Modal logic of products of neighborhood frames

Andrey Kudinov
Institute for Information Transmission Problems, Moscow

June 25, 2014

PLAN

1. Language
2. History of the topic
3. Neighborhood frames
4. Product of n-frames
5. Weak product
6. Completeness theorem
7. Future work

Language and logics

$$
\phi::=p|\perp| \phi \rightarrow \phi \mid \square_{i} \phi, i=1,2 .
$$

Normal modal logic.
K_{n} denotes the minimal normal modal logic with n modalities and $\mathrm{K}=\mathrm{K}_{1}$. L_{1} and $L_{2}-$ two modal logics with one modality \square then the fusion of these logics is defined as

$$
\mathrm{L}_{1} * \mathrm{~L}_{2}=\mathrm{K}_{2}+\mathrm{L}_{1}^{\prime}+\mathrm{L}_{2}^{\prime} ;
$$

where $\mathrm{L}_{\mathrm{i}}^{\prime}$ is the set of all formulas from L_{i} where all \square replaced by \square_{i}.

The product of Kripke frames

For two frames $F_{1}=\left(W_{1}, R_{1}\right)$ and $F_{2}=\left(W_{2}, R_{2}\right)$

$$
\begin{array}{r}
F_{1} \times F_{2}=\left(W_{1} \times W_{2}, R_{1}^{*}, R_{2}^{*}\right), \text { where }\left(a_{1}, a_{2}\right) R_{1}^{*}\left(b_{1}, b_{2}\right) \Leftrightarrow a_{1} R_{1} b_{1} \& a_{2}=b_{2} \\
\left(a_{1}, a_{2}\right) R_{2}^{*}\left(b_{1}, b_{2}\right) \Leftrightarrow a_{1}=b_{1} \& a_{2} R_{2} b_{2}
\end{array}
$$

For two logics L_{1} and L_{2}

$$
\mathrm{L}_{1} \times \mathrm{L}_{2}=\log \left(\left\{F_{1} \times F_{2} \mid F_{1} \models \mathrm{~L}_{1} \& F_{2} \models \mathrm{~L}_{2}\right\}\right)
$$

(Shehtman, 1978)
For two classes of frames \mathfrak{F}_{1} and \mathfrak{F}_{2}

$$
\begin{aligned}
\log \left(\left\{F_{1} \times F_{2} \mid F_{1} \in \mathfrak{F}_{1} \& F_{2} \in \mathfrak{F}_{2}\right\}\right) & \supseteq \log \left(\mathfrak{F}_{1}\right) * \log \left(\mathfrak{F}_{2}\right)+ \\
& +\square_{1} \square_{2} p \leftrightarrow \square_{1} \square_{2} p+\diamond_{1} \square_{2} p \rightarrow \square_{2} \diamond_{1} p .
\end{aligned}
$$

$$
\mathrm{K} \times \mathrm{K}=\mathrm{K} * \mathrm{~K}+\square_{1} \square_{2} p \leftrightarrow \square_{1} \square_{2} p+\diamond_{1} \square_{2} p \rightarrow \square_{2} \diamond_{1} p
$$

$$
\mathrm{S} 4 \times \mathrm{S} 4=\mathrm{S} 4 * \mathrm{~S} 4+\square_{1} \square_{2} p \leftrightarrow \square_{1} \square_{2} p+\diamond_{1} \square_{2} p \rightarrow \square_{2} \diamond_{1} p
$$

The product of topological spaces

(van Benthem et al, 2005)
For two topological space $\mathfrak{X}_{1}=\left(X_{1}, \tau_{1}\right)$ and $\mathfrak{X}_{2}=\left(X_{2}, \tau_{2}\right)$
$\mathfrak{X}_{1} \times \mathfrak{X}_{2}=\left(X_{1} \times X_{2}, \tau_{1}^{*}, \tau_{2}^{*}\right)$, where τ_{1}^{*} has base $\left\{U_{1} \times\left\{x_{2}\right\} \mid U_{1} \in \tau_{1} \& x_{2} \in X_{2}\right\}$ τ_{2}^{*} has base $\left\{\left\{x_{1}\right\} \times U_{2} \mid x_{1} \in X_{1} \& U_{2} \in \tau_{2}\right\}$

