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where \ € A.

Kripke semantics

Kripke frame: F = (W, (R : A € A)) where Ry € W x W,
Kripke model: M = (F,0) where 6 : PV — 2",

M,x = ¢ ¢ is true at x in M, o 60
F,xlE=¢ ¢isvalid at x in F,

F=o¢  ¢isvalidin F, T i T/;%*

z*0r0 z *0o



Language Lfa

The corresponding first-order language Lf) consists of:
@ object variables x,y,z, ...
@ binary relational symbols R\ (x, y) and equality
@ logical operations V, A, =

@ quantifiers 3x, Vy over object variables



Language Lfa

The corresponding first-order language Lf) consists of:
@ object variables x,y,z, ...
@ binary relational symbols R\ (x, y) and equality
@ logical operations V, A, =

@ quantifiers 3x, Vy over object variables

A(x) is locally modally definable if there exists ¢ € My s.t for all F, xo
IF ‘:A(X0)<:> F,Xo ':(f)



Language Lfa

The corresponding first-order language Lf) consists of:
@ object variables x,y,z, ...
@ binary relational symbols R\ (x, y) and equality
@ logical operations V, A, =

@ quantifiers 3x, Vy over object variables

A(x) is locally modally definable if there exists ¢ € My s.t for all F, xo
IF ‘:A(X0)<:> F,Xo ':(f)

A is globally modally definable if there exists ¢ € M/, s.t for all F
FEAsFES



Language Lfa

The corresponding first-order language Lf) consists of:
@ object variables x,y,z, ...
@ binary relational symbols R\ (x, y) and equality
@ logical operations V, A, =

@ quantifiers 3x, Vy over object variables

A(x) is locally modally definable if there exists ¢ € My s.t for all F, xo
IF ‘:A(X0)<:> F,Xo ':(f)

A is globally modally definable if there exists ¢ € M/, s.t for all F
FEASFEG

Elementary class: C = {F | F = A}, where A is an Lfj-formula.



Language Lfa

The corresponding first-order language Lf) consists of:
@ object variables x,y,z, ...
@ binary relational symbols R\ (x, y) and equality
@ logical operations V, A, =

@ quantifiers 3x, Vy over object variables

A(x) is locally modally definable if there exists ¢ € My s.t for all F, xo
IF ‘:A(X0)<:> F,Xo ':(f)

A is globally modally definable if there exists ¢ € M/, s.t for all F
FEAsFES

Elementary class: C = {F | F = A}, where A is an Lfj-formula.
Elementarily generated modal logic: Log(C) = {¢p€ M | F |= ¢ for all F € C}



Language Lfa

The corresponding first-order language Lf) consists of:
@ object variables x,y,z, ...
@ binary relational symbols R\ (x, y) and equality
@ logical operations V, A, =

@ quantifiers 3x, Vy over object variables

A(x) is locally modally definable if there exists ¢ € My s.t for all F, xo
IF ‘:A(Xo)@ F,Xo ':(f)

A is globally modally definable if there exists ¢ € M/, s.t for all F
FEAsFES

Elementary class: C = {F | F = A}, where A is an Lfj-formula.
Elementarily generated modal logic: Log(C) = {¢p€ M | F |= ¢ for all F € C}
Global question

Given C, determine what properties hold for Log(C) ?
How are they related to the properties of the first-order formula defining C ?



Language Lfa

The corresponding first-order language Lf) consists of:
@ object variables x,y,z, ...
@ binary relational symbols R\ (x, y) and equality
@ logical operations V, A, =

@ quantifiers 3x, Vy over object variables

A(x) is locally modally definable if there exists ¢ € My s.t for all F, xo
IF ‘:A(X0)<:> F,Xo ':(f)

A is globally modally definable if there exists ¢ € M/, s.t for all F
FEASFEG

Elementary class: C = {F | F = A}, where A is an Lfj-formula.
Elementarily generated modal logic: Log(C) = {¢p€ M | F |= ¢ for all F € C}
Global question

Given C, determine what properties hold for Log(C) ?
How are they related to the properties of the first-order formula defining C ?

What if C is given by some very simple first-order formula?
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Proposition

For any elementary class C Log(C) is a normal modal logic.

Definition
A normal modal logic L is axiomatizable by a set of modal formulas X if L is
the minimal normal modal logic which contains X.

Properties of logics we are interested in

@ finite axiomatisability (or, axiomatisability by a single formula)
(generalised) Sahlqvist axiomatisability

using finitely many variables

using a single non-canonical formula and arbitrary many canonical f-las

°
°
°
@ elementarity (when V(L) = {F | F = L} is elementary)
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Global question

Given C, determine what properties hold for Log(C) ?
How are they related to the properties of the first-order formula defining C ?

Example: “see itself in two steps” vs “have a reflexive successor”

Zy O
o

o ,.
1 any axiomatisation of L requieres
infinitely many
non-canonical formulas
(I. Hodkinson, Y. Venema, 2003)
Zo
L0 .

