the category of Heyting algebras.

$$\mathcal{HA}^{op}\simeq \mathcal{E}$$

Common ground – the finite case: strict p-morphisms.

Strict p-morphisms

Definition 7.

A *strict p*-morphism $f : (Y, \leq_Y) \to (X, \leq_X)$ between ordered sets is a p-morphism such that for arbitrary $y \in Y$ and arbitrary $f(y) \leq_X x \in X$ there exists a **unique** $y \leq_Y y'$, such that f(y') = x.

Common ground – the finite case: strict p-morphisms.

Strict p-morphisms

Definition 7.

A *strict p*-morphism $f : (Y, \leq_Y) \to (X, \leq_X)$ between ordered sets is a p-morphism such that for arbitrary $y \in Y$ and arbitrary $f(y) \leq_X x \in X$ there exists a **unique** $y \leq_Y y'$, such that f(y') = x.

Proposition 4.

A p-morphism $f : Y \to X$ between ordered sets is strict if and only if the map $\Delta_f : Y \to Y \times_X Y$ is a p-morphism too.

Common ground – the finite case: strict p-morphisms.

Strict p-morphisms

Proposition 5.

A p-morphism $f : (Y, \leq_Y) \to (X, \leq_X)$ is strict **if and only if** the Heyting algebra homomorphism $f^{-1} : \uparrow(X) \to \uparrow(Y)$ between Heyting algebras of up-sets satisfies

$$\bigcup_{U\in\uparrow(X)}\left(V\leftrightarrow f^{-1}(U)\right)=Y$$

for any $V \in \uparrow(Y)$.

Common ground – the finite case: strict p-morphisms.

Slices $\mathcal{P}/(X, \leq)$, $\mathcal{SP}/(X, \leq)$.

Let $\mathcal{P}/(X, \leq)$ be the category of p-morphisms over (X, \leq) and $\mathcal{SP}/(X, \leq)$ - the category of strict p-morphisms over (X, \leq) .

Theorem 4.1.

 $SP/(X, \leq)$ is the smallest full subcategory of $P/(X, \leq)$, which contains the object $1_X : X \to X$ and is closed under coproducts, quotient objects, and subobjects.

Common ground – the finite case: strict p-morphisms.

Slices $\mathcal{P}/(X, \leq)$, $\mathcal{SP}/(X, \leq)$.

Let $\mathcal{P}/(X, \leq)$ be the category of p-morphisms over (X, \leq) and $\mathcal{SP}/(X, \leq)$ - the category of strict p-morphisms over (X, \leq) .

Theorem 4.1.

 $SP/(X, \leq)$ is the smallest full subcategory of $P/(X, \leq)$, which contains the object $1_X : X \to X$ and is closed under coproducts, quotient objects, and subobjects.

In fact it is easy to see that if we equip posets with their *Alexandroff topologies* (open sets are all up-sets) then a map $(Y, \leq) \rightarrow (X, \leq)$

- is continuous iff it is monotone
- is open iff it is a p-morphism and
- is a local homeomorphism iff it is a strict p-morphism.

Strict p-morphisms between Esakia spaces

Similarly, for an Esakia space \mathcal{X} let \mathcal{E}/\mathcal{X} be the category of Esakia morphisms over \mathcal{X} and let \mathcal{SE}/\mathcal{X} be the category of strict Esakia morphisms over \mathcal{X} .

Corollary 1.

For a finite Esakia space \mathcal{X} , the full subcategory of \mathcal{SE}/\mathcal{X} consisting of $\mathcal{Y} \to \mathcal{X}$ with finite \mathcal{Y} , is the smallest subcategory of \mathcal{E}/\mathcal{X} which contains the object $1_{\mathcal{X}} : \mathcal{X} \to \mathcal{X}$ and is closed under **finite** coproducts, quotient objects, and subobjects.

Strict p-morphisms between Esakia spaces

Similarly, for an Esakia space \mathcal{X} let \mathcal{E}/\mathcal{X} be the category of Esakia morphisms over \mathcal{X} and let \mathcal{SE}/\mathcal{X} be the category of strict Esakia morphisms over \mathcal{X} .

Corollary 1.