The product of topological spaces

(van Benthem et al, 2005)
For two topological space $\mathfrak{X}_{1}=\left(X_{1}, \tau_{1}\right)$ and $\mathfrak{X}_{2}=\left(X_{2}, \tau_{2}\right)$
$\mathfrak{X}_{1} \times \mathfrak{X}_{2}=\left(X_{1} \times X_{2}, \tau_{1}^{*}, \tau_{2}^{*}\right)$, where τ_{1}^{*} has base $\left\{U_{1} \times\left\{x_{2}\right\} \mid U_{1} \in \tau_{1} \& x_{2} \in X_{2}\right\}$ τ_{2}^{*} has base $\left\{\left\{x_{1}\right\} \times U_{2} \mid x_{1} \in X_{1} \& U_{2} \in \tau_{2}\right\}$

The product of topological spaces

(van Benthem et al, 2005)
For two topological space $\mathfrak{X}_{1}=\left(X_{1}, \tau_{1}\right)$ and $\mathfrak{X}_{2}=\left(X_{2}, \tau_{2}\right)$

$$
\begin{aligned}
\mathfrak{X}_{1} \times \mathfrak{X}_{2}=\left(X_{1} \times X_{2}, \tau_{1}^{*}, \tau_{2}^{*}\right), \text { where } \tau_{1}^{*} \text { has base }\left\{U_{1} \times\left\{x_{2}\right\} \mid U_{1} \in \tau_{1} \& x_{2} \in X_{2}\right\} \\
\tau_{2}^{*} \text { has base }\left\{\left\{x_{1}\right\} \times U_{2} \mid x_{1} \in X_{1} \& U_{2} \in \tau_{2}\right\}
\end{aligned}
$$

For two logics L_{1} and L_{2}

$$
\begin{aligned}
\mathrm{L}_{1} \times_{t} \mathrm{~L}_{2} & =\log \left(\left\{\mathfrak{X}_{1} \times \mathfrak{X}_{2}\left|\mathfrak{X}_{1}\right|=\mathrm{L}_{1} \& \mathfrak{X}_{2} \models \mathrm{~L}_{2}\right\}\right. \\
\mathrm{S} 4 \times_{t} \mathrm{~S} 4 & =\log (\mathbb{Q} \times \mathbb{Q})=\mathrm{S} 4 * \mathrm{~S} 4 \quad(\text { van Benthem et al, 2005) } \\
\log (\mathbb{R} \times \mathbb{R}) & \neq \mathrm{S} 4 * \mathrm{~S} 4 \quad(\text { Kremer, 2010?) } \\
\log (\mathbb{C} \times \mathbb{C}) & \neq \mathrm{S} 4 * \mathrm{~S} 4
\end{aligned}
$$

d-logic of product of topological spaces was considered by L. Uridia (2011). He proved

$$
\log _{d}(\mathbb{Q} \times \mathbb{Q})=\mathrm{D} 4 * \mathrm{D} 4
$$

Generalization to neighborhood frames was done by K. Sano (2011).

Neighborhood frames

A (normal) neighborhood frame (or an n -frame) is a pair $\mathfrak{X}=(X, \tau)$, where

- $X \neq \varnothing$;
- $\tau: X \rightarrow 2^{2^{X}}$, such that $\tau(x)$ is a filter on X;
τ - neighborhood function of \mathfrak{X}, $\tau(x)$ - neighborhoods of x.
Filter on X : nonempty $\mathcal{F} \subseteq 2^{X}$ such that

1) $U \in \mathcal{F} \& U \subseteq V \Rightarrow V \in \mathcal{F}$
2) $U, V \in \mathcal{F} \Rightarrow U \cap V \in \mathcal{F}$ (filter base)

