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LanguageMlΛ (propositional modal formulas)

PV = {p1, p2, p3, . . . }
φ ::= pi | ⊥ | (φ ∨ φ) | (φ ∧ φ) | ¬φ | ♦λφ | �λφ,

where λ ∈ Λ.

Kripke semantics

Kripke frame: F = (W , (Rλ : λ ∈ Λ)) where Rλ ∈W ×W ,

Kripke model: M = (F , θ) where θ : PV → 2W ,

M, x |= φ φ is true at x in M,

F , x |= φ φ is valid at x in F ,

F |= φ φ is valid in F ,
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Language LfΛ
The corresponding �rst-order language LfΛ consists of:

object variables x , y , z , . . .

binary relational symbols Rλ(x , y) and equality

logical operations ∨,∧,¬
quanti�ers ∃x , ∀y over object variables

A(x) is locally modally de�nable if there exists φ ∈MlΛ s.t for all F , x0

F |= A(x0)⇔ F , x0 |= φ

A is globally modally de�nable if there exists φ ∈MlΛ s.t for all F

F |= A⇔ F |= φ

Elementary class: C = {F | F |= A}, where A is an LfΛ-formula.
Elementarily generated modal logic: Log(C) = {φ∈MlΛ | F |= φ for all F ∈ C}

Global question

Given C , determine what properties hold for Log(C) ?
How are they related to the properties of the �rst-order formula de�ning C ?

What if C is given by some very simple �rst-order formula?
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De�nition

A set of modal formulas L is a normal modal logic if

L contains �λ(p ∧ q) ≡ �λp ∧�λq and �λp ≡ ¬♦λ¬p
L is closed under Modus Ponens, Uniform Substitution and Necessitation
(from φ infere �λφ)

Proposition

For any elementary class C Log(C) is a normal modal logic.

De�nition

A normal modal logic L is axiomatizable by a set of modal formulas Σ if L is
the minimal normal modal logic which contains Σ.

Properties of logics we are interested in

�nite axiomatisability (or, axiomatisability by a single formula)

(generalised) Sahlqvist axiomatisability

using �nitely many variables

using a single non-canonical formula and arbitrary many canonical f-las

elementarity (when V (L) = {F | F |= L} is elementary)
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Global question

Given C , determine what properties hold for Log(C) ?
How are they related to the properties of the �rst-order formula de�ning C ?

Example: �see itself in two steps� vs �have a re�exive successor�

x0

x1

x0

x1

∀x0∃x1(x0Rx1 ∧ x1Rx0) ∀x0∃x1(x0Rx1 ∧ x1Rx1)

L = K + p → ♦♦p

modally definable

L is elementary

modally undefinable

L is not axiomatisable
using finitely many variables

L is not ∆-elementary

(Hughes, 1990)

by a Sahlqvist formula

any axiomatisation of L requieres
infinitely many
non-canonical formulas
(I. Hodkinson, Y. Venema, 2003)

Both are of the form

∀x0∃x1 . . . ∃xn
∧
Rλ(xi, xj)
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Problem statement

Classify C given by ∀x0E (x0), where E (x0) = ∃x1 . . . ∃xn
∧
xiRxj w.r.t.

(i) E (x0) is locally modally de�nable by a generalised Sahlqvist formula;

(ii) E (x0) is locally modally de�nable;

(iii) ∀x0E (x0) is globally modally de�nable;

(iv) Log(C) is axiomatisable by a single generalised Sahlqvist formula;

(v) Log(C) is �nitely axiomatisable;

(vi) Log(C) is axiomatisable using �nitely many variables ;

(vii) Log(C) is axiomatisable by canonical formulas;

(viii) Log(C) is axiomatisable using �nitely many non-canonical formulas;

(ix) {F | F |= Log(C)} = C;
(x) Log(C) is elementary;

(xi) Log(C) ∆-elementary (?).



De�nition

A tuple D = (WD , (RD
λ : λ ∈ Λ), xD0 ) is called a diagram, if

WD is a �nite set;

RD
λ are binary relations on WD ,

xD0 ∈WD

Let WD = {x0, x1, . . . , xn}, xD0 = x0, KD(x0, x1, . . . , xn) =
∧

z1, z2∈WD ,

z1R
D
λ z2

z1Rλz2,

and ED(x0) = ∃x1 . . . ∃xnKD(x0, x1, . . . , xn).

Example

x0

x1
x2

D

KD(x0, x1, x2) = x0Rx1 ∧ x0Rx2 ∧ x1Rx2 ∧ x2Rx1

ED(x0) = ∃x1∃x2(x0Rx1 ∧ x0Rx2 ∧ x1Rx2 ∧ x2Rx1)

De�nition

A diagram is called rooted, if every its point is accessible from x0 via a directed path.

