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Background and outline

Zakharyaschev’s canonical formulas axiomatize all intermediate
logics.
Algebra-based versions of canonical formulas via the (∧,→)-reduct1

and the (∧,∨)-reduct2 of Heyting algebras axiomatize all
intermediate logics.

We will define algebra based canonical formulas using the
(∧,∨,¬)-reduct of Heyting algebras.

We investigate intuitionistic multi-conclusion rules via the
(∧,∨,¬)-reduct of Heyting algebras.3.

1[1] G. Bezhanishvili, N. Bezhanishvili. "An algebraic approach to canonical
formulas: Intuitionistic case." In: Review of Symbolic Logic 2.3 (2009).

2[2] G. Bezhanishvili, N. Bezhanishvili. "Locally finite reducts of Heyting algebras
and canonical formulas". To appear in Notre Dame Journal of Formal Logic. 2014.

3[3] G. Bezhanishvili, N. Bezhanishvili, R. Iemhoff. “Stable canonical rules.” 2014
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(∧,∨,¬)-homomorphisms

We are interested in classes of Heyting algebras that are (partially)
closed under bounded pseudo-complemented sublattices.

Definition
Let HA(∧,∨,¬) be the category of

Heyting algebras and

homomorphism of bounded pseudo-complemented lattices.

We call these homomorphims (∧,∨,¬)-homomorphism.
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(∧,∨,¬)-homomorphisms and quasi p-morphisms

Definition
Let g : X → Y be a Priestley-morphism between Esakia spaces. We call
g a quasi p-morphism if for all x ∈ X such that g(x) ≤ y for some y ∈ Y
there is x ′ ∈ X with x ≤ x ′ such that y ≤ g(x ′).

x

x ′

g(x)

y

g(x ′)

Let Esakia¬ be the category of Esakia spaces and quasi
p-morphisms.

Theorem
The categories HA(∧,∨,¬) and Esakia¬ are dually equivalent.
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p-morphisms vs. quasi p-morphisms

Example of a quasi p-morphism that is not a p-morphism.
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(∧,∨,¬)-canonical rules

Definition
Let A be a finite Heyting algebra and let D ⊆ A2. For every a ∈ A let pa
be a propositional letter. The (∧,∨,¬)-canonical rule associated to A
and D is ρ(A,D,¬) = Γ/∆ where

Γ = {p0 ↔ 0}∪
{pa∨b ↔ pa ∨ pb | a, b ∈ A}∪
{pa∧b ↔ pa ∧ pb | a, b ∈ A}∪
{p¬a ↔ ¬pa | a ∈ A}∪
{pa→b ↔ pa → pb | (a, b) ∈ D}

and

∆ = {pa ↔ pb | a, b ∈ A with a 6= b}
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Characterization of (∧,∨,¬)-canonical rules

Proposition (as Thm. 5.3 of [3])

Let A be a finite Heyting algebra, D ⊆ A2. Then for every Heyting
algebra B the following are equivalent.

1 B 6|= ρ(A,D,¬)

2 There is a (∧,∨,¬)-embedding

A B
h

such that h(a→ b) = h(a)→ h(b) for all (a, b) ∈ D.
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Axiomatizations via (∧,∨,¬)-canonical rules

Proposition (as Thm. 5.6 of [3])

1 Every intermediate logic is axiomatizable by (∧,∨,¬)-canonical
rules.

2 If an intermediate logic is finitely axiomatizable then it can be
axiomatized by finitely many (∧,∨,¬)-canonical rules.
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Stable and cofinal stable rules

Cofinal stable rules are (∧,∨,¬)-canonical rules of the form
ρ(A, ∅,¬); notation: ρ(A,¬).
Stable rules are (∧,∨)-canonical rules of the form ρ(A, ∅); notation:
ρ(A).

Corollary

Let B be a Heyting algbebra, F an Esakia space.

1 B 6|= ρ(A,¬) iff there is a (∧,∨,¬)-embedding h : A → B.

Dually, the Esakia space F 6|= ρ(A,¬) iff there is an onto quasi
p-morphism g : F → A∗

2 B 6|= ρ(A) iff there is a (∧,∨)-embedding h : A → B.

Dually, the Esakia space F 6|= ρ(A) iff there is an onto Priestly
morphism g : F → A∗
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Stable and cofinal stable universal classes

Definition

1 A universal class of Heyting algebras that is closed under
(∧,∨)-subalgebras is called a stable universal class.

2 A universal class of Heyting algebras that is closed under
(∧,∨,¬)-subalgebras is called a cofinal stable universal class.

Proposition (as Thm. 7.3 of [3])

1 A universal class is stable if and only if it is axiomatizable by stable
rules.

2 A universal class is cofinal stable if and only if it is axiomatizable by
cofinal stable rules.



Axiomatizations via the pseudo-complemented bounded lattice reduct of Heyting algebras

Stable universal classes vs. cofinal stable classes

Clearly, every stable class is cofinal stable.

Theorem (as 6.13 of [2])

There are continuum many stable universal classes.

Theorem
There are continuum many cofinal stable universal classes that are not
stable.
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Continuum many cofinal stable classes that are not stable.

Proof.
The following sequence {Pi}i∈N of frames forms an anti-chain with
respect to onto quasi p-morphisms.

