A dichotomy for some elementarily generated modal logics

Stanislav Kikot

Tbilisi, June 2014

Language $\mathcal{M} I_{\Lambda}$ (propositional modal formulas)

$$
\begin{gathered}
P V=\left\{p_{1}, p_{2}, p_{3}, \ldots\right\} \\
\phi::=p_{i}|\perp|(\phi \vee \phi)|(\phi \wedge \phi)| \neg \phi\left|\diamond_{\lambda} \phi\right| \square_{\lambda} \phi, \\
\quad \text { where } \lambda \in \Lambda .
\end{gathered}
$$

Language $\mathcal{M} I_{\wedge}$ (propositional modal formulas)

$$
\begin{gathered}
P V=\left\{p_{1}, p_{2}, p_{3}, \ldots\right\} \\
\phi::=p_{i}|\perp|(\phi \vee \phi)|(\phi \wedge \phi)| \neg \phi\left|\diamond_{\lambda} \phi\right| \square_{\lambda} \phi, \\
\quad \text { where } \lambda \in \Lambda .
\end{gathered}
$$

Kripke semantics

- Kripke frame: $F=\left(W,\left(R_{\lambda}: \lambda \in \Lambda\right)\right)$ where $R_{\lambda} \in W \times W$,
- Kripke model: $M=(F, \theta)$ where $\theta: P V \rightarrow 2^{W}$,
- $M, x \models \phi \quad \phi$ is true at x in M,
- $F, x \models \phi \quad \phi$ is valid at x in F,
- $F \models \phi \quad \phi$ is valid in F,

Language $\mathcal{L} f_{\wedge}$
The corresponding first-order language $\mathcal{L} f_{\wedge}$ consists of:

- object variables x, y, z, \ldots
- binary relational symbols $R_{\lambda}(x, y)$ and equality
- logical operations \vee, \wedge, \neg
- quantifiers $\exists x, \forall y$ over object variables

Language $\mathcal{L} f_{\Lambda}$
The corresponding first-order language $\mathcal{L} f_{\wedge}$ consists of:

- object variables x, y, z, \ldots
- binary relational symbols $R_{\lambda}(x, y)$ and equality
- logical operations \vee, \wedge, \neg
- quantifiers $\exists x, \forall y$ over object variables
$A(x)$ is locally modally definable if there exists $\phi \in \mathcal{M} I_{\wedge}$ s.t for all F, x_{0}

$$
F \models A\left(x_{0}\right) \Leftrightarrow F, x_{0} \models \phi
$$

Language $\mathcal{L} f_{\wedge}$
The corresponding first-order language $\mathcal{L} f_{\wedge}$ consists of:

- object variables x, y, z, \ldots
- binary relational symbols $R_{\lambda}(x, y)$ and equality
- logical operations \vee, \wedge, \neg
- quantifiers $\exists x, \forall y$ over object variables
$A(x)$ is locally modally definable if there exists $\phi \in \mathcal{M} I_{\wedge}$ s.t for all F, x_{0}

$$
F \models A\left(x_{0}\right) \Leftrightarrow F, x_{0} \models \phi
$$

A is globally modally definable if there exists $\phi \in \mathcal{M} / \wedge$ s.t for all F

$$
F \models A \Leftrightarrow F \models \phi
$$

Language $\mathcal{L} f_{\Lambda}$

The corresponding first-order language $\mathcal{L} f_{\wedge}$ consists of:

- object variables x, y, z, \ldots
- binary relational symbols $R_{\lambda}(x, y)$ and equality
- logical operations \vee, \wedge, \neg
- quantifiers $\exists x, \forall y$ over object variables
$A(x)$ is locally modally definable if there exists $\phi \in \mathcal{M} I_{\wedge}$ s.t for all F, x_{0}

$$
F \models A\left(x_{0}\right) \Leftrightarrow F, x_{0} \models \phi
$$

A is globally modally definable if there exists $\phi \in \mathcal{M} / \wedge$ s.t for all F

$$
F \models A \Leftrightarrow F \models \phi
$$

Elementary class: $C=\{F \mid F \models A\}$, where A is an $\mathcal{L} f_{\Lambda}$-formula.