For a finite Esakia space \mathcal{X} , the full subcategory of \mathcal{SE}/\mathcal{X} consisting of $\mathcal{Y} \to \mathcal{X}$ with finite \mathcal{Y} , is the smallest subcategory of \mathcal{E}/\mathcal{X} which contains the object $1_{\mathcal{X}} : \mathcal{X} \to \mathcal{X}$ and is closed under **finite** coproducts, quotient objects, and subobjects.

This is clear since finite Esakia spaces are essentially nothing else but finite posets.

Presheaves.

If $f: (Y, \leq) \to (X, \leq)$ is a strict p-morphism then for arbitrary $x_1 \leq x_2$ from X it determines a mapping from $f^{-1}(x_1)$ to $f^{-1}(x_2)$: $y_1 \in f^{-1}(x_1)$ goes to the unique $y_2 \in f^{-1}(x_2)$ with $y_1 \leq y_2$. In this way we obtain a functor $F_f: (X, \leq) \to Set$. Moreover a morphism from $f: (Y, \leq) \to (X, \leq)$ to $f': (Y', \leq) \to (X, \leq)$ gives rise to a natural transformation $F_f \to F_{f'}$.

Presheaves.

If $f: (Y, \leq) \to (X, \leq)$ is a strict p-morphism then for arbitrary $x_1 \leq x_2$ from X it determines a mapping from $f^{-1}(x_1)$ to $f^{-1}(x_2)$: $y_1 \in f^{-1}(x_1)$ goes to the unique $y_2 \in f^{-1}(x_2)$ with $y_1 \leq y_2$. In this way we obtain a functor $F_f: (X, \leq) \to Set$. Moreover a morphism from $f: (Y, \leq) \to (X, \leq)$ to $f': (Y', \leq) \to (X, \leq)$ gives rise to a natural transformation $F_f \to F_{f'}$.

Proposition 6 ("Elephant" A1.1.7).

The assignment $f \mapsto F_f$ determines an equivalence of categories

 $\mathcal{SP}/(X,\leqslant) \to Set^{(X,\leqslant)}$

Infinite over finite – Stone presheaves.

Stone presheaves.

If $f: \mathcal{Y} \to \mathcal{X}$ is a strict p-morphism, where \mathcal{Y} is arbitrary Esakia space and \mathcal{X} is a finite Esakia space, then for arbitrary $x \in \mathcal{X}$, $f^{-1}(x)$ is a clopen subset of \mathcal{Y} , so it is a Stone space. Moreover the map $f^{-1}(x_1) \to f^{-1}(x_2)$ we defined before is continuous for any $x_1 \leq x_2$. Thus in this case F_f may be viewed as a functor $F_f: \mathcal{X} \to Stone$ to the category of Stone spaces. Infinite over finite – Stone presheaves.

Stone presheaves.

If $f : \mathcal{Y} \to \mathcal{X}$ is a strict p-morphism, where \mathcal{Y} is arbitrary Esakia space and \mathcal{X} is a finite Esakia space, then for arbitrary $x \in \mathcal{X}$, $f^{-1}(x)$ is a clopen subset of \mathcal{Y} , so it is a Stone space. Moreover the map $f^{-1}(x_1) \to f^{-1}(x_2)$ we defined before is continuous for any $x_1 \leq x_2$. Thus in this case F_f may be viewed as a functor $F_f : \mathcal{X} \to Stone$ to the category of Stone spaces.

Theorem 5.1.

The assignment $f \mapsto F_f$ determines an equivalence of categories

 $\mathcal{SE}/\mathcal{X} \to Stone^{\mathcal{X}}$

L Duality between gluing local homeomorphisms and HSP – the variety \mathscr{V}_H of étale H-algebras.

H-algebras

What is the dual algebraic counterpart of the above Theorem 4.1?

Duality between gluing local homeomorphisms and HSP – the variety \mathcal{V}_H of étale H-algebras.

H-algebras

What is the dual algebraic counterpart of the above Theorem 4.1?

Definition 8.

For a Heyting algebra H, let H-alg denote the category of H-algebras whose objects are Heyting algebra homomorphisms $f : H \to A$. A morphism from $f : H \to A$ to $f' : H \to A'$ is a Heyting algebra homomorphism $g : A \to A'$ with $g \circ f = f'$.