Main Theorem

For a rooted diagram D conditions (i) - (x) are equivalent.
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De�nition

A diagram D is called

globally minimal, if ∀x0ED′(x0) 6→ ∀x0ED(x0)

locally minimal, if ED′(x0) 6→ ED(x0)

for any diagram D' which is obtained from D by deleting an edge.

This diagram is minimal locally but not globally:

x0 x1 x2
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Main Theorem

For a rooted diagram D conditions (i) - (x) are equivalent. If D is
globally minimal, then (i) - (x) are equivalent to

(xii) all undirected cycles in D pass through its root.
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Main Theorem

For a rooted diagram D conditions (i) - (x) are equivalent. If D is
globally minimal, then (i) - (x) are equivalent to

(xii) all undirected cycles in D pass through its root.

Minimality is important

≡
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Main Theorem

For a rooted diagram D conditions (i) - (x) are equivalent.
If D is globally minimal, then (i) - (x) are equivalent to

(xii) all undirected cycles in D pass through its root.

The proof is based on two claims.

Claim 1. If all undirected cycles in a rooted D pass through its root, then it is
locally de�nable by a generalised Sahqvist formula.

This was more or less known:

2005a � de�nability was noticed and proved;

2013b � de�nability for many �root� variables by generalised Sahqvist formulas;

2013c � an easy-to-implement translating algorithm is presented.

a
E. Zolin. Query answering based on modal correspondence theory. In Proceedings of the 4th

�Methods for modalities� Workshop (M4M-4), pages 21�37, 2005.
b
S. Kikot and E. Zolin. Modal de�nability of �rst-order formulas with free variables and query

answering. In Journal of Applied Logic, 11:190�216, 2013.
c
S. Kikot, D. Tsarkov, M. Zakharyaschev and E. Zolin. Query Answering via Modal De�nability with

FaCT++: First Blood. In Informal Proceedings of DL 2013: 26th International Workshop on Description
Logics (Ulm, 22�27 July), pp. 328�340, CEUR Workshop Proceedings, vol. 1014, 2013.
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Example

R1

R2
R4 R5

R3

x0

x1 x2

E(x0) = ∃x1∃x2(x0R1x1 ∧ x1R2x0 ∧ x1R3x2 ∧ x0R4x2 ∧ x2R5x0)

x ∈ R−1
4 (R−1

5 (x) ∩R3(R1(x) ∩R−1
2 (x)))

x |= p ∧�1(♦2p → �3q) → ♦4(q ∧ ♦5p)

m

m

f.o. formula

generalised Kracht formula

modal formula

Indeed, θmin(p) = {x} and θmin(q) = R3(R1(x) ∩ R−12 (x)).
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Claim 2. Let rooted D is globally minimal and contains a cycle not passing
through its root. Then (i) � (x) do not hold.

Proof: construct �non-standard� frames which do not satisfy D but which
cannot be separated from D within given restrictions on language.

E.g., negations of (i) and (ii) follow from

Theorem (2013b)

If a rooted D is locally minimal and contains the mentioned cycle, then ED(x0)
is not locally de�nable.

Proof
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Can we use this idea to show global unde�nability?

x0

x1

x2

D

x0

FD

. . .

FD 6|= ED(x0)

(FD)u.e. |= ∀xED(x)

From this example we learn:

for proving global properties it is convenient to �repair� the destroyed
diagram to make all points except root satisfy ED ;

this can often be done by adding a re�exive point on top of the diagram.
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Lemma (about repairing the diagram)

For any rooted globally minimal D with an interior cycle there exist two pointed
Kripke frames F+ = (W , (R+

λ : λ ∈ Λ), x00 ) and F− = (W , (R−λ : λ ∈ Λ), x00 ),

points xd , xd′ ∈WD , index λd ∈ Λ, and embedding g : D → F+ sending x0 to x00 ,
such that:

(i) R+
λ
d

= R−λ
d
∪ {(g(xd ), g(x ′

d
))} è R+

λ = R−λ äëÿ λ 6= λd ;

(ii) F− 6|= ED(x00 )

(iii) F+ |= ED(x00 )

(iv) the points g(xd ) and g(xd′ ) can be connected in F− by an indirected path, not
passing through x0

(v) if for some x01 , . . . , x
0
n ∈W F+ |= KD(x00 , x

0
1 , . . . , x

0
n ), then

{x00 , . . . , x0n} = {g(x0), . . . , g(xn)},
and for all 0 ≤ i , j ≤ n x0i R

+
λ x

0
j implies xiR

D
λ xj ;

(vi) for all x 6= g(x0) F− |= ED(x);

x0

x1

x2

D

g(x0) = x0
0

F+g

g(x1) = xd′ g(x2) = xd



Can we always make do with adding a re�exive point?

No !



Can we always make do with adding a re�exive point?

No !