The neighborhood model (n-model) is a pair (\mathfrak{X}, V), where $\mathfrak{X}=(X, \tau)$ is a n -frame and $V: P V \rightarrow 2^{X}$ is a valuation. Similar: neighborhood 2-frame (n -2-frame) is $\left(X, \tau_{1}, \tau_{2}\right)$ such that τ_{i} is a neighborhood function on X for each i.
Validity in model:

$$
\begin{gathered}
M, x \models \square_{i} \psi \Longleftrightarrow \exists V \in \tau_{i}(x) \forall y \in V(M, y \models \psi) . \\
M \models \varphi \quad \mathfrak{X}|=\varphi \quad \mathfrak{X}| L \quad \log (\mathcal{C})=\{\varphi \mid \mathfrak{X} \models \varphi \text { for some } \mathfrak{X} \in \mathcal{C}\} \\
n V(L)=\{\mathfrak{X} \mid \mathfrak{X} \text { is an n-frame and } \mathfrak{X} \mid=L\}
\end{gathered}
$$

Connection with Kripke frames

Definition

Let $F=(W, R)$ be a Kripke frame. We define neighborhood frame $\mathcal{N}(F)=(W, \tau)$ as follows. For any $w \in W$

$$
\tau(w)=\{U \mid R(w) \subseteq U \subseteq W\}
$$

Lemma
Let $F=(W, R)$ be a Kripke frame. Then

$$
\log (\mathcal{N}(F))=\log (F) .
$$

Bounded morphism for n-frames

Definition
Let $\mathfrak{X}=\left(X, \tau_{1}, \ldots\right)$ and $\mathcal{Y}=\left(Y, \sigma_{1}, \ldots\right)$ be n -frames. Then function $f: X \rightarrow Y$ is a bounded morphism if

1. f is surjective;
2. for any $x \in X$ and $U \in \tau_{i}(x) f(U) \in \sigma_{i}(f(x))$;
3. for any $x \in X$ and $V \in \sigma_{i}(f(x))$ there exists $U \in \tau_{i}(x)$, such that $f(U) \subseteq V$.
In notation $f: \mathfrak{X} \rightarrow \mathcal{Y}$.
Lemma
If $f: \mathfrak{X} \rightarrow \mathcal{Y}$ then $\log (\mathcal{Y}) \subseteq \log (\mathfrak{X})$.

Product of n-frames

Definition
Let $\mathfrak{X}_{1}=\left(X_{1}, \tau_{1}\right)$ and $\mathfrak{X}_{2}=\left(X_{2}, \tau_{2}\right)$ be two n -frames. Then the product of these n -frames is an n -2-frame defined as follows

$$
\begin{aligned}
& \mathfrak{X}_{1} \times \mathfrak{X}_{2}=\left(X_{1} \times X_{2}, \tau_{1}^{\prime}, \tau_{2}^{\prime}\right), \\
& \tau_{1}^{\prime}\left(x_{1}, x_{2}\right)=\left\{U \subseteq X_{1} \times X_{2} \mid \exists V\left(V \in \tau_{1}\left(x_{1}\right) \& V \times\left\{x_{2}\right\} \subseteq U\right)\right\}, \\
& \tau_{2}^{\prime}\left(x_{1}, x_{2}\right)=\left\{U \subseteq X_{1} \times X_{2} \mid \exists V\left(V \in \tau_{2}\left(x_{2}\right) \&\left\{x_{1}\right\} \times V \subseteq U\right)\right\} .
\end{aligned}
$$

Definition

For two unimodal logics L_{1} and L_{2}, such that $n V\left(\mathrm{~L}_{\mathrm{i}}\right) \neq \varnothing$. We define n-product of them as follows

$$
\mathrm{L}_{1} \times_{n} \mathrm{~L}_{2}=\log \left(\left\{\mathfrak{X}_{1} \times \mathfrak{X}_{2} \mid \mathfrak{X}_{1} \in n V\left(\mathrm{~L}_{1}\right) \& \mathfrak{X}_{2} \in n V\left(\mathrm{~L}_{2}\right)\right\}\right)
$$

Lemma
$\mathrm{L}_{1} * \mathrm{~L}_{2} \subseteq \mathrm{~L}_{1} \times{ }_{n} \mathrm{~L}_{2}$ for any two unimodal logics L_{1} and L_{2}.
Theorem (AK, 2012)
Let L_{1} and L_{2} be from the set $\{\mathrm{D}, \mathrm{T}, \mathrm{D} 4, \mathrm{~S} 4\}$ then

$$
\mathrm{L}_{1} \times{ }_{n} \mathrm{~L}_{2}=\mathrm{L}_{1} * \mathrm{~L}_{2} .
$$

n-product of logics

It is not the case for logic K !