Duality between gluing local homeomorphisms and HSP – the variety \mathscr{V}_H of étale H-algebras.

Étale H-algebras

Definition 9.

Define the variety \mathcal{V}_H of *étale H*-algebras as the subvariety of the variety of *H*-algebras generated by the *H*-algebra *H*, i. e. by the identity map $1_H : H \to H$.

Duality between gluing local homeomorphisms and HSP – the variety \mathcal{V}_H of étale H-algebras.

Étale H-algebras

Definition 9.

Define the variety \mathcal{V}_H of *étale H*-algebras as the subvariety of the variety of *H*-algebras generated by the *H*-algebra *H*, i. e. by the identity map $1_H : H \to H$.

By the Birkhoff theorem, \mathcal{V}_H corresponds to the smallest subcategory of *H*-alg which contains *H* and is closed under products, subalgebras and homomorphic images.

Duality between gluing local homeomorphisms and HSP – the variety \mathcal{V}_H of étale H-algebras.

Étale H-algebras

Definition 9.

Define the variety \mathcal{V}_H of *étale H*-algebras as the subvariety of the variety of *H*-algebras generated by the *H*-algebra *H*, i. e. by the identity map $1_H : H \to H$.

By the Birkhoff theorem, \mathscr{V}_H corresponds to the smallest subcategory of *H*-alg which contains *H* and is closed under products, subalgebras and homomorphic images. Note that by Esakia duality the category *H*-alg^{op} is dual to $\mathscr{E}/\mathscr{X}_H$ where \mathscr{X}_H is the Esakia space dual to *H*. Thus the way \mathscr{V}_H is obtained from *H*-alg is dual to the way $\mathscr{SE}/\mathscr{X}_H$ is obtained from $\mathscr{E}/\mathscr{X}_H$.

Duality between gluing local homeomorphisms and HSP – the variety \mathscr{V}_H of étale H-algebras.

Identity of Étale H-algebras

Theorem 6.1.

For a finite Heyting algebra H,

• Every H-algebra $i : H \to A$ in the variety \mathscr{V}_H satisfies the identity

$$\bigvee_{h\in H} (i(h)\leftrightarrow x) = 1.$$

■ If an algebra $H \rightarrow A$ in the variety H-alg satisfies the above identity then its dual Esakia morphism $X_A \rightarrow X_H$ is a strict *p*-morphism.

 \square Special properties of \mathscr{V}_H .

Forgetful functor

Fact.

The forgetful functor $F : \mathcal{E}/\mathcal{X} \to Set/|\mathcal{X}|$ does not preserve inverse limits.

Special properties of \mathscr{V}_H .

Forgetful functor

Fact.

The forgetful functor $F : \mathcal{E}/\mathcal{X} \to Set/|\mathcal{X}|$ does not preserve inverse limits.

For example $2 \leftarrow 2 \times 2 \rightarrow 2$ which is the limit of the diagram $2 \rightarrow 1 \leftarrow 2$ in *Set*/1, is not the limit of this diagram in $\mathcal{E}/1$.

└─ Special properties of \mathscr{V}_H .

Forgetful functor

Fact.

The forgetful functor $F : \mathcal{E}/\mathcal{X} \to Set/|\mathcal{X}|$ does not preserve inverse limits.

For example $2 \leftarrow 2 \times 2 \rightarrow 2$ which is the limit of the diagram $2 \rightarrow 1 \leftarrow 2$ in *Set*/1, is not the limit of this diagram in $\mathcal{E}/1$.

Theorem 7.1.

For an arbitrary Esakia space \mathcal{X} the forgetful functor $F : S\mathcal{E}/\mathcal{X} \to Set/|\mathcal{X}|$ preserves all inverse limits.

- Conclusions

These facts signify that the categories of type $\mathcal{V}_{H}^{\text{op}}$ or \mathcal{SE}/\mathcal{X} although are not toposes but their categorical properties make them closer to toposes than the categories H-alg^{op} $\simeq \mathcal{E}/\mathcal{X}_{H}$.

Thanks for attention