Non-axiomatisability using �nitely many variables

((iv) � (vi) are false)

Proof idea: use F+ and F− while constructing FD .

x0

x1

x2D x0

FD

. . .

FD 6|= ED(x0)

x0

FD
+

. . .

x0

x1

x2

F+/−

FD
+ |= ED(x0)



Pseudo-products with order

x0

x1
x2D x0

Fα

. . .

x0

x1
x2

F+/−
×

. . .

α =

α is a linear discrete order with the first element

Fα ∈ V (L) for infinite α

Fα /∈ V (L), for finite α



Non-elementarity

In the signature Σ which consists of:

binary relational symbols Rλ, <, f and =

unary predicate symbols N,Z1, . . . ,Zm and

a constant u (which goes instead of Z0)

one can write a formula ζk which says:

�The subframe, generated by u and Rλ, is isomorphic to Fα for

some linear order α, while |α| >= k�.

. . .

. . .

u

N,< Z1 Z2

f

Z3
Let F ∈ V (L) ⇔ F |= η.

T = {¬η, ζ1, ζ2, ζ3, . . . }

Fα ∈ V (L) for infinite α

Fα /∈ V (L) for finite α



Axiomatisation

x0

x1

x2

D

x0

x1

x2

T̃D

x2 x1

x0

x1

x2

TD

∃j1∃j2(♦(j1 ∧ ♦j2) ∧ ♦(j2 ∧ ♦j1))

�(p1 ∨ · · · ∨ pn)→
n∨

i,j=1

♦(pi ∧ ♦pj) ∧ ♦(pj ∧ ♦pi )

F , x |= γn ⇐⇒ If the d -neighborhood of x in F is painted in n colours,
then there is a homomorphism from T̃D to F such that the nodes with
same labels are mapped to the points with the same colours.



Pseudo-products with graphs

x0

x1
x2D x0

F± ×G

x0

x1
x2

F+/−
× G =

G is an arbitrary graph; b is the number of points in F+.

If G cannot be painted in 2bk colours, then F± ×G |= γk.

If G can be painted in N colours, then F± ×G 6|= γNb.



Inverse limits of descriptive general frames

Let Fi = (Wi , (Rλ,i : λ ∈ Λ),Pi ) (for i ∈ N) be descriptive general frames and
fi : Fi+1 → Fi be p-morphisms.
We de�ne the inverse limit of a system of general frames

· · · → Fi+1
fi→Fi → . . .

as F = (W , (Rλ : λ ∈ Λ),P), where

W = {x ∈
∏
i∈N

Wi : fi (xi+1) = xi for all i ∈ N},

Rλ = {(x , y) ∈W : Rλ,i (xi , yi ) for all i ∈ N},

P = {pr−1i [S ] : i ∈ N, S ∈ Pi},
where for each i ∈ N pri : W →Wi is the projection pri (x) = xi .

The inverse limit of Kripke frames considered as general frames is not necessarily a Kripke frame!

Theorem (R. Goldblatt)

The inverse limit of a system of descriptive frames is a descriptive frame.

If a modal formula φ is valid on all Fi , then it is valid on F



Theorem (I. Hodkinson, Y. Venema)

Let s ≥ 2. Then there is a sequence of graphs G0,G1, . . . and p-morphisms
ρi : Gi+1 → Gi such that

(1) Gi has no cycles of odd length ≤ i ,

(2) χ(Gi ) = s (χ is the chromatic number).

Fix n and set Hi = Gi ∪ Kn.

Proposition (about pseudoproducts with graphs)

lim
←

(F± × Hi ) = F± × lim
←

Hi .

Lemma

Let γi be a sequence of modal formulas such that γi1 implies γi2 if i2 < i1.
Suppose that for all l there exists m such that for all k there exists an inverse
system of �nite Kripke frames {Fi} such that:

(1) for all i Fi |= γk ,

(2) lim
←

Fi |= γl ,

(3) lim
←

Fi 6|= γm.

Then any axiomatisation of L = K+ {γn : n ∈ ω} has in�nitely many
non-canonical axioms.
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Discussion

We classi�ed ∀x0∃x1 . . . ∃xn
∧
xiRxj with respect to the

properties of its modal logic.

We have dichotomy: either L is really �good� (generally

Sahlqvist) or really �bad�.

This generalises both Sahlqvist's and Hughes' theorems.

Why we consider this class ?

large enough to generate logics on both sides of the dichotomy;
small enough to yield dichotomy;
need ∀x0 to be able to talk about normal modal logics;
if we remove it, we get ∃~x ∧ xiRxj � existential conjunctive
formulas, usual for computer science (conjunctive query
answering with respect to databases and description logic)
building block for AE -formulas:

What's next ?

AE -diagrams;
Sahlqvist successor property.

x0

x2

x1

y12

x3
y13

y23

y123
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Thank you !