Language $\mathcal{L} f_{\Lambda}$

The corresponding first-order language $\mathcal{L} f_{\wedge}$ consists of:

- object variables x, y, z, \ldots
- binary relational symbols $R_{\lambda}(x, y)$ and equality
- logical operations \vee, \wedge, \neg
- quantifiers $\exists x, \forall y$ over object variables
$A(x)$ is locally modally definable if there exists $\phi \in \mathcal{M} I_{\wedge}$ s.t for all F, x_{0}

$$
F \models A\left(x_{0}\right) \Leftrightarrow F, x_{0} \models \phi
$$

A is globally modally definable if there exists $\phi \in \mathcal{M} / \wedge$ s.t for all F

$$
F \models A \Leftrightarrow F \models \phi
$$

Elementary class: $C=\{F \mid F \models A\}$, where A is an $\mathcal{L} f_{\Lambda}$-formula. Elementarily generated modal $\operatorname{logic:~} \log (C)=\{\phi \in \mathcal{M} / \wedge|F|=\phi$ for all $F \in C\}$

Language $\mathcal{L} f_{\Lambda}$

The corresponding first-order language $\mathcal{L} f_{\wedge}$ consists of:

- object variables x, y, z, \ldots
- binary relational symbols $R_{\lambda}(x, y)$ and equality
- logical operations \vee, \wedge, \neg
- quantifiers $\exists x, \forall y$ over object variables
$A(x)$ is locally modally definable if there exists $\phi \in \mathcal{M} I_{\text {^ }}$ s.t for all F, x_{0}

$$
F \models A\left(x_{0}\right) \Leftrightarrow F, x_{0} \models \phi
$$

A is globally modally definable if there exists $\phi \in \mathcal{M}$ I s.t for all F

$$
F \models A \Leftrightarrow F \models \phi
$$

Elementary class: $C=\{F \mid F \models A\}$, where A is an $\mathcal{L} f_{\Lambda}$-formula. Elementarily generated modal logic: $\log (C)=\left\{\phi \in \mathcal{M} I_{\wedge} \mid F \models \phi\right.$ for all $\left.F \in C\right\}$

Global question

Given C, determine what properties hold for $\log (C)$?
How are they related to the properties of the first-order formula defining C ?

Language $\mathcal{L} f_{\Lambda}$

The corresponding first-order language $\mathcal{L} f_{\Lambda}$ consists of:

- object variables x, y, z, \ldots
- binary relational symbols $R_{\lambda}(x, y)$ and equality
- logical operations \vee, \wedge, \neg
- quantifiers $\exists x, \forall y$ over object variables
$A(x)$ is locally modally definable if there exists $\phi \in \mathcal{M} I_{\Lambda}$ s.t for all F, x_{0}

$$
F \models A\left(x_{0}\right) \Leftrightarrow F, x_{0} \models \phi
$$

A is globally modally definable if there exists $\phi \in \mathcal{M} I_{\wedge}$ s.t for all F

$$
F \models A \Leftrightarrow F \models \phi
$$

Elementary class: $C=\{F \mid F \models A\}$, where A is an $\mathcal{L} f_{\Lambda}$-formula. Elementarily generated modal logic: $\log (C)=\left\{\phi \in \mathcal{M} I_{\wedge} \mid F \models \phi\right.$ for all $\left.F \in C\right\}$

Global question

Given C, determine what properties hold for $\log (C)$?
How are they related to the properties of the first-order formula defining C ?
What if C is given by some very simple first-order formula?

Definition

A set of modal formulas L is a normal modal logic if

- L contains $\square_{\lambda}(p \wedge q) \equiv \square_{\lambda} p \wedge \square_{\lambda} q$ and $\square_{\lambda} p \equiv \neg \nabla_{\lambda} \neg p$
- L is closed under Modus Ponens, Uniform Substitution and Necessitation (from ϕ infere $\square_{\lambda} \phi$)

Definition

A set of modal formulas L is a normal modal logic if

- L contains $\square_{\lambda}(p \wedge q) \equiv \square_{\lambda} p \wedge \square_{\lambda} q$ and $\square_{\lambda} p \equiv \neg \nabla_{\lambda} \neg p$
- L is closed under Modus Ponens, Uniform Substitution and Necessitation (from ϕ infere $\square_{\lambda} \phi$)

Proposition

For any elementary class $C \log (C)$ is a normal modal logic.

Definition

A set of modal formulas L is a normal modal logic if

- L contains $\square_{\lambda}(p \wedge q) \equiv \square_{\lambda} p \wedge \square_{\lambda} q$ and $\left.\square_{\lambda} p \equiv \neg\right\rangle_{\lambda} \neg p$
- L is closed under Modus Ponens, Uniform Substitution and Necessitation (from ϕ infere $\square_{\lambda} \phi$)

Proposition

For any elementary class $C \log (C)$ is a normal modal logic.

Definition

A normal modal logic L is axiomatizable by a set of modal formulas Σ if L is the minimal normal modal logic which contains Σ.

Definition

A set of modal formulas L is a normal modal logic if

- L contains $\square_{\lambda}(p \wedge q) \equiv \square_{\lambda} p \wedge \square_{\lambda} q$ and $\square_{\lambda} p \equiv \neg \diamond_{\lambda} \neg p$
- L is closed under Modus Ponens, Uniform Substitution and Necessitation (from ϕ infere $\square_{\lambda} \phi$)

Proposition

For any elementary class $C \log (C)$ is a normal modal logic.

