A topological duality for filter-distributive congruential logics

RAMON JANSANA

University of Barcelona

(join work with María Esteban)

TOLO IV

Tbilisi, June 24, 2014.

Introduction

• 1970, Hilary Priestley: A topological duality for distributive lattices (Priestley spaces).

Introduction

- 1970, Hilary Priestley: A topological duality for distributive lattices (Priestley spaces).
- Many extensions of Priestley duality to expansions of bounded distributive lattices: Heyting algebras, bounded distributive lattices with operators, with negations, MV-algebras, ..., weak Heyting algebras, distributive bilattices,...

- 1970, Hilary Priestley: A topological duality for distributive lattices (Priestley spaces).
- Many extensions of Priestley duality to expansions of bounded distributive lattices: Heyting algebras, bounded distributive lattices with operators, with negations, MV-algebras, ..., weak Heyting algebras, distributive bilattices,...
- Extensions of the dualities to reducts of those classes of algebras, like distributive meet-semilattices and implicative meet-semilattices (S. Celani, G. Hansoul, G. Bezhanishvili, R. J.)

- 1970, Hilary Priestley: A topological duality for distributive lattices (Priestley spaces).
- Many extensions of Priestley duality to expansions of bounded distributive lattices: Heyting algebras, bounded distributive lattices with operators, with negations, MV-algebras, ..., weak Heyting algebras, distributive bilattices,...
- Extensions of the dualities to reducts of those classes of algebras, like distributive meet-semilattices and implicative meet-semilattices (S. Celani, G. Hansoul, G. Bezhanishvili, R. J.)
- Many of the varieties of algebras with a bounded distributive lattice reduct as well as the class of implicative meet-semilattices are the class of algebras of some logic with the following properties:
 - a) it is congruential,
 - b) the lattices of logical filters of its algebras are distributive lattices.

• These properties can be seen to account for the fact that in the algebras with a distributive lattice reduct the points of the dual spaces are indeed the meet-irreducible elements of the lattice of the logical filters of the algebra.

- These properties can be seen to account for the fact that in the algebras with a distributive lattice reduct the points of the dual spaces are indeed the meet-irreducible elements of the lattice of the logical filters of the algebra.
- The points of the dual spaces of implicative meet-semilattices are the logical filters of the algebra that have a weaker property than being a meet-irreducible element.

- These properties can be seen to account for the fact that in the algebras with a distributive lattice reduct the points of the dual spaces are indeed the meet-irreducible elements of the lattice of the logical filters of the algebra.
- The points of the dual spaces of implicative meet-semilattices are the logical filters of the algebra that have a weaker property than being a meet-irreducible element.
- These observations lead us to try to bring a logic point of view into Priestley style dualities, in the spirit of *abstract algebraic logic*.

- These properties can be seen to account for the fact that in the algebras with a distributive lattice reduct the points of the dual spaces are indeed the meet-irreducible elements of the lattice of the logical filters of the algebra.
- The points of the dual spaces of implicative meet-semilattices are the logical filters of the algebra that have a weaker property than being a meet-irreducible element.
- These observations lead us to try to bring a logic point of view into Priestley style dualities, in the spirit of *abstract algebraic logic*.
- This is the goal of the work I will expound. I will present

- These properties can be seen to account for the fact that in the algebras with a distributive lattice reduct the points of the dual spaces are indeed the meet-irreducible elements of the lattice of the logical filters of the algebra.
- The points of the dual spaces of implicative meet-semilattices are the logical filters of the algebra that have a weaker property than being a meet-irreducible element.
- These observations lead us to try to bring a logic point of view into Priestley style dualities, in the spirit of *abstract algebraic logic*.
- This is the goal of the work I will expound. I will present
 - a framework to develop Priestley-style dualities for the classes of algebras canonically associated with a congruential and filter-distributive logic (with theorems),

- These properties can be seen to account for the fact that in the algebras with a distributive lattice reduct the points of the dual spaces are indeed the meet-irreducible elements of the lattice of the logical filters of the algebra.
- The points of the dual spaces of implicative meet-semilattices are the logical filters of the algebra that have a weaker property than being a meet-irreducible element.
- These observations lead us to try to bring a logic point of view into Priestley style dualities, in the spirit of *abstract algebraic logic*.
- This is the goal of the work I will expound. I will present
 - a framework to develop Priestley-style dualities for the classes of algebras canonically associated with a congruential and filter-distributive logic (with theorems),
 - some correspondence results between logical properties of congruential and filter-distributive logics and properties of the duals spaces of their algebras. The properties I will discuss are:
 - having a conjunction, having a disjunction,
 - having an implication for which the deduction theorem and modus ponens hold, having an inconsistent formula.

- A Priestley style duality for distributive meet-semilattices
- Basic on logics: congruential and filter-distributive logics.
- The meet-semilattice of an algebra for a congruential and filter-distributive logic
- The strategy towards a duality
- The duality
- Dual correspondence of some logical properties

Duality for distributive meet-semilattices

DISTRIBUTIVE MEET-SEMILATTICES WITH TOP

A meet-semilattice with top $M = \langle M, \wedge, 1 \rangle$ is *distributive* if its lattice of filters is distributive.

We will consider only distributive meet-semilattices with top element. When we say meet-semilattice we mean distributive meet-semilattices with top.

DISTRIBUTIVE MEET-SEMILATTICES WITH TOP

A meet-semilattice with top $M = \langle M, \wedge, 1 \rangle$ is *distributive* if its lattice of filters is distributive.

We will consider only distributive meet-semilattices with top element. When we say meet-semilattice we mean distributive meet-semilattices with top.

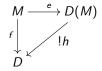
A homomorphism $h: M \to M'$ from a meet-semilattice M to a meet-semilattice M' is a *sup-homomorphism* if it preserves the existing finite joins (besides finite infimums).

In particular, if M has a lower bound, then M' should have a lower bound and h preserves the lower bounds.