P0 Pn ,

For every j ∈ N, Pj 6|= ρ(Pj ,¬), and Pj |= ρ(Pi ,¬) for all i 6= j .
For every J ⊆ N, SJ = SIPC + {ρ(P∗i ,¬) | i ∈ J} is cofinal stable.
If J 6= J ′, then SJ 6= S ′J .
Let ∆ := {J ⊆ N | J infinite,N \ J infinite}. For J ∈ ∆, SJ
axiomatizes a cofinal stable class that is not stable.
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From universal classes to logics

Recall, with an intuitionistic rule system S we associate the logic
Λ(S) := {ϕ | /ϕ ∈ S}. Then VΛ(S) = V (US)

Corollary

Let L be an intermediate logic.
1 VL is generated by a stable universal class iff it is axiomatizable by

stable rules.

2 VL is generated by a cofinal stable universal class iff it is
axiomatizable by cofinal stable rules.

Moreover, if one of the above is satisfied, L has the finite model property.

LC: VLC is generated by the linear Heyting algbras. These form a stable
universal class.

KC : VKC is generated by the stable universal class U(K), where K is the
class of finite rooted frames with a maximal element.
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Intermediate logics via the (∧,∨,¬) and the (∧,∨)-reduct.

We suggest two ways to get classes of intermediate logics via the reducts:

Logics generated by stable or cofinal stable rule systems.

Logics via algebra based (∧,∨)- or (∧,∨,¬)-canonical formulas.

The two approaches may lead to different classes of intermediate
logics.
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(∧,∨)- canonical formulas [2]

Let A be a finite subdirectly irreducible Heyting algebra and D ⊆ A2.
For every element a ∈ A let pa be a propositional letter. The
(∧,∨)-canonical formula associated to A and D is defined as:

γ(A,D) := p0 ↔ 0 ∧ p1 ↔ 1∧
{pa∧b ↔ pa ∧ pb | a, b ∈ A}∧∧
{pa∨b ↔ pa ∨ pb | a, b ∈ A}∧∧
{pa→b ↔ pa → pb | (a, b) ∈ D}

−→
∨
{pa → pb | a, b ∈ A, a 6≤ b}.

The valuation pa 7→ a witnesses that A 6|= γ(A,D).
Similarly, we can define the (∧,∨,¬)-canonical formula associated to
A and D.
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Refutation patterns for restricted formulas [2]

To every finite subdirecty irreducible Heyting algebra A let γ(A) be
the (∧,∨)-canonical formula associated to A and ∅.

Similary, define for every s.i Heyting algebra A its (∧,∨,¬)-canonical
formula γ(A,¬).

Theorem (3.4 of [2])

For every s.i. Heyting algebra B,
1 B 6|= γ(A) iff there is a s.i Heyting algebra C, an onto

homomorphism of Heyting algebras f and a (∧,∨)-embedding h as in

A C B
h f

.
2 B 6|= γ(A,¬) iff there is a s.i Heyting algebra C, an onto

homomorphism of Heyting algebras f and a (∧,∨,¬)-embedding h
as in

A C B
h f

.
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Stable logics and cofinal stable logics

Definition
Let L be an intermediate logic and let VL its corresponding variety.

1 L is called a stable intermediate logic iff for all B,A s.i. Heyting
algebras such that A is a bounded sublattice of B then

B ∈ VL ⇒ A ∈ VL.

2 L is called a cofinal stable intermediate logic iff for all B,A
s.i. Heyting algebras such that A is a (∧,∨,¬)-sublattice of B then

B ∈ VL ⇒ A ∈ VL.
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Stable logics vs. cofinal stable logics

Every stable logic is cofinal stable, and there are cofinal stable logics
that are not stable (cf. BD2).

Theorem (6.13 of [2])

There are continuum many stable logics.

Theorem (6.8 of [2])

All cofinal stable logics (and therefore also all stable logics) have the fmp.

Theorem (6.11 of [2])

An intermediate logic is stable iff it is axiomatizable by γ(A) formulas.

Proposition

Every cofinal stable logic is axiomatizable by γ(A,¬)-formulas.

The converse of the last proposition does not hold.
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Proposition

There is a logic axiomatized by γ(A,¬)-formulas that is not cofinal stabe.

Proof.

G F H

Let L = IPC + γ(G∗,¬).
G is not a quasi p-morphic image of any rooted upset of F, so
F |= L.
H 6|= L since G is isomorphic to a rooted upset of H.
However, H is a quasi p-morphic image of F. It follows that L is not
cofinal stable.
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Connection to logics axiomatized by rules

What is the connection to the logics generated by stable and cofinal
stable universal classes?

Proposition

Let L be a logic such that VL is finitely generated.

1 L is a stable intermediate logic iff VL is generated by a stable
universal class.

2 If L is a cofinal stable intermediate logic then VL is generated by a
cofinal stable universal class.

The converse in (2) does not hold, i.e there is a finite cofinal stable
universal U class such that V (U) is not cofinal stable.

Question: What if VL is not finitely generated?
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Summary

Axiomatizations of intuitionistic rule systems and intermediate logics
using the (∧,∨,¬)-reduct are obtained analogously to the (∧,∨)
case.

Subtle issues that distinguish stable and cofinal stable logics.

In particular, considering intermediate logics generated by canonical
rule systems the two reducts show different behavior.
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Future work

Further investigate the usage of canonical rules and formulas in the
intuitionistic case.

Develop a notion of cofinal stable logics in the modal case.

Apply the method of algebra based canonical formulas to other
non-classical logics.