Vzo3zy (zoRz1 A 1 Rxo) Vzo3zy (zoRz1 A 1 Rxy)

modally déflnable modally undefinable Beilh are 6f dhe fomm
by a Sahlqvist formula L is not axiomatisable
using finitely many variables Vaodwy ... Jz, A\ Ra(zi, z5)

L=K+p— 00p

i - t
i i Aty L is not A-elementary

(Hughes, 1990)



Problem statement

Classify C given by VxqE(xo), where E(xp) = 3x1 ... 3x, A\ X;Rxj w.r.t.
(i) E(xo) is locally modally definable by a generalised Sahlqvist formula;
(ii) E(xo) is locally modally definable;
(iii) VxoE(xo) is globally modally definable;
(iv) Log(C) is axiomatisable by a single generalised Sahlqvist formula;
(v) Log(C) is finitely axiomatisable;
(vi) Log(C) is axiomatisable using finitely many variables ;
(vii) Log(C) is axiomatisable by canonical formulas;
(viii) Log(C) is axiomatisable using finitely many non-canonical formulas;
(i) {F | F = Log(C)} = C;
(x) Log(C) is elementary;
(xi) Log(C) A-elementary (7).
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Main Theorem

For a rooted diagram D conditions (i) - (x) are equivalent. If D is
globally minimal, then (i) - (x) are equivalent to

(xii) all undirected cycles in D pass through its root.

Minimality is important

—

\ / \ N
l\‘k -0 = . e
<

Definition

A diagram D is called
@ globally minimal, if VxoEp/(x0) #» Vx0Ep(xo0)
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for any diagram D' which is obtained from D by deleting an edge.

This diagram is minimal locally but not globally:
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° o} -0




Main Theorem

For a rooted diagram D conditions (i) - (x) are equivalent.
If D is globally minimal, then (i) - (x) are equivalent to

(xii) all undirected cycles in D pass through its root.



Main Theorem

For a rooted diagram D conditions (i) - (x) are equivalent.
If D is globally minimal, then (i) - (x) are equivalent to

(xii) all undirected cycles in D pass through its root.

The proof is based on two claims.



Main Theorem
For a rooted diagram D conditions (i) - (x) are equivalent.
If D is globally minimal, then (i) - (x) are equivalent to
(xii) all undirected cycles in D pass through its root.
The proof is based on two claims.
Claim 1. If all undirected cycles in a rooted D pass through its root, then it is
locally definable by a generalised Sahqvist formula.
This was more or less known:
@ 20057 — definability was noticed and proved;
@ 2013b — definability for many “root” variables by generalised Sahqvist formulas;

@ 2013° — an easy-to-implement translating algorithm is presented.

?E. Zolin. Query answering based on modal correspondence theory. In Proceedings of the 4th
“Methods for modalities” Workshop (M4M-4), pages 21-37, 2005.

bS. Kikot and E. Zolin. Modal definability of first-order formulas with free variables and query
answering. In Journal of Applied Logic, 11:190-216, 2013.

‘s. Kikot, D. Tsarkov, M. Zakharyaschev and E. Zolin. Query Answering via Modal Definability with

FaCT++: First Blood. In Informal Proceedings of DL 2013: 26th International Workshop on Description
Logics (Ulm, 22-27 July), pp. 328-340, CEUR Workshop Proceedings, vol. 1014, 2013.
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Example

g31 R3 gﬁz
R
Ry /R
Rl 4 5
o

f,O. formula E(Io) = 31‘131’2($0R11’1 VA I’]RQZO A\ I]R3.’L’2 A ZL‘0R4$2 A 1’2[{5.’50)

¥

generalised Kracht formula = € Ry (R5'(z) N R3(Ry(x) N Ry (w)))
)

modal formula I8 ': p A |:|1(<>2p — Dsq) — <>4(q A <>5p)

Indeed, Orin(p) = {x} and Oin(q) = Ra(R1(x) N Ry (x)).
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Claim 2. Let rooted D is globally minimal and contains a cycle not passing
through its root. Then (i) — (x) do not hold.

Proof: construct “non-standard” frames which do not satisfy D but which
cannot be separated from D within given restrictions on language.

E.g.. negations of (i) and (ii) follow from

Theorem (2013%)

If a rooted D is locally minimal and contains the mentioned cycle, then Ep(xo)
is not locally definable.

Proof

ogg——»oO

b —
T
2 D FP £ Ep ()
(FP)we |= EP(z0)
L R0} eI
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Can we use this idea to show global undefinability?

o——————Po
FP £ Ep(z0) FP
FD W@ }: V.TED )

L X}



Can we use this idea to show global undefinability?

o—— PO
FP £ Ep(z0) FP
(FP)we |= Vo EP (v)

X0 e Lo

From this example we learn:

@ for proving global properties it is convenient to “repair’ the destroyed
diagram to make all points except root satisfy E°;

@ this can often be done by adding a reflexive point on top of the diagram.