Lemma

For any two n-frames \mathfrak{X}_{1} and \mathfrak{X}_{2}

$$
\mathfrak{X}_{1} \times \mathfrak{X}_{2} \models \square_{1} \perp \rightarrow \square_{2} \square_{1} \perp .
$$

And even more, for any closed \square_{1}-free formula ϕ and any closed \square_{2}-free formula ψ

$$
\mathfrak{X}_{1} \times \mathfrak{X}_{2} \models \phi \rightarrow \square_{1} \phi,
$$

Proof.

$$
\begin{aligned}
\mathfrak{X}_{1} \times \mathfrak{X}_{2},(x, y) \models \square_{1} \perp & \Longleftrightarrow \varnothing \in \tau_{1}^{\prime}(x, y) \Longleftrightarrow \\
\varnothing \in \tau_{1}(x) & \Longleftrightarrow \forall y^{\prime} \in X_{2}\left(\varnothing \in \tau_{1}^{\prime}\left(x, y^{\prime}\right)\right) \\
\forall y^{\prime} \in X_{2}\left(\mathfrak{X}_{1} \times \mathfrak{X}_{2},\left(x, y^{\prime}\right) \models \square_{1} \perp\right) & \Longleftrightarrow \mathfrak{X}_{1} \times \mathfrak{X}_{2},(x, y) \models \square_{2} \square_{1} \perp .
\end{aligned}
$$

Hence, $\mathfrak{X}_{1} \times \mathfrak{X}_{2} \models \square_{1} \perp \rightarrow \square_{2} \square_{1} \perp$.

n-product of logics

It is not the case for logic K !
Lemma
For any two n-frames \mathfrak{X}_{1} and \mathfrak{X}_{2}

$$
\mathfrak{X}_{1} \times \mathfrak{X}_{2} \models \square_{1} \perp \rightarrow \square_{2} \square_{1} \perp .
$$

And even more, for any closed \square_{1}-free formula ϕ and any closed \square_{2}-free formula ψ

$$
\mathfrak{X}_{1} \times \mathfrak{X}_{2} \models \phi \rightarrow \square_{1} \phi, \quad \mathfrak{X}_{1} \times \mathfrak{X}_{2} \models \psi \rightarrow \square_{2} \psi .
$$

Proof.

Since ψ does not contain neither \square_{2}, nor variables, its value does not depend on the second coordinate. Let $F=\mathfrak{X}_{1} \times \mathfrak{X}_{2}$. So $F,(x, y) \models \psi$, then $\forall y^{\prime}\left(F,\left(x, y^{\prime}\right) \vDash \psi\right)$, hence, $F,(x, y) \models \square_{2} \psi$.

n-product of logics

Lemma
For any two n-frames \mathfrak{X}_{1} and \mathfrak{X}_{2}

$$
\mathfrak{X}_{1} \times \mathfrak{X}_{2} \models \square_{1} \perp \rightarrow \square_{2} \square_{1} \perp .
$$

And even more, for any closed \square_{1}-free formula ϕ and any closed \square_{2}-free formula ψ

$$
\mathfrak{X}_{1} \times \mathfrak{X}_{2} \models \phi \rightarrow \square_{1} \phi, \quad \mathfrak{X}_{1} \times \mathfrak{X}_{2} \models \psi \rightarrow \square_{2} \psi .
$$

Definition

For two unimodal logics L_{1} and L_{2}, we define

$$
\left\langle L_{1}, L_{2}\right\rangle=L_{1} * L_{2}+\Delta, \text { where }
$$

$\Delta=\left\{\phi \rightarrow \square_{2} \phi \mid \phi\right.$ is closed and \square_{2}-free $\} \cup\left\{\psi \rightarrow \square_{1} \psi \mid \psi\right.$ is closed and \square_{1}-free $\}$.