The distributive lattice envelop of a distributive meet-semilattice

The *distributive lattice envelope* of a meet-semilattice M is a pair (e, D(M)) where:

- D(M) is a bounded distributive lattice.
- e is a meet-embedding from M to D(M)
- for every bounded distributive lattice D and every (meet-semilattice) sup homomorphism f : M → D there exist a unique lattice homomorphism h : D(M) → D such that h ∘ e = f.



If f is one-to-one, then h is also one-to-one.

The distributive lattice envelop exists and is unique (up to isomorphism).

It follows that e[M] is (finitely) join-dense in D(M), that is, every element of D(M) is the join of a finite subset of e[M].

The embedding *e* induces an isomorphism

```
\operatorname{Filters}(M) \cong \operatorname{Filters}(D(M))
```

defined by

$$F \mapsto \text{filter generated by } e[F] \text{ in } D(M)$$

with inverse given by

$$F \mapsto e^{-1}[F].$$

Definition

A filter of M is an optimal filter if it is the inverse image by e of a prime filter of D(M). It is *irreducible* if it is a meet irreducible element of the lattice of filters of M.

Notation:

- Op(M): set of optimal filters of M
- Irr(M): set of irreducible filters of M

Every irreducible filter is optimal, but the converse is not always true.

Posets

Let $P = \langle P, \leq \rangle$ be a poset. A *Frink ideal* of P (Frink, 1954) is any set $I \subseteq P$ such that for every finite $X \subseteq P$

$$X \subseteq I \;\; \Rightarrow \;\; X^{ul} \subseteq I$$

Note that:

Posets

Let $P = \langle P, \leq \rangle$ be a poset. A *Frink ideal* of P (Frink, 1954) is any set $I \subseteq P$ such that for every finite $X \subseteq P$

$$X \subseteq I \;\; \Rightarrow \;\; X^{ul} \subseteq I$$

Note that:

• \emptyset is a Frink ideal of P if and only if P has no lower bound.

Posets

Let $P = \langle P, \leq \rangle$ be a poset. A *Frink ideal* of *P* (Frink, 1954) is any set $I \subseteq P$ such that for every finite $X \subseteq P$

$$X \subseteq I \;\; \Rightarrow \;\; X^{ul} \subseteq I$$

Note that:

- \emptyset is a Frink ideal of *P* if and only if *P* has no lower bound.
- The order ideals of P (up-directed down sets) are Frink ideals.

Posets

Let $P = \langle P, \leq \rangle$ be a poset. A *Frink ideal* of *P* (Frink, 1954) is any set $I \subseteq P$ such that for every finite $X \subseteq P$

$$X \subseteq I \;\; \Rightarrow \;\; X^{ul} \subseteq I$$

Note that:

- \emptyset is a Frink ideal of *P* if and only if *P* has no lower bound.
- The order ideals of P (up-directed down sets) are Frink ideals.
- The set of Frink ideals is a closure system (closed under intersections of arbitrary families)

A Frink ideal I of a distributive meet-semilattice M is prime if it is proper and for every finite and non-empty $U \subseteq M$, if $\bigwedge U \in I$, then $I \cap U \neq \emptyset$.

Proposition

1. A filter F of a meet-semilattice M is optimal if and only if its complement is a prime Frink ideal of \leq_M .

2. A filter F of a meet-semilattice M is irreducible if and only if its complement is an up-directed prime Frink ideal.

The dual space of a distributive meet-semilattice M has:

- points: the optimal filters
- order between points: inclusion
- topology: the topology inherited from the Priestley topology of the dual of D(M); it has as subasis

$$\{\varphi(a): a \in M\} \cup \{\varphi(a)^c : a \in M\}$$

where

$$\varphi(a) = \{F \in \operatorname{Op}(M) : a \in M\}$$

The dual space of a distributive meet-semilattice M has:

- points: the optimal filters
- order between points: inclusion
- topology: the topology inherited from the Priestley topology of the dual of D(M); it has as subasis

$$\{\varphi(a): a \in M\} \cup \{\varphi(a)^c : a \in M\}$$

where

$$\varphi(a) = \{F \in \operatorname{Op}(M) : a \in M\}$$

Some more structure has to be added: otherwise the dual space of M and the dual space of D(M) will be the same.

The dual space of a distributive meet-semilattice M has:

- points: the optimal filters
- order between points: inclusion
- topology: the topology inherited from the Priestley topology of the dual of D(M); it has as subasis

$$\{\varphi(a): a \in M\} \cup \{\varphi(a)^c : a \in M\}$$

where

$$\varphi(a) = \{F \in \operatorname{Op}(M) : a \in M\}$$

Some more structure has to be added: otherwise the dual space of M and the dual space of D(M) will be the same.

What is added is the set of irreducible filters of M.

The dual space of a distributive meet-semilattice M has:

- points: the optimal filters
- order between points: inclusion
- topology: the topology inherited from the Priestley topology of the dual of D(M); it has as subasis

$$\{\varphi(a): a \in M\} \cup \{\varphi(a)^c : a \in M\}$$

where

$$\varphi(a) = \{F \in \operatorname{Op}(M) : a \in M\}$$

Some more structure has to be added: otherwise the dual space of M and the dual space of D(M) will be the same.

What is added is the set of irreducible filters of M.

The dual space of *M* is then: $(Op(M), \tau, \subseteq, Irr(M))$.

It satisfies:

- φ is an isomorphism between M and $\langle \varphi[M], \cap, \operatorname{Op}(M) \rangle$.
- $\varphi[M]$ is the set of clopen up-sets U such that $\max(U^c) \subseteq \operatorname{Irr}(M)$.

The abstract notion of dual space of a distributive meet-semilattice:

The abstract notion of dual space of a distributive meet-semilattice:

A structure $\langle X, \tau, \leq X_0 \rangle$ is a pre-generalized Priestley space if

- $\langle X, \tau, \leq \rangle$ is a Priestley space,
- **2** X_0 is a dense subset of X.