Lemma (about repairing the diagram)
For any rooted globally minimal D with an interior cycle there exist two pointed
Kripke frames F™ = (W, (R} : A € A),x0) and F~ = (W, (R} : A € A), xJ),
points xg,xg € WP index Ay € A, and embedding g : D — FT sending xo to xg,
such that:

() Ry, = Ry, U{(8(xa), 60)} w RY = Ry ana A # Ag;

(i) F~ I~ Ep(x3)

(i) FT = ED(xg)

(iv) the points g(x4) and g(xy/) can be connected in F~ by an indirected path, not

passing through xp
(v) if for some x?,... ,x2 e W F' = Kp(xQ, x2, ..., x0), then

00, X0} = {g(x0), - -, £ ()}
and forall 0 <j,j <n x?Rj\rxJQ implies x,-R/L\)Xj;

(vi) for all x # g(x0) F~ = Ep(x); O
zl°‘/—\°x2 glz1) = mwo/%/x\og(wz) =4
D LS Ft

L ¥ g(z0) = zg



Can we always make do with adding a reflexive point?



Can we always make do with adding a reflexive point?

o //0 I}’f"O"O@O
| |
4 Q 1

—t»0——po——Po
) S

T
T—DOHOHO
L]



Non-axiomatisability using finitely many variables

((iv) = (vi) are false)

Proof idea: use F* and F~ while constructing FP.

P
/\ P
A TN 22
Z1

F+/7 o o

)

®LQ

e X0

FD l;é ED(xo)
Ff ': ED(I())

e X0



Pseudo-products with order

O O
e -

T
A X ) T ) :

o o L ]
T
« is a linear discrete order with the first element
F~ e V(L) for infinite «
Jzo F~ ¢ V(L), for finite v



Non-elementarity

In the signature > which consists of:
@ binary relational symbols R\, <, f and =
@ unary predicate symbols N, 71, ..., Z,, and
@ a constant u (which goes instead of Zj)

one can write a formula ¢, which says:
“The subframe, generated by u and R), is isomorphic to F for
some linear order o, while |a| >= k".

’ O 73

T S Let FEV(L) & F 1.
i — f

e~ T ={-n,¢1,(2,C3,--- }
T o(\\o 1
[ - — 0
T f o \\=o F* € V(L) for infinite
Ve F* ¢ V(L) for finite o

N, < 7 Za




Axiomatisation

o‘/\cx2 . o2 !
T 1 T
5 W . \ /
e X o L0

13 (O A Of2) A OU2 A Q1))

T T
2 01

O

0:'E2

§r

L)

O(pr V-V pp) = \/ O(pi A Op;) A O(pj A Opi)
i j=1

F,x |= v, <= If the d-neighborhood of x in F is painted in n colours,
then there is a homomorphism from Tp to F such that the nodes with
same labels are mapped to the points with the same colours.



Pseudo-products with graphs

L)

0‘/\01,2 o
1

G is an arbitrary graph; b is the number of points in F+.
If G cannot be painted in 2°% colours, then F* x G = .

If G can be painted in N colours, then F* x G}~ yny.



Inverse limits of descriptive general frames

Let Fi = (Wi, (Rx,i : A € A), P;) (for i € N) be descriptive general frames and
f; . Fiy1 — F; be p-morphisms.
We define the inverse limit of a system of general frames

*>F:+13F,—>
as F = (W,(Rx: XA € N), P), where
W:{XGHW:' : fi(xiy1) = x; for all i € N},
ieN

Ry ={(x,y) € W: R\ i(xi,yi) for all i € N},

1 .
P ={pr: *[S]:i €N,S € P},
where for each i € N pr; : W — W; is the projection pri(x) = x;.
The inverse limit of Kripke frames considered as general frames is not necessarily a Kripke frame!

Theorem (R. Goldblatt)

@ The inverse limit of a system of descriptive frames is a descriptive frame.

@ If a modal formula ¢ is valid on all F;, then it is valid on F
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Theorem (l. Hodkinson, Y. Venema)

Let s > 2. Then there is a sequence of graphs Go, Gi, ... and p-morphisms
pi ¢ Gip1 — Gj such that

(1) G; has no cycles of odd length </,

(2) x(Gi) = s (x is the chromatic number).

Fix n and set H; = G; U K,,.

Proposition (about pseudoproducts with graphs)
|i£1(Fi x H;) = F* x lim H;.

Lemma

Let ;i be a sequence of modal formulas such that ~;, implies v, if 2 < /1.
Suppose that for all / there exists m such that for all k there exists an inverse
system of finite Kripke frames {F;} such that:

(1) for all i F; =k,
(2) lim F; =,
(3) lim F; = ym.

—

Then any axiomatisation of L = K + {7, : n € w} has infinitely many
non-canonical axioms.
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e building block for AE-formulas:
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Discussion

o We classified Vxodx; ... dx, /\ x;Rx; with respect to the
properties of its modal logic.

@ We have dichotomy: either L is really “good” (generally
Sahlqvist) or really “bad”.

@ This generalises both Sahlqgvist’'s and Hughes' theorems.

e Why we consider this class ?

large enough to generate logics on both sides of the dichotomy;
small enough to yield dichotomy;

need Vxp to be able to talk about normal modal logics;

if we remove it, we get 3X /\ x; Rx; — existential conjunctive
formulas, usual for computer science (conjunctive query
answering with respect to databases and description logic)

e building block for AE-formulas:

@ What's next ?
o AE-diagrams;
e Sahlqvist successor property.
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