Definition

A normal modal logic L is axiomatizable by a set of modal formulas Σ if L is the minimal normal modal logic which contains Σ.

Properties of logics we are interested in

- finite axiomatisability (or, axiomatisability by a single formula)
- (generalised) Sahlqvist axiomatisability
- using finitely many variables
- using a single non-canonical formula and arbitrary many canonical f-las
- elementarity (when $V(L)=\{F \mid F \models L\}$ is elementary)

Global question

Given C, determine what properties hold for $\log (C)$? How are they related to the properties of the first-order formula defining C ?

Global question

Given C, determine what properties hold for $\log (C)$? How are they related to the properties of the first-order formula defining C ?

Example: "see itself in two steps" vs "have a reflexive successor"

$\forall x_{0} \exists x_{1}\left(x_{0} R x_{1} \wedge x_{1} R x_{0}\right)$
modally definable
by a Sahlqvist formula
$L=K+p \rightarrow \diamond \diamond p$
L is elementary

any axiomatisation of L requieres infinitely many
non-canonical formulas
(I. Hodkinson, Y. Venema, 2003)
$\forall x_{0} \exists x_{1}\left(x_{0} R x_{1} \wedge x_{1} R x_{1}\right)$
modally undefinable
L is not axiomatisable using finitely many variables L is not Δ-elementary
(Hughes, 1990)

Both are of the form

$$
\forall x_{0} \exists x_{1} \ldots \exists x_{n} \wedge R_{\lambda}\left(x_{i}, x_{j}\right)
$$

Problem statement

Classify \mathcal{C} given by $\forall x_{0} E\left(x_{0}\right)$, where $E\left(x_{0}\right)=\exists x_{1} \ldots \exists x_{n} \wedge x_{i} R x_{j}$ w.r.t.

(i) $E\left(x_{0}\right)$ is locally modally definable by a generalised Sahlqvist formula;
(ii) $E\left(x_{0}\right)$ is locally modally definable;
(iii) $\forall x_{0} E\left(x_{0}\right)$ is globally modally definable;
(iv) $\log (\mathcal{C})$ is axiomatisable by a single generalised Sahlqvist formula;
(v) $\log (\mathcal{C})$ is finitely axiomatisable;
(vi) $\log (\mathcal{C})$ is axiomatisable using finitely many variables;
(vii) $\log (\mathcal{C})$ is axiomatisable by canonical formulas;
(viii) $\log (\mathcal{C})$ is axiomatisable using finitely many non-canonical formulas;
(ix) $\{F \mid F \models \log (\mathcal{C})\}=\mathcal{C}$;
(x) $\log (\mathcal{C})$ is elementary;
(xi) $\log (\mathcal{C}) \Delta$-elementary (?).

Definition

A tuple $D=\left(W^{D},\left(R_{\lambda}^{D}: \lambda \in \Lambda\right), x_{0}^{D}\right)$ is called a diagram, if

- W^{D} is a finite set;
- R_{λ}^{D} are binary relations on W^{D},
- $x_{0}^{D} \in W^{D}$

Definition

A tuple $D=\left(W^{D},\left(R_{\lambda}^{D}: \lambda \in \Lambda\right), x_{0}^{D}\right)$ is called a diagram, if

- W^{D} is a finite set;
- R_{λ}^{D} are binary relations on W^{D},
- $x_{0}^{D} \in W^{D}$

Let $W^{D}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}, x_{0}^{D}=x_{0}, \quad K^{D}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\bigwedge_{\substack{z_{1}, z_{2} \in W^{D}, z_{1} R_{\lambda}^{D} z_{2}}} z_{1} R_{\lambda} z_{2}$,
and $E^{D}\left(x_{0}\right)=\exists x_{1} \ldots \exists x_{n} K^{D}\left(x_{0}, x_{1}, \ldots, x_{n}\right)$.

Definition

A tuple $D=\left(W^{D},\left(R_{\lambda}^{D}: \lambda \in \Lambda\right), x_{0}^{D}\right)$ is called a diagram, if

- W^{D} is a finite set;
- R_{λ}^{D} are binary relations on W^{D},
- $x_{0}^{D} \in W^{D}$

$$
\begin{aligned}
& \text { Let } W^{D}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}, x_{0}^{D}=x_{0}, \quad K^{D}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\bigwedge_{\substack{z_{1}, z_{2} \in W^{D}, z_{1} R_{\lambda}^{D} z_{2}}} z_{1} R_{\lambda} z_{2}, \\
& \text { and } E^{D}\left(x_{0}\right)=\exists x_{1} \ldots \exists x_{n} K^{D}\left(x_{0}, x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Example