If $\langle X, \tau, \leq X_0
angle$ is a pre-generalized Priestley space we let

 $X^* = \{ U \in \mathcal{C}\ell\mathcal{U}(X) : \max(U^c) \subseteq X_0 \}.$

The elements of X^* are called X_0 -admissible sets.

Definition

A pre-generalized Priestley space $(X, \tau, \leq X_0)$ is a generalized Priestley space if

- $x \leq y$ if and only if $(\forall U \in X^*)(x \in U \Rightarrow y \in U)$,
- $X_0 = \{ x \in X : \{ U \in X^* : x \notin U \} \text{ is non-empty and up-directed} \}.$

The dual meet-semilattice of a generalized Priestley space $\langle X, \tau, \leq X_0 \rangle$ is the meet-semilattice $X^* = \langle X^*, \cap, X \rangle$.

Let $h: M \to M'$ be a homomorphism of distributive meet-semilattice with top element. The dual of h is the relation $R_h \subseteq \operatorname{Op}(M') \times \operatorname{Op}(M)$ defined by

$$(P,Q) \in R_h \iff h^{-1}[P] \subseteq Q$$

This relation satisfies:

if (P, Q) ∉ R_h, then there is a ∈ M such that Q ∉ φ(a) and R_h[P] ⊆ φ(a),
the map □_{R_h} : P(Op_S(A)) → P(Op_S(B)) defined by

$$\Box_{R_h}(Y) = \{P \in \operatorname{Op}(M') : R_h[P] \subseteq Y\}$$

restricts to a homomorphism from $\varphi[M]$ to $\varphi[M']$.

Definition

Let $\langle X, \tau, \leq, X_0 \rangle$ and $\langle X', \tau', \leq', X'_0 \rangle$ be two generalized Priestley spaces. A relation $R \subseteq X \times X'$ is an generalized Priestley morphism when:

- $\square_R \in \operatorname{Hom}((X')^*, X^*)$,
- if $(x, y) \notin R$, then there is $U \in (X')^*$ such that $y \notin U$ and $R[x] \subseteq U$.

The dual of R is the homomorphism $\Box_R : (X')^* \to X^*$.

Definition

Let $\langle X, \tau, \leq, X_0 \rangle$ and $\langle X', \tau', \leq', X'_0 \rangle$ be two generalized Priestley spaces. A relation $R \subseteq X \times X'$ is an generalized Priestley morphism when:

- $\square_R \in \operatorname{Hom}((X')^*, X^*)$,
- if $(x, y) \notin R$, then there is $U \in (X')^*$ such that $y \notin U$ and $R[x] \subseteq U$.

The dual of R is the homomorphism $\Box_R : (X')^* \to X^*$.

Composition of generalized Priestley morphism is as follows:

For generalized Priestley spaces X_1, X_2 and X_3 and generalized Priestley morphisms $R \subseteq X_1 \times X_2$ and $S \subseteq X_2 \times X_3$, its composition as generalized Priestley morphisms is the relation $(S \star R) \subseteq X_1 \times X_3$ defined by:

$$(x,z) \in (S \star R) \quad \text{iff} \quad \forall U \in B_3 \big(x \in \Box_R \circ \Box_S (U) \Rightarrow z \in U \big) \\ \text{iff} \quad \forall U \in B_3 \big((S \circ R) [x] \subseteq U \Rightarrow z \in U \big).$$

Logics: basic notions

Logic filter-distributive logic congruential logic

▶ A logic is a pair $S = \langle Fm, \vdash_S \rangle$ where Fm is the algebra of formulas (over a denumerable set of variables) of an algebraic similarity type and \vdash_S is a finitary consequence relation between sets of formulas and formulas, i.e. it satisfies

▶ A logic is a pair $S = \langle Fm, \vdash_S \rangle$ where Fm is the algebra of formulas (over a denumerable set of variables) of an algebraic similarity type and \vdash_S is a finitary consequence relation between sets of formulas and formulas, i.e. it satisfies

▶ A logic is a pair $S = \langle Fm, \vdash_S \rangle$ where Fm is the algebra of formulas (over a denumerable set of variables) of an algebraic similarity type and \vdash_S is a finitary consequence relation between sets of formulas and formulas, i.e. it satisfies

$$\begin{array}{l} \bullet \ \varphi \in \mathsf{\Gamma} \ \Rightarrow \ \mathsf{\Gamma} \vdash_{\mathcal{S}} \varphi, \\ \\ \bullet \ (\forall \psi \in \mathsf{\Gamma}) \ \Delta \vdash_{\mathcal{S}} \psi \ \text{and} \ \mathsf{\Gamma} \vdash_{\mathcal{S}} \varphi \ \Rightarrow \ \Delta \vdash_{\mathcal{S}} \varphi, \end{array}$$

▶ A logic is a pair $S = \langle Fm, \vdash_S \rangle$ where Fm is the algebra of formulas (over a denumerable set of variables) of an algebraic similarity type and \vdash_S is a finitary consequence relation between sets of formulas and formulas, i.e. it satisfies

(a *substitution* is a homomorphism from the algebra of formulas **Fm** to itself.)

Logic filter-distributive logic congruential logic

▶ A logic is a pair $S = \langle Fm, \vdash_S \rangle$ where Fm is the algebra of formulas (over a denumerable set of variables) of an algebraic similarity type and \vdash_S is a finitary consequence relation between sets of formulas and formulas, i.e. it satisfies

Logic filter-distributive logic congruential logic

▶ A logic is a pair $S = \langle Fm, \vdash_S \rangle$ where Fm is the algebra of formulas (over a denumerable set of variables) of an algebraic similarity type and \vdash_S is a finitary consequence relation between sets of formulas and formulas, i.e. it satisfies

 \blacktriangleright A logic ${\cal S}$ has the congruence property if the relation (of mutual consequence) on Fm given by

$$\varphi \dashv \vdash_{\mathcal{S}} \psi$$

is a congruence.