Lemma
For any two normal modal logics L_{1} and $L_{2}\left\langle L_{1}, L_{2}\right\rangle \subseteq L_{1} \times_{n} L_{2}$.
Note that if $\diamond \top \in L_{1} \cap L_{2}$ then $L_{1} * L_{2} \models \Delta$.

Goal

Theorem
$K \times{ }_{n} \mathrm{~K}=\langle\mathrm{K}, \mathrm{K}\rangle$.
Plan:

1. Find proper Kripke frames for $\langle\mathrm{K}, \mathrm{K}\rangle$.
2. Construct n-frames for which there is a bounded morphism to the proper frames.

Weak product of frames

$F_{1}=F_{1}^{x_{0}}$ and $F_{2}=F_{2}^{y_{0}}$ - Kripke frames with roots x_{0} and y_{0}. A path in the product $F_{1} \times F_{2}$ is a sequence of the following type

$$
\left(x_{0}, y_{0}\right) S_{1}\left(x_{1}, y_{1}\right) S_{2} \ldots S_{n}\left(x_{n}, y_{n}\right)
$$

where $S_{i} \in\left\{R_{1}^{h}, R_{2}^{v}\right\}$ and for any $i \leq n\left(x_{i-1}, y_{i-1}\right) S_{i}\left(x_{i}, y_{i}\right)$ holds. $\mathcal{P}\left(F_{1} \times F_{2}\right)$ - the set of all paths in $F_{1} \times F_{2}$.
for any two paths $\alpha, \beta \in \mathcal{P}\left(F_{1} \times F_{2}\right)$

$$
\begin{aligned}
& \alpha R_{1}^{\prime} \beta \Longleftrightarrow \beta=\alpha R_{1}^{h}(a, b) \\
& \alpha R_{2}^{\prime} \beta \Longleftrightarrow \beta=\alpha R_{2}^{v}(a, b)
\end{aligned}
$$

The following Kripke frame is the weak product of F_{1} and F_{2}

$$
\left\langle F_{1}, F_{2}\right\rangle=\left(\mathcal{P}\left(F_{1} \times F_{2}\right), R_{1}^{\prime}, R_{2}^{\prime}\right)
$$

Weak product of frames

Lemma
For any two Kripke frames F_{1} and $F_{2}\left\langle F_{1}, F_{2}\right\rangle \models \Delta$.
Theorem
Logic $\langle\mathrm{K}, \mathrm{K}\rangle$ is complete w.r.t. weak products of Kripke frames, and even more, w.r.t. weak products of trees.

Paths with stops

Definition
$F=(W, R)$ - frame with root $a_{0}, 0 \notin W$ we define a path with stops as a tuple $a_{0} a_{1} \ldots a_{n}$, so that $a_{i} \in W \cup\{0\}$ and after eliminating zeros each point is related to the next one by relation R. We also consider infinite paths with stops that end with infinitely many zeros. We call these sequences pseudo-infinite paths (with stops). Let W_{ω} be the set of all pseudo-infinite paths in W.
Define $f_{F}: W_{\omega} \rightarrow W$ in the following way: for $\alpha=a_{0} a_{1} \ldots a_{n} 0^{\omega}, a_{n} \neq 0$, we put

$$
f_{F}(\alpha)=a_{n} .
$$

$$
\begin{aligned}
s t(\alpha) & =\min \left\{N \mid \forall k \geq N\left(a_{k}=0\right)\right\} ; \\
\left.\alpha\right|_{k} & =a_{1} \ldots a_{k} ; \\
U_{i}^{k}(\alpha) & =\left\{\beta \in W_{\omega}|\alpha|_{m}=\left.\beta\right|_{m} \& f_{F}(\alpha) R_{i} f_{F}(\beta), \text { where } m=\max (k, s t(\alpha))\right\} .
\end{aligned}
$$

Lemma
$U_{i}^{k}(\alpha) \subseteq U_{i}^{m}(\alpha)$ whenever $k \geq m$ for any $i \in\{1,2\}$.