D

$$
\begin{aligned}
& K_{D}\left(x_{0}, x_{1}, x_{2}\right)=x_{0} R x_{1} \wedge x_{0} R x_{2} \wedge x_{1} R x_{2} \wedge x_{2} R x_{1} \\
& E_{D}\left(x_{0}\right)=\exists x_{1} \exists x_{2}\left(x_{0} R x_{1} \wedge x_{0} R x_{2} \wedge x_{1} R x_{2} \wedge x_{2} R x_{1}\right)
\end{aligned}
$$

Definition

A tuple $D=\left(W^{D},\left(R_{\lambda}^{D}: \lambda \in \Lambda\right), x_{0}^{D}\right)$ is called a diagram, if

- W^{D} is a finite set;
- R_{λ}^{D} are binary relations on W^{D},
- $x_{0}^{D} \in W^{D}$

$$
\begin{aligned}
& \text { Let } W^{D}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}, x_{0}^{D}=x_{0}, \quad K^{D}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\bigwedge_{\substack{z_{1}, z_{2} \in W^{D}, z_{1} R_{\lambda}^{D} z_{2}}} z_{1} R_{\lambda} z_{2}, \\
& \text { and } E^{D}\left(x_{0}\right)=\exists x_{1} \ldots \exists x_{n} K^{D}\left(x_{0}, x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Example

D

$$
\begin{gathered}
K_{D}\left(x_{0}, x_{1}, x_{2}\right)=x_{0} R x_{1} \wedge x_{0} R x_{2} \wedge x_{1} R x_{2} \wedge x_{2} R x_{1} \\
E_{D}\left(x_{0}\right)=\exists x_{1} \exists x_{2}\left(x_{0} R x_{1} \wedge x_{0} R x_{2} \wedge x_{1} R x_{2} \wedge x_{2} R x_{1}\right)
\end{gathered}
$$

Definition

A diagram is called rooted, if every its point is accessible from x_{0} via a directed path.

Definition

A tuple $D=\left(W^{D},\left(R_{\lambda}^{D}: \lambda \in \Lambda\right), x_{0}^{D}\right)$ is called a diagram, if

- W^{D} is a finite set;
- R_{λ}^{D} are binary relations on W^{D},
- $x_{0}^{D} \in W^{D}$
Let $W^{D}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}, x_{0}^{D}=x_{0}, \quad K^{D}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=$

$$
\bigwedge_{\substack{z_{1} \\ z_{2} \in W^{D}, z_{1} R_{\lambda}^{D} z_{2}}} z_{1} R_{\lambda} z_{2},
$$

Example

D

$$
\begin{gathered}
K_{D}\left(x_{0}, x_{1}, x_{2}\right)=x_{0} R x_{1} \wedge x_{0} R x_{2} \wedge x_{1} R x_{2} \wedge x_{2} R x_{1} \\
E_{D}\left(x_{0}\right)=\exists x_{1} \exists x_{2}\left(x_{0} R x_{1} \wedge x_{0} R x_{2} \wedge x_{1} R x_{2} \wedge x_{2} R x_{1}\right)
\end{gathered}
$$

Definition

A diagram is called rooted, if every its point is accessible from x_{0} via a directed path.

Main Theorem

For a rooted diagram D conditions (i) - (x) are equivalent.

Main Theorem
For a rooted diagram D conditions (i) - (x) are equivalent.

Main Theorem

For a rooted diagram D conditions (i) - (x) are equivalent.

Definition

A diagram D is called

- globally minimal, if $\forall x_{0} E_{D^{\prime}}\left(x_{0}\right) \nrightarrow \forall x_{0} E_{D}\left(x_{0}\right)$
- locally minimal, if $E_{D^{\prime}}\left(x_{0}\right) \nrightarrow E_{D}\left(x_{0}\right)$
for any diagram D ' which is obtained from D by deleting an edge.

Main Theorem

For a rooted diagram D conditions (i) - (x) are equivalent.

Definition

A diagram D is called

- globally minimal, if $\forall x_{0} E_{D^{\prime}}\left(x_{0}\right) \nrightarrow \forall x_{0} E_{D}\left(x_{0}\right)$
- locally minimal, if $E_{D^{\prime}}\left(x_{0}\right) \nrightarrow E_{D}\left(x_{0}\right)$
for any diagram D ' which is obtained from D by deleting an edge.
This diagram is minimal locally but not globally:
$\bullet \rightarrow 0 \xrightarrow{x_{0}} \longrightarrow x_{2}$

Main Theorem

For a rooted diagram D conditions (i) - (x) are equivalent. If D is globally minimal, then (i) - (x) are equivalent to
(xii) all undirected cycles in D pass through its root.