Let ${\mathcal S}$ be a logic and ${\boldsymbol \mathsf A}$ an algebra.

► A set $F \subseteq A$ is an (logical) *S*-filter if for every valuation v from **Fm** on **A**, and every $\Gamma \cup \{\varphi\} \subseteq Fm$

 $\Gamma \vdash_{\mathcal{S}} \varphi \text{ and } v[\Gamma] \subseteq F \Rightarrow v(\varphi) \in F.$

► A set $F \subseteq A$ is an (logical) *S*-filter if for every valuation v from **Fm** on **A**, and every $\Gamma \cup \{\varphi\} \subseteq Fm$

$$\Gamma \vdash_{\mathcal{S}} \varphi \text{ and } v[\Gamma] \subseteq F \Rightarrow v(\varphi) \in F.$$

Fi_SA will denote the set of S-filters of A. Ordered by inclusion it is a complete lattice.

► A set $F \subseteq A$ is an (logical) *S*-filter if for every valuation v from **Fm** on **A**, and every $\Gamma \cup \{\varphi\} \subseteq Fm$

$$\Gamma \vdash_{\mathcal{S}} \varphi \text{ and } v[\Gamma] \subseteq F \Rightarrow v(\varphi) \in F.$$

Fi_SA will denote the set of S-filters of A. Ordered by inclusion it is a complete lattice.

The S-filter of **A** generated by $X \subseteq A$ is denoted by $C_{\mathcal{S}}^{\mathbf{A}}(X)$ and the one generated by $a \in A$, by $C_{\mathcal{S}}^{\mathbf{A}}(a)$.

Similarly, $C_{\mathcal{S}}(\Gamma) = \{ \gamma \in Fm : \Gamma \vdash_{\mathcal{S}} \gamma \}.$

► A set $F \subseteq A$ is an (logical) *S*-filter if for every valuation v from **Fm** on **A**, and every $\Gamma \cup \{\varphi\} \subseteq Fm$

$$\Gamma \vdash_{\mathcal{S}} \varphi \text{ and } v[\Gamma] \subseteq F \Rightarrow v(\varphi) \in F.$$

Fi_SA will denote the set of S-filters of A. Ordered by inclusion it is a complete lattice.

The S-filter of **A** generated by $X \subseteq A$ is denoted by $C_{\mathcal{S}}^{\mathbf{A}}(X)$ and the one generated by $a \in A$, by $C_{\mathcal{S}}^{\mathbf{A}}(a)$.

Similarly, $C_{\mathcal{S}}(\Gamma) = \{ \gamma \in Fm : \Gamma \vdash_{\mathcal{S}} \gamma \}.$

Definition

A logic S is *filter-distributive* if for every **A** the the lattice $Fi_S A$ is distributive.

► A set $F \subseteq A$ is an (logical) *S*-filter if for every valuation v from **Fm** on **A**, and every $\Gamma \cup \{\varphi\} \subseteq Fm$

$$\Gamma \vdash_{\mathcal{S}} \varphi \text{ and } v[\Gamma] \subseteq F \Rightarrow v(\varphi) \in F.$$

Fi_SA will denote the set of S-filters of A. Ordered by inclusion it is a complete lattice.

The S-filter of **A** generated by $X \subseteq A$ is denoted by $C_{\mathcal{S}}^{\mathbf{A}}(X)$ and the one generated by $a \in A$, by $C_{\mathcal{S}}^{\mathbf{A}}(a)$.

Similarly, $C_{\mathcal{S}}(\Gamma) = \{ \gamma \in Fm : \Gamma \vdash_{\mathcal{S}} \gamma \}.$

Definition

A logic S is *filter-distributive* if for every **A** the the lattice $Fi_S A$ is distributive.

▶ The binary relation $\Lambda_{\mathcal{S}}^{\mathbf{A}}$ on **A** (know as the Frege \mathcal{S} -relation of **A**) is defined by:

 $\langle a,b\rangle \in \Lambda_{\mathcal{S}}^{\mathsf{A}} \Leftrightarrow \forall F \in \operatorname{Fi}_{\mathcal{S}} \mathsf{A}(a \in F \Leftrightarrow b \in F).$

▶ The binary relation $\Lambda_{\mathcal{S}}^{\mathbf{A}}$ on **A** (know as the Frege \mathcal{S} -relation of **A**) is defined by:

$$\langle a,b\rangle \in \Lambda^{\mathsf{A}}_{\mathcal{S}} \Leftrightarrow \forall F \in \mathrm{Fi}_{\mathcal{S}}\mathsf{A}(a \in F \Leftrightarrow b \in F).$$

Definition

A logic S is *congruential* if for every **A** the relation $\Lambda_S^{\mathbf{A}}$ is a congruence.

The algebraic counterpart of a logic

Let ${\mathcal S}$ be a logic.

► The algebraic counterpart of S is the class AlgS of algebras A such that the only congruence included in Λ_S^A is the identity. The elements of AlgS are called *S*-algebras.

The algebraic counterpart of a logic

Let ${\mathcal S}$ be a logic.

► The algebraic counterpart of S is the class AlgS of algebras A such that the only congruence included in Λ_S^A is the identity. The elements of AlgS are called *S*-algebras.

Proposition

A logic S is congruential if and only if for every $\mathbf{A} \in \mathbf{Alg}S$ the relation $\Lambda_S^{\mathbf{A}}$ is the identity.

Let ${\mathcal S}$ be a logic.

► The algebraic counterpart of S is the class **Alg**S of algebras **A** such that the only congruence included in $\Lambda_S^{\mathbf{A}}$ is the identity. The elements of **Alg**S are called *S*-algebras.

Proposition

A logic S is congruential if and only if for every $\mathbf{A} \in \mathbf{Alg}S$ the relation $\Lambda_S^{\mathbf{A}}$ is the identity.

Proposition

A logic S is filter-distributive if and only for every algebra $\mathbf{A} \in \mathbf{Alg}S$ the lattice $\mathrm{Fi}_{\mathcal{S}}\mathbf{A}$ is distributive.