Example

Definition
Sets $U_{n}(\alpha)$ form a filter base. So we can define

$$
\begin{gathered}
\tau(\alpha) \text { - the filter with base }\left\{U_{n}(\alpha) \mid n \in \mathbb{N}\right\} ; \\
\mathcal{N}_{\omega}(F)=\left(W_{\omega}, \tau\right)-\text { is a dense } n \text {-frame based on } F .
\end{gathered}
$$

Frame $\mathcal{N}_{\omega}(F)$ is dense in a sense that the intersection of all neighborhoods of a point is empty. So, there are no minimal neighborhoods unlike $\mathcal{N}(F)$.

Lemma
Let $F=(W, R)$ be a Kripke frame with root a_{0}, then

Corollary
For any frame $F \log \left(\mathcal{N}_{\omega}(F)\right) \subseteq \log (N(F))=\log (F)$.

Definition
Sets $U_{n}(\alpha)$ form a filter base. So we can define

$$
\begin{gathered}
\tau(\alpha) \text { - the filter with base }\left\{U_{n}(\alpha) \mid n \in \mathbb{N}\right\} ; \\
\mathcal{N}_{\omega}(F)=\left(W_{\omega}, \tau\right) \text { - is a dense } n \text {-frame based on } F .
\end{gathered}
$$

Frame $\mathcal{N}_{\omega}(F)$ is dense in a sense that the intersection of all neighborhoods of a point is empty. So, there are no minimal neighborhoods unlike $\mathcal{N}(F)$.

Lemma
Let $F=(W, R)$ be a Kripke frame with root a_{0}, then

Corollary
For any frame $F \log \left(\mathcal{N}_{\omega}(F)\right) \subseteq \log (\mathcal{N}(F))=\log (F)$

Definition

Sets $U_{n}(\alpha)$ form a filter base. So we can define

$$
\begin{gathered}
\tau(\alpha) \text { - the filter with base }\left\{U_{n}(\alpha) \mid n \in \mathbb{N}\right\} ; \\
\mathcal{N}_{\omega}(F)=\left(W_{\omega}, \tau\right) \text { - is a dense } n \text {-frame based on } F .
\end{gathered}
$$

Frame $\mathcal{N}_{\omega}(F)$ is dense in a sense that the intersection of all neighborhoods of a point is empty. So, there are no minimal neighborhoods unlike $\mathcal{N}(F)$.

Lemma
Let $F=(W, R)$ be a Kripke frame with root a_{0}, then

$$
f_{F}: \mathcal{N}_{\omega}(F) \rightarrow \mathcal{N}(F) .
$$

Corollary
For any frame $F \log \left(\mathcal{N}_{\omega}(F)\right) \subseteq \log (\mathcal{N}(F))=\log (F)$

Definition

Sets $U_{n}(\alpha)$ form a filter base. So we can define

$$
\begin{gathered}
\tau(\alpha) \text { - the filter with base }\left\{U_{n}(\alpha) \mid n \in \mathbb{N}\right\} ; \\
\mathcal{N}_{\omega}(F)=\left(W_{\omega}, \tau\right)-\text { is a dense } n \text {-frame based on } F .
\end{gathered}
$$

Frame $\mathcal{N}_{\omega}(F)$ is dense in a sense that the intersection of all neighborhoods of a point is empty. So, there are no minimal neighborhoods unlike $\mathcal{N}(F)$.

Lemma
Let $F=(W, R)$ be a Kripke frame with root a_{0}, then

$$
f_{F}: \mathcal{N}_{\omega}(F) \rightarrow \mathcal{N}(F) .
$$

Corollary
For any frame $F \log \left(\mathcal{N}_{\omega}(F)\right) \subseteq \log (\mathcal{N}(F))=\log (F)$.