Definition

A diagram D is called

- globally minimal, if $\forall x_{0} E_{D^{\prime}}\left(x_{0}\right) \nrightarrow \forall x_{0} E_{D}\left(x_{0}\right)$
- locally minimal, if $E_{D^{\prime}}\left(x_{0}\right) \nrightarrow E_{D}\left(x_{0}\right)$
for any diagram D ' which is obtained from D by deleting an edge.
This diagram is minimal locally but not globally:
$\bullet \xrightarrow{x_{0}} \longrightarrow_{0}^{x_{1}}{ }^{x_{2}}$

Main Theorem

For a rooted diagram D conditions (i) - (x) are equivalent. If D is globally minimal, then (i) - (x) are equivalent to
(xii) all undirected cycles in D pass through its root.

Minimality is important

Definition

A diagram D is called

- globally minimal, if $\forall x_{0} E_{D^{\prime}}\left(x_{0}\right) \nrightarrow \forall x_{0} E_{D}\left(x_{0}\right)$
- locally minimal, if $E_{D^{\prime}}\left(x_{0}\right) \nrightarrow E_{D}\left(x_{0}\right)$
for any diagram D^{\prime} which is obtained from D by deleting an edge.

This diagram is minimal locally but not globally:

Main Theorem

For a rooted diagram D conditions (i) - (x) are equivalent. If D is globally minimal, then (i) - (x) are equivalent to
(xii) all undirected cycles in D pass through its root.

Main Theorem

For a rooted diagram D conditions (i) - (x) are equivalent. If D is globally minimal, then (i) - (x) are equivalent to (xii) all undirected cycles in D pass through its root.

The proof is based on two claims.

Main Theorem

For a rooted diagram D conditions (i) - (x) are equivalent. If D is globally minimal, then (i) - (x) are equivalent to
(xii) all undirected cycles in D pass through its root.

The proof is based on two claims.
Claim 1. If all undirected cycles in a rooted D pass through its root, then it is locally definable by a generalised Sahquist formula.
This was more or less known:

- 2005^{a} - definability was noticed and proved;
- 2013^{b} - definability for many "root" variables by generalised Sahqvist formulas;
- 2013^{c} - an easy-to-implement translating algorithm is presented.

[^0]
Example

f.o. formula $\quad E\left(x_{0}\right)=\exists x_{1} \exists x_{2}\left(x_{0} R_{1} x_{1} \wedge x_{1} R_{2} x_{0} \wedge x_{1} R_{3} x_{2} \wedge x_{0} R_{4} x_{2} \wedge x_{2} R_{5} x_{0}\right)$ ॥ generalised Kracht formula $\quad x \in R_{4}^{-1}\left(R_{5}^{-1}(x) \cap R_{3}\left(R_{1}(x) \cap R_{2}^{-1}(x)\right)\right)$介
modal formula

$$
x \models p \wedge \square_{1}\left(\diamond_{2} p \rightarrow \square_{3} q\right) \rightarrow \diamond_{4}\left(q \wedge \diamond_{5} p\right)
$$

Example

f.o. formula $\quad E\left(x_{0}\right)=\exists x_{1} \exists x_{2}\left(x_{0} R_{1} x_{1} \wedge x_{1} R_{2} x_{0} \wedge x_{1} R_{3} x_{2} \wedge x_{0} R_{4} x_{2} \wedge x_{2} R_{5} x_{0}\right)$ ॥
generalised Kracht formula $\quad x \in R_{4}^{-1}\left(R_{5}^{-1}(x) \cap R_{3}\left(R_{1}(x) \cap R_{2}^{-1}(x)\right)\right)$ ॥
modal formula

$$
x \models p \wedge \square_{1}\left(\diamond_{2} p \rightarrow \square_{3} q\right) \rightarrow \diamond_{4}\left(q \wedge \diamond_{5} p\right)
$$

Indeed, $\theta_{\min }(p)=\{x\}$ and $\theta_{\min }(q)=R_{3}\left(R_{1}(x) \cap R_{2}^{-1}(x)\right)$.

Claim 2. Let rooted D is globally minimal and contains a cycle not passing through its root. Then (i) - (x) do not hold.

Claim 2. Let rooted D is globally minimal and contains a cycle not passing through its root. Then (i) - (x) do not hold.

Proof: construct "non-standard" frames which do not satisfy D but which cannot be separated from D within given restrictions on language.

Claim 2. Let rooted D is globally minimal and contains a cycle not passing through its root. Then (i) - (x) do not hold.

Proof: construct "non-standard" frames which do not satisfy D but which cannot be separated from D within given restrictions on language.
E.g., negations of (i) and (ii) follow from

Theorem (2013 ${ }^{b}$)
If a rooted D is locally minimal and contains the mentioned cycle, then $E_{D}\left(x_{0}\right)$ is not locally definable.

Claim 2. Let rooted D is globally minimal and contains a cycle not passing through its root. Then (i) - (x) do not hold.

Proof: construct "non-standard" frames which do not satisfy D but which cannot be separated from D within given restrictions on language.
E.g., negations of (i) and (ii) follow from

Theorem (2013 ${ }^{b}$)

If a rooted D is locally minimal and contains the mentioned cycle, then $E_{D}\left(x_{0}\right)$ is not locally definable.