► Fix a congruential logic S. Let $\mathbf{A} \in \mathbf{AlgS}$. The *specialization partial order* on A is defined by:

$$a \leq_{\mathcal{S}}^{\mathbf{A}} b \Leftrightarrow (\forall F \in \operatorname{Fi}_{\mathcal{S}} \mathbf{A}) \ (a \in F \Rightarrow b \in F)$$

In other words,

$$a \leq^{\mathsf{A}}_{\mathcal{S}} b \Leftrightarrow b \in \mathrm{C}^{\mathsf{A}}_{\mathcal{S}}(a) \Leftrightarrow \mathrm{C}^{\mathsf{A}}_{\mathcal{S}}(b) \subseteq \mathrm{C}^{\mathsf{A}}_{\mathcal{S}}(a)$$

Note that $C^{\mathbf{A}}_{\mathcal{S}}(a) = \uparrow_{\leq \overset{\mathbf{A}}{\mathcal{S}}} a$.

The \mathcal{S} -semilattice of an \mathcal{S} -algebra

Let us fix a congruential and filter-distributive logic ${\mathcal S}$ with theorems.

The \mathcal{S} -semilattice of an \mathcal{S} -algebra

Let us fix a congruential and filter-distributive logic ${\cal S}$ with theorems.

Let ${\bf A}$ be an ${\mathcal S}\xspace$ -algebra. This algebra has a top element in the specialization order.

Let us fix a congruential and filter-distributive logic ${\cal S}$ with theorems.

Let **A** be an \mathcal{S} -algebra. This algebra has a top element in the specialization order.

The finitely generated S-filters of **A** form a join-subsemilattice of the lattice $\operatorname{Fi}_{\mathcal{S}}\mathbf{A}$, with lower bound the least S-filter (generated by the top element of **A**). Its dual is therefore a meet-semilattice with top. Its order is \supseteq .

Let us fix a congruential and filter-distributive logic ${\cal S}$ with theorems.

Let \mathbf{A} be an \mathcal{S} -algebra. This algebra has a top element in the specialization order.

The finitely generated S-filters of **A** form a join-subsemilattice of the lattice $\operatorname{Fi}_{\mathcal{S}}\mathbf{A}$, with lower bound the least S-filter (generated by the top element of **A**). Its dual is therefore a meet-semilattice with top. Its order is \supseteq .

This semilattice is the S-semilattice of **A**. We denote it by $M(\mathbf{A})$.

[These S-semilattices are used in (M.Gehrke, R.J., A. Palmigiano, APAL 2010) to obtain canonical extensions for the S-algebras of S a congruential logic with the deduction theorem.]

A is $\leq_{\mathcal{S}}^{\mathbf{A}}$ -embedded in $M(\mathbf{A})$ by the map j given by

$$a\mapsto \uparrow_{\leq^{\mathbf{A}}_{\mathcal{S}}}a$$

The embedding j induces an an isomorphism between the lattice of filters of $M(\mathbf{A})$ and the lattice $\operatorname{Fi}_{\mathcal{S}}\mathbf{A}$, given by $F \mapsto j^{-1}[F]$, whose inverse is the map that assigns to any $F \in \operatorname{Fi}_{\mathcal{S}}\mathbf{A}$ the filter of $M(\mathbf{A})$ generated by $\{\uparrow_{\leq \frac{\mathbf{A}}{2}} a : a \in F\}$.

A is $\leq_{\mathcal{S}}^{\mathbf{A}}$ -embedded in $M(\mathbf{A})$ by the map j given by

$$a\mapsto \uparrow_{\leq_{\mathcal{S}}^{\mathbf{A}}}a$$

The embedding j induces an an isomorphism between the lattice of filters of $M(\mathbf{A})$ and the lattice $\operatorname{Fi}_{\mathcal{S}}\mathbf{A}$, given by $F \mapsto j^{-1}[F]$, whose inverse is the map that assigns to any $F \in \operatorname{Fi}_{\mathcal{S}}\mathbf{A}$ the filter of $M(\mathbf{A})$ generated by $\{\uparrow_{\leq \underline{A}} a : a \in F\}$.

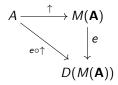
It follows that $M(\mathbf{A})$ is a distributive meet-semilattice with top.

Let **A** be an S-algebra.

We have the embedding $\uparrow : \langle A, \leq^{\mathbf{A}}_{S} \rangle \to M(\mathbf{A})$ and the distributive envelop $(e, D(M(\mathbf{A})))$ of $M(\mathbf{A})$:

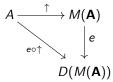
Let **A** be an S-algebra.

We have the embedding $\uparrow : \langle A, \leq^{\mathbf{A}}_{S} \rangle \to M(\mathbf{A})$ and the distributive envelop $(e, D(M(\mathbf{A})))$ of $M(\mathbf{A})$:



Let **A** be an S-algebra.

We have the embedding $\uparrow : \langle A, \leq^{\mathbf{A}}_{S} \rangle \to M(\mathbf{A})$ and the distributive envelop $(e, D(M(\mathbf{A})))$ of $M(\mathbf{A})$:



Definition

An S-filter $F \in \operatorname{Fi}_{S}(\mathbf{A})$ is *optimal* if it is the inverse image of an optimal filter of $M(\mathbf{A})$, thus if $F = (e \circ \uparrow)^{-1}[P]$ for some prime filter of $D(M(\mathbf{A}))$.

We denote by $Op_{\mathcal{S}}(\mathbf{A})$ the collection of all optimal \mathcal{S} -filters of \mathbf{A} .

An intrinsic characterization of the S-optimal filters can be given.

Definition

A subset $I \subseteq A$ is an *S*-ideal of an algebra $\mathbf{A} \in \mathbf{Alg}S$ if it is a Frink ideal of the poset $\langle A, \leq_{S}^{\mathbf{A}} \rangle$.