Completeness theorem

Logic K is complete w.r.t. trees.
Lemma
For any two trees F_{1} and F_{2}

$$
\mathcal{N}_{\omega}\left(F_{1}\right) \times \mathcal{N}_{\omega}\left(F_{2}\right) \rightarrow \mathcal{N}\left(\left\langle F_{1}, F_{2}\right\rangle\right)
$$

Theorem

Completeness theorem

Logic K is complete w.r.t. trees.
Lemma
For any two trees F_{1} and F_{2}

$$
\mathcal{N}_{\omega}\left(F_{1}\right) \times \mathcal{N}_{\omega}\left(F_{2}\right) \rightarrow \mathcal{N}\left(\left\langle F_{1}, F_{2}\right\rangle\right)
$$

$$
\begin{aligned}
\mathrm{K} \times_{n} \mathrm{~K} & =\bigcap_{\mathfrak{X}_{1}, \mathfrak{X}_{2} \in n V(\mathrm{~K})} \log \left(\mathfrak{X}_{1} \times \mathfrak{X}_{2}\right) \subseteq \\
& \subseteq \bigcap_{F_{1}, F_{2}-\text { trees }} \log \left(\mathcal{N}_{\omega}\left(F_{1}\right) \times \mathcal{N}_{\omega}\left(F_{2}\right)\right) \subseteq \\
& \subseteq \bigcap_{F_{1}, F_{2}-\text { trees }} \log \left(\left\langle F_{1}, F_{2}\right\rangle\right) \subseteq\langle\mathrm{K}, \mathrm{~K}\rangle \subseteq \mathrm{K} \times_{n} \mathrm{~K} .
\end{aligned}
$$

Theorem

Completeness theorem

Logic K is complete w.r.t. trees.
Lemma
For any two trees F_{1} and F_{2}

$$
\mathcal{N}_{\omega}\left(F_{1}\right) \times \mathcal{N}_{\omega}\left(F_{2}\right) \rightarrow \mathcal{N}\left(\left\langle F_{1}, F_{2}\right\rangle\right)
$$

$$
\mathrm{K} \times_{n} \mathrm{~K}=\bigcap_{\mathfrak{X}_{1}, \mathfrak{X}_{2} \in n V(\mathrm{~K})} \log \left(\mathfrak{X}_{1} \times \mathfrak{X}_{2}\right) \subseteq
$$

$$
\subseteq \bigcap_{F_{1}, F_{2}-\text { trees }} \log \left(\mathcal{N}_{\omega}\left(F_{1}\right) \times \mathcal{N}_{\omega}\left(F_{2}\right)\right) \subseteq
$$

$$
\subseteq \bigcap_{F_{1}, F_{2}-\text { trees }} \log \left(\left\langle F_{1}, F_{2}\right\rangle\right) \subseteq\langle\mathrm{K}, \mathrm{~K}\rangle \subseteq \mathrm{K} \times_{n} \mathrm{~K} .
$$

Theorem
$\mathrm{K} \times{ }_{n} \mathrm{~K}=\langle\mathrm{K}, \mathrm{K}\rangle$.

Future work

Conjecture
$\mathrm{K} 4 \times{ }_{n} \mathrm{~K} 4=\langle\mathrm{K} 4, \mathrm{~K} 4\rangle$.
Question: What conditions of logics L_{1} and L_{2} are sufficient for

$$
\mathrm{L}_{1} \times_{n} \mathrm{~L}_{2}=\left\langle\mathrm{L}_{1}, \mathrm{~L}_{2}\right\rangle .
$$

Future work

Conjecture
$\mathrm{K} 4 \times{ }_{n} \mathrm{~K} 4=\langle\mathrm{K} 4, \mathrm{~K} 4\rangle$.
Question: What conditions of logics L_{1} and L_{2} are sufficient for
$\mathrm{L}_{1} \times_{n} \mathrm{~L}_{2}=\left\langle\mathrm{L}_{1}, \mathrm{~L}_{2}\right\rangle$.

Thank you!