Proof

$$
\begin{aligned}
F^{D} & \models E_{D}\left(x_{0}\right) \\
\left(F^{D}\right)^{u . e} & \models E^{D}\left(x_{0}\right)
\end{aligned}
$$

Can we use this idea to show global undefinability?

Can we use this idea to show global undefinability?

Can we use this idea to show global undefinability?

From this example we learn:

- for proving global properties it is convenient to "repair" the destroyed diagram to make all points except root satisfy E^{D};
- this can often be done by adding a reflexive point on top of the diagram.

Lemma (about repairing the diagram)

For any rooted globally minimal D with an interior cycle there exist two pointed Kripke frames $F^{+}=\left(W,\left(R_{\lambda}^{+}: \lambda \in \Lambda\right), x_{0}^{0}\right)$ and $F^{-}=\left(W,\left(R_{\lambda}^{-}: \lambda \in \Lambda\right), x_{0}^{0}\right)$, points $x_{d}, x_{d^{\prime}} \in W^{D}$, index $\lambda_{d} \in \Lambda$, and embedding $g: D \rightarrow F^{+}$sending x_{0} to x_{0}^{0}, such that:
(i) $R_{\lambda_{d}}^{+}=R_{\lambda_{d}}^{-} \cup\left\{\left(g\left(x_{d}\right), g\left(x_{d}^{\prime}\right)\right)\right\}$ и $R_{\lambda}^{+}=R_{\lambda}^{-}$для $\lambda \neq \lambda_{d}$;
(ii) $F^{-} \not \vDash E_{D}\left(x_{0}^{0}\right)$
(iii) $\mathrm{F}^{+} \models E_{D}\left(x_{0}^{0}\right)$
(iv) the points $g\left(x_{d}\right)$ and $g\left(x_{d^{\prime}}\right)$ can be connected in F^{-}by an indirected path, not passing through x_{0}
(v) if for some $x_{1}^{0}, \ldots, x_{n}^{0} \in W F^{+} \models K_{D}\left(x_{0}^{0}, x_{1}^{0}, \ldots, x_{n}^{0}\right)$, then

$$
\left\{x_{0}^{0}, \ldots, x_{n}^{0}\right\}=\left\{g\left(x_{0}\right), \ldots, g\left(x_{n}\right)\right\}
$$

and for all $0 \leq i, j \leq n x_{i}^{0} R_{\lambda}^{+} x_{j}^{0}$ implies $x_{i} R_{\lambda}^{D} x_{j}$;
(vi) for all $x \neq g\left(x_{0}\right) F^{-} \models E_{D}(x)$;

Can we always make do with adding a reflexive point?

Can we always make do with adding a reflexive point?
No!

Non-axiomatisability using finitely many variables ((iv) - (vi) are false)

Proof idea: use F^{+}and F^{-}while constructing F^{D}.

Pseudo-products with order

α is a linear discrete order with the first element

$$
\begin{aligned}
& F^{\alpha} \in V(L) \text { for infinite } \alpha \\
& F^{\alpha} \notin V(L), \text { for finite } \alpha
\end{aligned}
$$

Non-elementarity

In the signature Σ which consists of:

- binary relational symbols $R_{\lambda},<, f$ and $=$
- unary predicate symbols N, Z_{1}, \ldots, Z_{m} and
- a constant u (which goes instead of Z_{0})
one can write a formula ζ_{k} which says:
"The subframe, generated by u and R_{λ}, is isomorphic to F^{α} for some linear order α, while $|\alpha|>=k$ ".

Axiomatisation

$F, x \models \gamma_{n} \Longleftrightarrow$ If the d-neighborhood of x in F is painted in n colours, then there is a homomorphism from \tilde{T}_{D} to F such that the nodes with same labels are mapped to the points with the same colours.

Pseudo-products with graphs

G is an arbitrary graph; b is the number of points in F^{+}. If G cannot be painted in $2^{b k}$ colours, then $F^{ \pm} \times G \models \gamma_{k}$. If G can be painted in N colours, then $F^{ \pm} \times G \not \vDash \gamma_{N b}$.