 $\operatorname{Id}_{\mathcal{S}}(\mathbf{A})$ denotes the collection of all \mathcal{S} -ideals of \mathbf{A} . Note that $\emptyset \in \operatorname{Id}_{\mathcal{S}}(\mathbf{A})$ if and only if the poset $\langle A, \leq_{\mathcal{S}}^{\mathbf{A}} \rangle$ has no lower bound. A certain subclass of \mathcal{S} -ideals is fundamental:

Definition

An S-ideal $I \in Id_{\mathcal{S}}(\mathbf{A})$ is *strong* when for any finite $I' \subseteq I$ and any finite $B \subseteq A$, if $\bigcap \{ C_{\mathcal{S}}^{\mathbf{A}}(b) : b \in I' \} \subseteq C_{\mathcal{S}}^{\mathbf{A}}(B)$, then $C_{\mathcal{S}}^{\mathbf{A}}(B) \cap I \neq \emptyset$.

We denote by $\mathrm{Id}_{s\mathcal{S}}(\mathbf{A})$ the collection of all strong \mathcal{S} -ideals. It is easy to check that when \mathbf{A} is an \mathcal{S} -algebra all order ideals of $\langle A, \leq_{\mathcal{S}}^{\mathbf{A}} \rangle$ are strong \mathcal{S} -ideals.

Proposition

An S-filter $F \in Fi_{\mathcal{S}}(\mathbf{A})$ is optimal if and only if its complement is a strong S-ideal.

Notice that from the definition it follows that $A \in \operatorname{Op}_{\mathcal{S}}(\mathbf{A})$ if and only if $\emptyset \in \operatorname{Id}_{s\mathcal{S}}(\mathbf{A})$. For any congruential and filter-distributive logic with theorems, we have the following two separation lemmas

Proposition

Let S be a congruential and filter-distributive logic with theorems, let **A** be an S-algebra and let $F \in Fi_{\mathcal{S}}(\mathbf{A})$. Then

If or every *I* ∈ Id_{sS}(A) such that *F* ∩ *I* = Ø there exists *Q* ∈ Op_S(A) such that *F* ⊆ *Q* and *Q* ∩ *I* = Ø.

for every *I* ∈ Id(**A**) such that *F* ∩ *I* = Ø there exists *Q* ∈ Irr_S(**A**) such that
 F ⊆ *Q* and *Q* ∩ *I* = Ø.

If follows:

Proposition

Let S be a congruential and filter-distributive logic with theorems, let **A** be an S-algebra and let $F \in Fi_{\mathcal{S}}(\mathbf{A})$. Then

- **I** F is the intersection of all optimal S-filters that contain F
- **Q** *F* is the intersection of all irreducible S-filters that contain F.

The dual space of an S-algebra

The dual space of an S-algebra

Let $\boldsymbol{\mathsf{A}}$ be an $\mathcal S\text{-algebra}.$

Let $\boldsymbol{\mathsf{A}}$ be an $\mathcal S\text{-algebra}.$

The dual space of **A** "is" the dual space of the distributive lattice $D(M(\mathbf{A}))$ together with a set of clopen up-sets that correspond to **A**.

Let **A** be an \mathcal{S} -algebra.

The dual space of **A** "is" the dual space of the distributive lattice $D(M(\mathbf{A}))$ together with a set of clopen up-sets that correspond to **A**. We describe it directly using the optimal *S*-filters of **A**.

Let $\boldsymbol{\mathsf{A}}$ be an $\mathcal S\text{-algebra}.$

The dual space of **A** "is" the dual space of the distributive lattice $D(M(\mathbf{A}))$ together with a set of clopen up-sets that correspond to **A**. We describe it directly using the optimal *S*-filters of **A**.

 $\bullet\,$ points: the optimal $\mathcal S\text{-filters}$ of $\boldsymbol A$

Let $\boldsymbol{\mathsf{A}}$ be an $\mathcal S\text{-algebra}.$

The dual space of **A** "is" the dual space of the distributive lattice $D(M(\mathbf{A}))$ together with a set of clopen up-sets that correspond to **A**. We describe it directly using the optimal *S*-filters of **A**.

- points: the optimal \mathcal{S} -filters of \mathbf{A}
- order: inclusion

Let \mathbf{A} be an \mathcal{S} -algebra.

The dual space of **A** "is" the dual space of the distributive lattice $D(M(\mathbf{A}))$ together with a set of clopen up-sets that correspond to **A**. We describe it directly using the optimal *S*-filters of **A**.

- points: the optimal \mathcal{S} -filters of \mathbf{A}
- order: inclusion
- \bullet topology: the topology $\tau_{\mathbf{A}}$ generated by the subbasis

$$\{\varphi(a): a \in A\} \cup \{\varphi(a)^c : a \in A\}$$

where

Let \mathbf{A} be an \mathcal{S} -algebra.

The dual space of **A** "is" the dual space of the distributive lattice $D(M(\mathbf{A}))$ together with a set of clopen up-sets that correspond to **A**. We describe it directly using the optimal *S*-filters of **A**.

- points: the optimal \mathcal{S} -filters of \mathbf{A}
- order: inclusion
- \bullet topology: the topology $\tau_{\mathbf{A}}$ generated by the subbasis

$$\{\varphi(a): a \in A\} \cup \{\varphi(a)^c : a \in A\}$$

where

$$\varphi(a) = \{F \in \operatorname{Op}_{\mathcal{S}}(\mathsf{A}) : a \in F\}$$

Let \mathbf{A} be an \mathcal{S} -algebra.

The dual space of **A** "is" the dual space of the distributive lattice $D(M(\mathbf{A}))$ together with a set of clopen up-sets that correspond to **A**. We describe it directly using the optimal *S*-filters of **A**.

