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Language and logics

φ ::= p | ⊥ | φ→ φ | 2iφ, i = 1, 2.

Normal modal logic.
Kn denotes the minimal normal modal logic with n modalities and K = K1.
L1 and L2 � two modal logics with one modality 2 then the fusion of these
logics is de�ned as

L1 ∗ L2 = K2 + L′1 + L2
′;

where L′i is the set of all formulas from Li where all 2 replaced by 2i.



The product of Kripke frames

For two frames F1 = (W1, R1) and F2 = (W2, R2)

F1 × F2 = (W1 ×W2, R
∗
1, R

∗
2), where (a1, a2)R∗1(b1, b2)⇔ a1R1b1 & a2 = b2

(a1, a2)R∗2(b1, b2)⇔ a1 = b1 & a2R2b2

For two logics L1 and L2

L1 × L2 = Log({F1 × F2 |F1 |= L1 & F2 |= L2})

(Shehtman, 1978)
For two classes of frames F1 and F2

Log({F1 × F2 |F1 ∈ F1 & F2 ∈ F2}) ⊇ Log(F1) ∗ Log(F2)+
+2122p↔ 2122p+♦122p→ 22♦1p.

K× K = K ∗ K + 2122p↔ 2122p+♦122p→ 22♦1p

S4× S4 = S4 ∗ S4 + 2122p↔ 2122p+♦122p→ 22♦1p

...



The product of topological spaces

(van Benthem et al, 2005)
For two topological space X1 = (X1, τ1) and X2 = (X2, τ2)

X1 × X2 = (X1 ×X2, τ
∗
1 , τ
∗
2 ), where τ∗1 has base {U1 × {x2} |U1 ∈ τ1 & x2 ∈ X2}

τ∗2 has base {{x1} × U2 |x1 ∈ X1 & U2 ∈ τ2}
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For two logics L1 and L2

L1 ×t L2 = Log({X1 × X2 |X1 |= L1 & X2 |= L2}
S4×t S4 = Log(Q×Q) = S4 ∗ S4 (van Benthem et al, 2005)

Log(R× R) 6= S4 ∗ S4 (Kremer, 2010?)

Log(C× C) 6= S4 ∗ S4

d-logic of product of topological spaces was considered by L. Uridia (2011). He
proved

Log d(Q×Q) = D4 ∗ D4

Generalization to neighborhood frames was done by K. Sano (2011).



Neighborhood frames

A (normal) neighborhood frame (or an n-frame) is a pair X = (X, τ), where

I X 6= ∅;
I τ : X → 22X , such that τ(x) is a �lter on X;

τ � neighborhood function of X,
τ(x) � neighborhoods of x.
Filter on X: nonempty F ⊆ 2X such that
1) U ∈ F & U ⊆ V ⇒ V ∈ F
2) U, V ∈ F ⇒ U ∩ V ∈ F (�lter base)

The neighborhood model (n-model) is a pair (X, V ), where X = (X, τ) is a
n-frame and V : PV → 2X is a valuation. Similar: neighborhood 2-frame
(n-2-frame) is (X, τ1, τ2) such that τi is a neighborhood function on X for
each i.
Validity in model:

M,x |= 2iψ ⇐⇒ ∃V ∈ τi(x)∀y ∈ V (M,y |= ψ).

M |= ϕ X |= ϕ X |= L Log(C) = {ϕ |X |= ϕ for some X ∈ C}

nV (L) = {X |X is an n-frame and X |= L}



Connection with Kripke frames

De�nition
Let F = (W,R) be a Kripke frame. We de�ne neighborhood frame
N (F ) = (W, τ) as follows. For any w ∈W

τ(w) = {U |R(w) ⊆ U ⊆W} .

Lemma
Let F = (W,R) be a Kripke frame. Then

Log(N (F )) = Log(F ).



Bounded morphism for n-frames

De�nition
Let X = (X, τ1, . . .) and Y = (Y, σ1, . . .) be n-frames. Then function
f : X → Y is a bounded morphism if

1. f is surjective;

2. for any x ∈ X and U ∈ τi(x) f(U) ∈ σi(f(x));

3. for any x ∈ X and V ∈ σi(f(x)) there exists U ∈ τi(x), such that
f(U) ⊆ V .

In notation f : X � Y.

Lemma
If f : X � Y then Log(Y) ⊆ Log(X).



Product of n-frames

De�nition
Let X1 = (X1, τ1) and X2 = (X2, τ2) be two n-frames. Then the product of
these n-frames is an n-2-frame de�ned as follows

X1 × X2 = (X1 ×X2, τ
′
1, τ
′
2),

τ ′1(x1, x2) = {U ⊆ X1 ×X2 | ∃V (V ∈ τ1(x1) & V × {x2} ⊆ U)} ,
τ ′2(x1, x2) = {U ⊆ X1 ×X2 | ∃V (V ∈ τ2(x2) & {x1} × V ⊆ U)} .

De�nition
For two unimodal logics L1 and L2, such that nV (Li) 6= ∅. We de�ne
n-product of them as follows

L1 ×n L2 = Log({X1 × X2 |X1 ∈ nV (L1) & X2 ∈ nV (L2)})

Lemma
L1 ∗ L2 ⊆ L1 ×n L2 for any two unimodal logics L1 and L2.

Theorem (AK, 2012)

Let L1 and L2 be from the set {D,T,D4,S4} then

L1 ×n L2 = L1 ∗ L2.



n-product of logics

It is not the case for logic K!

Lemma
For any two n-frames X1 and X2

X1 × X2 |= 21⊥ → 2221⊥.