Inverse limits of descriptive general frames

Let $F_{i}=\left(W_{i},\left(R_{\lambda, i}: \lambda \in \Lambda\right), P_{i}\right)$ (for $\left.i \in \mathbb{N}\right)$ be descriptive general frames and $f_{i}: F_{i+1} \rightarrow F_{i}$ be p-morphisms.
We define the inverse limit of a system of general frames

$$
\begin{gathered}
\cdots \rightarrow F_{i+1} \stackrel{f_{i}}{\rightarrow} F_{i} \rightarrow \ldots \\
\text { as } \mathcal{F}=\left(W,\left(R_{\lambda}: \lambda \in \Lambda\right), P\right), \text { where } \\
W=\left\{x \in \prod_{i \in \mathbb{N}} W_{i}: f_{i}\left(x_{i+1}\right)=x_{i} \text { for all } i \in \mathbb{N}\right\}, \\
R_{\lambda}=\left\{(x, y) \in W: R_{\lambda, i}\left(x_{i}, y_{i}\right) \text { for all } i \in \mathbb{N}\right\}, \\
P=\left\{p r_{i}^{-1}[S]: i \in \mathbb{N}, S \in P_{i}\right\},
\end{gathered}
$$

where for each $i \in \mathbb{N} p r_{i}: W \rightarrow W_{i}$ is the projection $p r_{i}(x)=x_{i}$.
The inverse limit of Kripke frames considered as general frames is not necessarily a Kripke frame!

Theorem (R. Goldblatt)

- The inverse limit of a system of descriptive frames is a descriptive frame.
- If a modal formula ϕ is valid on all F_{i}, then it is valid on F

Theorem (I. Hodkinson, Y. Venema)
Let $s \geq 2$. Then there is a sequence of graphs G_{0}, G_{1}, \ldots and p-morphisms
$\rho_{i}: G_{i+1} \rightarrow G_{i}$ such that
(1) G_{i} has no cycles of odd length $\leq i$,
(2) $\chi\left(G_{i}\right)=s(\chi$ is the chromatic number).

Theorem (I. Hodkinson, Y. Venema)
Let $s \geq 2$. Then there is a sequence of graphs G_{0}, G_{1}, \ldots and p-morphisms $\rho_{i}: G_{i+1} \rightarrow G_{i}$ such that
(1) G_{i} has no cycles of odd length $\leq i$,
(2) $\chi\left(G_{i}\right)=s(\chi$ is the chromatic number).

Fix n and set $H_{i}=G_{i} \cup K_{n}$.

Theorem (I. Hodkinson, Y. Venema)
Let $s \geq 2$. Then there is a sequence of graphs G_{0}, G_{1}, \ldots and p-morphisms $\rho_{i}: G_{i+1} \rightarrow G_{i}$ such that
(1) G_{i} has no cycles of odd length $\leq i$,
(2) $\chi\left(G_{i}\right)=s(\chi$ is the chromatic number).

Fix n and set $H_{i}=G_{i} \cup K_{n}$.
Proposition (about pseudoproducts with graphs)
$\lim _{\leftarrow}\left(F^{ \pm} \times H_{i}\right)=F^{ \pm} \times \lim _{\leftarrow} H_{i}$.

Theorem (I. Hodkinson, Y. Venema)

Let $s \geq 2$. Then there is a sequence of graphs G_{0}, G_{1}, \ldots and p -morphisms $\rho_{i}: G_{i+1} \rightarrow G_{i}$ such that
(1) G_{i} has no cycles of odd length $\leq i$,
(2) $\chi\left(G_{i}\right)=s(\chi$ is the chromatic number $)$.

Fix n and set $H_{i}=G_{i} \cup K_{n}$.
Proposition (about pseudoproducts with graphs)
$\lim _{\leftarrow}\left(F^{ \pm} \times H_{i}\right)=F^{ \pm} \times \lim _{\leftarrow} H_{i}$.

Lemma

Let γ_{i} be a sequence of modal formulas such that $\gamma_{i_{1}}$ implies $\gamma_{i_{2}}$ if $i_{2}<i_{1}$. Suppose that for all / there exists m such that for all k there exists an inverse system of finite Kripke frames $\left\{F_{i}\right\}$ such that:
(1) for all $i F_{i} \models \gamma_{k}$,
(2) $\lim F_{i} \models \gamma_{1}$,
(3) $\lim _{\leftarrow} F_{i} \not \vDash \gamma_{m}$.

Then any axiomatisation of $L=\mathrm{K}+\left\{\gamma_{n}: n \in \omega\right\}$ has infinitely many non-canonical axioms.

Discussion

- We classified $\forall x_{0} \exists x_{1} \ldots \exists x_{n} \bigwedge x_{i} R x_{j}$ with respect to the properties of its modal logic.

Discussion

- We classified $\forall x_{0} \exists x_{1} \ldots \exists x_{n} \wedge x_{i} R x_{j}$ with respect to the properties of its modal logic.
- We have dichotomy: either L is really "good" (generally Sahlqvist) or really "bad".

Discussion

- We classified $\forall x_{0} \exists x_{1} \ldots \exists x_{n} \wedge x_{i} R x_{j}$ with respect to the properties of its modal logic.
- We have dichotomy: either L is really "good" (generally Sahlqvist) or really "bad".
- This generalises both Sahlqvist's and Hughes' theorems.