- points: the optimal \mathcal{S} -filters of \mathbf{A}
- order: inclusion
- \bullet topology: the topology $\tau_{\mathbf{A}}$ generated by the subbasis

$$\{\varphi(a): a \in A\} \cup \{\varphi(a)^c : a \in A\}$$

where

$$\varphi(a) = \{F \in \operatorname{Op}_{\mathcal{S}}(\mathsf{A}) : a \in F\}$$

• the set $\varphi[A]$ endowed whit the operations defined as follows. Let \star be any *n*-ary function symbol of the language of S. We define $\star^{\varphi[A]}$ by

$$\star^{\varphi[\mathbf{A}]}(\varphi(a_1),\ldots,\varphi(a_n))=\varphi(\star^{\mathbf{A}}(a_1,\ldots,a_n))$$

Then we have an algebra $\varphi[\mathbf{A}]$ isomorphic to \mathbf{A} .

Definition

A structure $\mathfrak{X} = \langle X, \tau, \mathbf{B} \rangle$ is an *S*-Priestley space when:

- ⟨X, B⟩ is a reduced S-referential algebra, whose associated partial order is denoted by ≤,
- for any finite $\mathcal{V} \subseteq B$ and any $U \in B$, if $\bigcap \mathcal{V} \subseteq U$, then $U \in C^{\mathbf{B}}_{\mathcal{S}}(\mathcal{V})$,
- $\langle X, \tau
 angle$ is a compact space,
- B is a family of clopen up-sets and $X \in B$,
- the set X_B := {x ∈ X : {U ∈ B : x ∉ U} is non-empty and up-directed} is dense in ⟨X, τ⟩.

 $\langle X, \mathbf{B} \rangle$ is a reduced S-referential algebra means that **B** is an algebra of the type of S with universe a set of subsets of X such that the relation between points of X given by

$$x \leq y \Leftrightarrow (\forall U \in B)(x \in U \Rightarrow y \in U)$$

is a partial order. This order is the associated partial order of $\langle X, \mathbf{B} \rangle$.

From the definition follows:

- $\langle X, \tau, \leq \rangle$ is a Priestley space,
- $\langle X, \tau, \leq, X_B \rangle$ is a generalized Priestley space,
- $B \cup \{X \setminus U : U \in B\}$ is a subbasis for τ ,
- $B \in Alg \mathcal{S}$,
- the meet-semilattice of the X_B -admissible sets of $\langle X, \tau, \leq, X_B \rangle$ is the S-semilattice of **B**.
- **B** is the dual algebra of $\langle X, \tau, \mathbf{B} \rangle$.

If $\mathbf{A} \in \mathbf{Alg}\mathcal{S}$, then $\langle \operatorname{Op}_{\mathcal{S}}(\mathbf{A}), \tau : \mathbf{A}, \varphi[\mathbf{A}] \rangle$ is an \mathcal{S} -Priestley space, the dual of \mathbf{A} . The dual \mathcal{S} -Priestley space of \mathbf{B} is then $\langle \operatorname{Op}_{\mathcal{S}}(\mathbf{B}), \tau_{\mathbf{B}}, \varphi_{\mathbf{B}}[\mathbf{B}] \rangle$.

Duality for homomorphisms

Let $\mathbf{A}, \mathbf{B} \in \mathbf{Alg}S$ and $h : \mathbf{A} \to \mathbf{B}$ a homomorphism. We define $R_h \subseteq \operatorname{Op}_S(\mathbf{B}) \times \operatorname{Op}_S(\mathbf{A})$ by

$$(P,Q)\in R_h \iff h^{-1}[P]\subseteq Q$$

This relation satisfies:

if (P, Q) ∉ R_h, then there is a ∈ A such that Q ∉ φ(a) and R_h[P] ⊆ φ(a),
the map □_{R_h} : P(Op_S(A)) → P(Op_S(B)) defined by

$$\Box_{R_h}(Y) = \{P \in \operatorname{Op}_{\mathcal{S}}(\mathbf{B}) : R_h[P] \subseteq Y\}$$

restricts to a homomorphism from $\varphi[\mathbf{A}]$ to $\varphi[\mathbf{B}]$.

Definition

Let $\mathfrak{X}_1 = \langle X_1, \tau_1, \mathbf{B}_1 \rangle$ and $\mathfrak{X}_2 = \langle X_2, \tau_2, \mathbf{B}_2 \rangle$ be two *S*-Priestley spaces. A relation $R \subseteq X_1 \times X_2$ is an *S*-Priestley morphism when:

- $\square_R \in \operatorname{Hom}(\mathbf{B}_2, \mathbf{B}_1)$,
- if $(x, y) \notin R$, then there is $U \in B_2$ such that $y \notin U$ and $R[x] \subseteq U$.

The dual of *R* is $\Box_R : \mathbf{B}_2 \to \mathbf{B}_1$.

Composition of S-Priestley morphisms is like for distributive meet-semilattices.

A logic S has the property of conjunction (PC) for a binary formula $x \wedge y$ if for all formulas δ, γ ,

 $\delta \wedge \gamma \vdash_{\mathcal{S}} \delta, \qquad \delta \wedge \gamma \vdash_{\mathcal{S}} \gamma, \qquad \delta, \gamma \vdash_{\mathcal{S}} \delta \wedge \gamma.$

This property transfers to every \mathcal{S} -algebra **A**, because for every $a, b \in A$

$$C^{\mathsf{A}}_{\mathcal{S}}(a \wedge^{\mathsf{A}} b) = C^{\mathsf{A}}_{\mathcal{S}}(a, b).$$

We say that a logic S has (PC) if it has (PC) for some binary formula.

Theorem

Let S be a congruential and filter-distributive logic with theorems. Then S has (PC) if and only if for every S-Priestely space $\langle X, \tau, \mathbf{B} \rangle$ the B is the collection of the X_B-admissible clopen up-sets.