And even more, for any closed 21-free formula φ and any closed 22-free

formula ψ
X1 × X2 |= φ→ 21φ, X1 × X2 |= ψ → 22ψ.

Proof.

X1 × X2, (x, y) |= 21⊥ ⇐⇒ ∅ ∈ τ ′1(x, y) ⇐⇒
∅ ∈ τ1(x) ⇐⇒ ∀y′ ∈ X2 (∅ ∈ τ ′1(x, y′)) ⇐⇒

∀y′ ∈ X2 (X1 × X2, (x, y
′) |= 21⊥) =⇒ X1 × X2, (x, y) |= 2221⊥.

Hence, X1 × X2 |= 21⊥ → 2221⊥.



n-product of logics

It is not the case for logic K!

Lemma
For any two n-frames X1 and X2

X1 × X2 |= 21⊥ → 2221⊥.

And even more, for any closed 21-free formula φ and any closed 22-free

formula ψ
X1 × X2 |= φ→ 21φ, X1 × X2 |= ψ → 22ψ.

Proof.
Since ψ does not contain neither 22, nor variables, its value does not depend
on the second coordinate. Let F = X1 × X2. So F, (x, y) |= ψ, then
∀y′(F, (x, y′) |= ψ), hence, F, (x, y) |= 22ψ.



n-product of logics

Lemma
For any two n-frames X1 and X2

X1 × X2 |= 21⊥ → 2221⊥.

And even more, for any closed 21-free formula φ and any closed 22-free

formula ψ
X1 × X2 |= φ→ 21φ, X1 × X2 |= ψ → 22ψ.

De�nition
For two unimodal logics L1 and L2, we de�ne

〈L1, L2〉 = L1 ∗ L2 + ∆, where

∆ = {φ→ 22φ |φ is closed and 22-free}∪{ψ → 21ψ |ψ is closed and 21-free} .

Lemma
For any two normal modal logics L1 and L2 〈L1, L2〉 ⊆ L1 ×n L2.

Note that if ♦> ∈ L1 ∩ L2 then L1 ∗ L2 |= ∆.



Goal

Theorem
K×n K = 〈K,K〉.
Plan:

1. Find proper Kripke frames for 〈K,K〉.
2. Construct n-frames for which there is a bounded morphism to the proper

frames.



Weak product of frames

F1 = F x0
1 and F2 = F y0

2 � Kripke frames with roots x0 and y0. A path in the
product F1 × F2 is a sequence of the following type

(x0, y0)S1(x1, y1)S2 . . . Sn(xn, yn),

where Si ∈
{
Rh

1 , R
v
2

}
and for any i ≤ n (xi−1, yi−1)Si(xi, yi) holds.

P(F1 × F2) � the set of all paths in F1 × F2.
for any two paths α, β ∈ P(F1 × F2)

αR′1β ⇐⇒ β = αRh
1 (a, b)

αR′2β ⇐⇒ β = αRv
2(a, b)

The following Kripke frame is the weak product of F1 and F2

〈F1, F2〉 = (P(F1 × F2), R′1, R
′
2).



Weak product of frames

Lemma
For any two Kripke frames F1 and F2 〈F1, F2〉 |= ∆.

Theorem
Logic 〈K,K〉 is complete w.r.t. weak products of Kripke frames, and even more,

w.r.t. weak products of trees.



Paths with stops

De�nition
F = (W,R) � frame with root a0, 0 /∈W we de�ne a path with stops as a
tuple a0a1 . . . an, so that ai ∈W ∪{0} and after eliminating zeros each point is
related to the next one by relation R. We also consider in�nite paths with stops
that end with in�nitely many zeros. We call these sequences pseudo-in�nite
paths (with stops). Let Wω be the set of all pseudo-in�nite paths in W .

De�ne fF : Wω →W in the following way: for α = a0a1 . . . an0ω, an 6= 0, we
put

fF (α) = an.

st(α) = min {N | ∀k ≥ N(ak = 0)} ;

α|k = a1 . . . ak;

Uk
i (α) = {β ∈Wω |α|m = β|m & fF (α)RifF (β), where m = max(k, st(α))} .

Lemma
Uk

i (α) ⊆ Um
i (α) whenever k ≥ m for any i ∈ {1, 2}.
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Nω(F )

De�nition
Sets Un(α) form a �lter base. So we can de�ne

τ(α)− the �lter with base {Un(α) |n ∈ N} ;

Nω(F ) = (Wω, τ) � is a dense n-frame based on F .

Frame Nω(F ) is dense in a sense that the intersection of all neighborhoods of a
point is empty. So, there are no minimal neighborhoods unlike N (F ).

Lemma
Let F = (W,R) be a Kripke frame with root a0, then

fF : Nω(F ) � N (F ).

Corollary

For any frame F Log(Nω(F )) ⊆ Log(N (F )) = Log(F ).
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Completeness theorem

Logic K is complete w.r.t. trees.

Lemma
For any two trees F1 and F2

Nω(F1)×Nω(F2) � N (〈F1, F2〉).

K×n K =
⋂

X1,X2∈nV (K)

Log(X1 × X2) ⊆

⊆
⋂

F1,F2−trees

Log(Nω(F1)×Nω(F2)) ⊆

⊆
⋂

F1,F2−trees

Log(〈F1, F2〉) ⊆ 〈K,K〉 ⊆ K×n K.

Theorem
K×n K = 〈K,K〉.
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Future work

Conjecture

K4×n K4 = 〈K4,K4〉.
Question: What conditions of logics L1 and L2 are su�cient for

L1 ×n L2 = 〈L1, L2〉.
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Thank you!
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