Discussion

- We classified $\forall x_{0} \exists x_{1} \ldots \exists x_{n} \wedge x_{i} R x_{j}$ with respect to the properties of its modal logic.
- We have dichotomy: either L is really "good" (generally Sahlqvist) or really "bad".
- This generalises both Sahlqvist's and Hughes' theorems.
- Why we consider this class ?

Discussion

- We classified $\forall x_{0} \exists x_{1} \ldots \exists x_{n} \wedge x_{i} R x_{j}$ with respect to the properties of its modal logic.
- We have dichotomy: either L is really "good" (generally Sahlqvist) or really "bad".
- This generalises both Sahlqvist's and Hughes' theorems.
- Why we consider this class ?
- large enough to generate logics on both sides of the dichotomy;

Discussion

- We classified $\forall x_{0} \exists x_{1} \ldots \exists x_{n} \wedge x_{i} R x_{j}$ with respect to the properties of its modal logic.
- We have dichotomy: either L is really "good" (generally Sahlqvist) or really "bad".
- This generalises both Sahlqvist's and Hughes' theorems.
- Why we consider this class ?
- large enough to generate logics on both sides of the dichotomy;
- small enough to yield dichotomy;

Discussion

- We classified $\forall x_{0} \exists x_{1} \ldots \exists x_{n} \wedge x_{i} R x_{j}$ with respect to the properties of its modal logic.
- We have dichotomy: either L is really "good" (generally Sahlqvist) or really "bad".
- This generalises both Sahlqvist's and Hughes' theorems.
- Why we consider this class ?
- large enough to generate logics on both sides of the dichotomy;
- small enough to yield dichotomy;
- need $\forall x_{0}$ to be able to talk about normal modal logics;

Discussion

- We classified $\forall x_{0} \exists x_{1} \ldots \exists x_{n} \wedge x_{i} R x_{j}$ with respect to the properties of its modal logic.
- We have dichotomy: either L is really "good" (generally Sahlqvist) or really "bad".
- This generalises both Sahlqvist's and Hughes' theorems.
- Why we consider this class ?
- large enough to generate logics on both sides of the dichotomy;
- small enough to yield dichotomy;
- need $\forall x_{0}$ to be able to talk about normal modal logics;
- if we remove it, we get $\exists \vec{x} \backslash x_{i} R x_{j}$ - existential conjunctive formulas, usual for computer science (conjunctive query answering with respect to databases and description logic)
- building block for $A E$-formulas:

Discussion

- We classified $\forall x_{0} \exists x_{1} \ldots \exists x_{n} \wedge x_{i} R x_{j}$ with respect to the properties of its modal logic.
- We have dichotomy: either L is really "good" (generally Sahlqvist) or really "bad".
- This generalises both Sahlqvist's and Hughes' theorems.
- Why we consider this class ?
- large enough to generate logics on both sides of the dichotomy;
- small enough to yield dichotomy;
- need $\forall x_{0}$ to be able to talk about normal modal logics;
- if we remove it, we get $\exists \vec{x} \backslash x_{i} R x_{j}$ - existential conjunctive formulas, usual for computer science (conjunctive query answering with respect to databases and description logic)
- building block for $A E$-formulas:
- What's next ?

Discussion

- We classified $\forall x_{0} \exists x_{1} \ldots \exists x_{n} \wedge x_{i} R x_{j}$ with respect to the properties of its modal logic.
- We have dichotomy: either L is really "good" (generally Sahlqvist) or really "bad".
- This generalises both Sahlqvist's and Hughes' theorems.
- Why we consider this class ?
- large enough to generate logics on both sides of the dichotomy;
- small enough to yield dichotomy;
- need $\forall x_{0}$ to be able to talk about normal modal logics;
- if we remove it, we get $\exists \vec{x} \backslash x_{i} R x_{j}$ - existential conjunctive formulas, usual for computer science (conjunctive query answering with respect to databases and description logic)
- building block for $A E$-formulas:
- What's next ?
- AE-diagrams;
- Sahlqvist successor property.

Thank you！

$$
4 \square>4 \text { 吕 } \downarrow \text { 引 三 } \downarrow \text { 引 }
$$

[^0]: ${ }^{\boldsymbol{a}}$ E. Zolin. Query answering based on modal correspondence theory. In Proceedings of the 4th "Methods for modalities" Workshop (M4M-4), pages 21-37, 2005.
 ${ }^{b}$ S. Kikot and E. Zolin. Modal definability of first-order formulas with free variables and query answering. In Journal of Applied Logic, 11:190-216, 2013.
 ${ }^{\text {c }}$ S. Kikot, D. Tsarkov, M. Zakharyaschev and E. Zolin. Query Answering via Modal Definability with FaCT++: First Blood. In Informal Proceedings of DL 2013: 26th International Workshop on Description Logics (Ulm, 22-27 July), pp. 328-340, CEUR Workshop Proceedings, vol. 1014, 2013.