A logic S satisfies the property of weak disjunction (PWDI) for a set of formulas in two variables $\nabla(x, y)$ if

$$\begin{split} \delta \vdash_{\mathcal{S}} \nabla(\delta,\gamma), & \delta \vdash_{\mathcal{S}} \nabla(\gamma,\delta), \\ \text{if } \delta \vdash_{\mathcal{S}} \mu & \& \gamma \vdash_{\mathcal{S}} \mu, \quad \text{then } \nabla(\delta,\gamma) \vdash_{\mathcal{S}} \mu. \end{split}$$

If for every algebra **A**, and every $a, b \in A$:

$$\mathrm{C}^{\mathsf{A}}_{\mathcal{S}}(
abla^{\mathsf{A}}(a,b)) = \mathrm{C}^{\mathsf{A}}_{\mathcal{S}}(a) \cap \mathrm{C}^{\mathsf{A}}_{\mathcal{S}}(b)$$

we say that (PWDI) for $\nabla(x, y)$ transfers to every algebra.

A logic S satisfies the property of disjunction (PDI) for a set of formulas in two variables $\nabla(x, y)$ if for every $\Gamma \subseteq Fm$ and all $\delta, \gamma, \mu \in Fm$:

$$\begin{split} \delta \vdash_{\mathcal{S}} \nabla(\delta,\gamma), & \delta \vdash_{\mathcal{S}} \nabla(\gamma,\delta), \\ \text{if } \Gamma, \delta \vdash_{\mathcal{S}} \mu & \& \quad \Gamma, \gamma \vdash_{\mathcal{S}} \mu, \quad \text{then} \quad \Gamma, \nabla(\delta,\gamma) \vdash_{\mathcal{S}} \mu. \end{split}$$

If S satisfies (PDI) for a one-element set $\nabla(x, y)$, we say that S has (PDI) for a single formula.

If for every algebra **A**, and every $\{a, b\} \cup X \subseteq A$:

$$\mathrm{C}^{\mathsf{A}}_{\mathcal{S}}(X, \nabla^{\mathsf{A}}(a, b)) = \mathrm{C}^{\mathsf{A}}_{\mathcal{S}}(X, a) \cap \mathrm{C}^{\mathsf{A}}_{\mathcal{S}}(X, b)$$

we say that (PDI) for $\nabla(x, y)$ transfers to every algebra. It is well known that:

- (PDI) transfers to every algebra,
- if a logic has (PDI), then it is filter-distributive,
- for any filter-distributive logic S, S has (PWDI) for a set of formulas ∇(x, y) if and only if it has (PDI) for the same set ∇.

Theorem

Let S be a congruential and filter-distributive logic with theorems. Then S has (PDI) if and only if

- for every S-Priestley space $\langle X, \tau, \mathbf{B} \rangle$, $X = X_B$,
- every S-Priestley morphism R ⊆ X₁ × X₂ from an S-Priestley space ⟨X₁, τ₁, B₁⟩ to an S-Priestley space ⟨X₂, τ₂, B₂⟩ is functional, that is, it holds:

$$(\forall x \in X_1)(\exists y \in X_2)(\forall U \in B_2)R(x) = \uparrow y$$
 (1)

Theorem

Let S be a congruential and filter-distributive logic with theorems. Then S has (PDI) for a single formula if and only if

- for every S-Priestley space (X, τ, B) the set B is closed under non-empty finite unions,
- for every S-Priestley morphism R ⊆ X₁ × X₂ from an S-Priestley space ⟨X₁, τ₁, B₁⟩ to an S-Priestley space ⟨X₂, τ₂, B₂⟩ it holds that for every x ∈ X₁ and every U, V ∈ B₂,

if $R(x) \subseteq U \cup V$, then $R(x) \subseteq U$ or $R(x) \subseteq V$.

A logic S satisfies the deduction-detachment property (DDT) for a non-empty finite set of formulas in two variables $x \Rightarrow y$ if for every $\Gamma \subseteq Fm$ and all $\delta, \gamma \in Fm$:

$$\Gamma, \delta \vdash_{\mathcal{S}} \gamma \quad \text{iff} \quad \Gamma \vdash_{\mathcal{S}} \delta \Rightarrow \gamma.$$

When in addition for every algebra **A**, and every $\{a, b\} \cup X \subseteq A$:

$$b \in C^{\mathbf{A}}_{\mathcal{S}}(X, a)$$
 iff $a \Rightarrow^{\mathbf{A}} b \subseteq C^{\mathbf{A}}_{\mathcal{S}}(X)$.

it is said that (DDT) transfers to every algebra.

A logic S satisfies (DDT) for a term $x \to y$ if it satisfies (DDT) for the set $\{x \to y\}$. In this case we say that S satisfies (DDT) for a single formula.

It is well known that:

- If S satisfies (DDT), then (DDT) transfers to every algebra,
- If S satisfies (DDT), then S is filter-distributive.

Theorem

Let S be a congruential and filter-distributive logic with theorems. If S is protoalgebraic, then S has (DDT) for a single formula if and only if for every S-Priestley space $\langle X, \tau, \mathbf{B} \rangle$, $(\downarrow (U \cap V^c))^c \in B$ for all $U, V \in B$, i.e. B is closed under the implication of the Heyting algebra of the up-sets of $\langle X, \tau, \mathbf{B} \rangle$. A logic S satisfies the property of the inconsistent formula (PIF) for a formula ψ if for every formula δ :

 $\psi \vdash_{\mathcal{S}} \delta.$

Such a formula is known as an inconsistent formula.

If S is congruential and satisfies (PIF), then every S-algebra **A** has a lower bound in the order \leq_{S}^{A} and every inconsistent formula is interpreted by every homomorphism to the lower bound.

Theorem

Let S be a congruential and filter-distributive logic with theorems. Then S satisfies (PIF) if and only if for any S-Priestley space $(X, \tau, \mathbf{B}), \emptyset \in B$.

Thank you

A logic ${\mathcal S}$ is protoalgebraic if there is a set of formulas in two variables $x \Rightarrow y$ such that

 $\vdash_{\mathcal{S}} x \Rightarrow x \qquad x, x \Rightarrow y \vdash_{\mathcal{S}} y$