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Definition
An element a of L is rather below an element b, written a ≺ b, in
case there is an element s, called a separating element, such that
a ∧ s = 0 and s ∨ b = 1.

The frame L is regular if a =
∨
{x ∈ L | x ≺ a} for each a ∈ L.

An element a is completely below b, written a ≺≺ b, if there are
elements (xr ) indexed by rational numbers Q ∩ [0,1] such that
a = x0, x1 = b and xr ≺ xs for r < s.

The frame L is completely regular if a =
∨
{x ∈ L | x ≺≺ a} for

each a ∈ L.

Coz L is the cozero part of L, and is the regular sub-σ-frame
consisting of all the cozero elements of L.
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Definition

An ideal I of a ring A is a radical ideal if for any a ∈ A, a2 ∈ I
implies a ∈ I.

An element c of a frame L is compact if for any S ⊆ L, c ≤
∨

S
implies c ≤

∨
T , for some finite T ⊆ S.

A nucleus on a frame L is a closure operator ` : L→ L such that
`(a ∧ b) = `(a) ∧ `(b) for all a,b ∈ L.

Did(RL) is the lattice of d-ideals of RL.

Zid(RL) is the lattice of z-ideals of RL.

Rad(RL) is the lattice of radical ideals of RL.
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z-ideals

Throughout, by “ring" we mean a commutative ring with identity. For a
ring A and a ∈ A, we let

M(a) = {M ∈ Max A | a ∈ M}.

In the article

G. Mason, z-Ideals and Prime Ideals, J. Alg. 26 (1973), 280-297,

Mason calls an ideal I of A a z-ideal if for any a and b in A,

a ∈ I and M(a) = M(b) ⇒ b ∈ I.

Let L be a completely regular frame, and RL be the ring of real-valued
continuous functions on L.

An ideal Q of RL is a z-ideal iff Q =
⋃
{Mcozα | α ∈ Q}, where, for any

a ∈ L,

Ma = {γ ∈ RL | coz γ ≤ a}.
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d-ideals ofRL

Recall that an ideal I of a ring A is singular if it consists entirely of
zero-divisors. For any a ∈ A, let Pa denote the intersection of all
minimal prime ideals of A containing a. We will denote the annihilator

of a set S ⊆ A by S⊥, and the annihilator of the singleton {a} will be
abbreviated as a⊥.

It is shown in

G. Mason, Prime ideals and quotient rings of reduced rings
Math. Japonica, 34(6) (1989), 941–956.

that Pa = a⊥⊥.

An ideal I of the ring A is called a d-ideal if a⊥⊥ ⊆ I, for every a ∈ I.

An ideal Q of RL is a d-ideal iff Q =
⋃
{M(coz α)∗∗ | α ∈ Q}.

Oghenetega Ighedo (UNISA) Z and D as functors 5 / 27



d-ideals ofRL

Recall that an ideal I of a ring A is singular if it consists entirely of
zero-divisors. For any a ∈ A, let Pa denote the intersection of all
minimal prime ideals of A containing a. We will denote the annihilator

of a set S ⊆ A by S⊥, and the annihilator of the singleton {a} will be
abbreviated as a⊥.

It is shown in

G. Mason, Prime ideals and quotient rings of reduced rings
Math. Japonica, 34(6) (1989), 941–956.

that Pa = a⊥⊥.

An ideal I of the ring A is called a d-ideal if a⊥⊥ ⊆ I, for every a ∈ I.

An ideal Q of RL is a d-ideal iff Q =
⋃
{M(coz α)∗∗ | α ∈ Q}.

Oghenetega Ighedo (UNISA) Z and D as functors 5 / 27



d-ideals ofRL

Recall that an ideal I of a ring A is singular if it consists entirely of
zero-divisors. For any a ∈ A, let Pa denote the intersection of all
minimal prime ideals of A containing a. We will denote the annihilator

of a set S ⊆ A by S⊥, and the annihilator of the singleton {a} will be
abbreviated as a⊥.

It is shown in

G. Mason, Prime ideals and quotient rings of reduced rings
Math. Japonica, 34(6) (1989), 941–956.

that Pa = a⊥⊥.

An ideal I of the ring A is called a d-ideal if a⊥⊥ ⊆ I, for every a ∈ I.

An ideal Q of RL is a d-ideal iff Q =
⋃
{M(coz α)∗∗ | α ∈ Q}.

Oghenetega Ighedo (UNISA) Z and D as functors 5 / 27



d-ideals ofRL

Recall that an ideal I of a ring A is singular if it consists entirely of
zero-divisors. For any a ∈ A, let Pa denote the intersection of all
minimal prime ideals of A containing a. We will denote the annihilator

of a set S ⊆ A by S⊥, and the annihilator of the singleton {a} will be
abbreviated as a⊥.

It is shown in

G. Mason, Prime ideals and quotient rings of reduced rings
Math. Japonica, 34(6) (1989), 941–956.

that Pa = a⊥⊥.

An ideal I of the ring A is called a d-ideal if a⊥⊥ ⊆ I, for every a ∈ I.

An ideal Q of RL is a d-ideal iff Q =
⋃
{M(coz α)∗∗ | α ∈ Q}.

Oghenetega Ighedo (UNISA) Z and D as functors 5 / 27



d-ideals ofRL

Recall that an ideal I of a ring A is singular if it consists entirely of
zero-divisors. For any a ∈ A, let Pa denote the intersection of all
minimal prime ideals of A containing a. We will denote the annihilator

of a set S ⊆ A by S⊥, and the annihilator of the singleton {a} will be
abbreviated as a⊥.

It is shown in

G. Mason, Prime ideals and quotient rings of reduced rings
Math. Japonica, 34(6) (1989), 941–956.

that Pa = a⊥⊥.

An ideal I of the ring A is called a d-ideal if a⊥⊥ ⊆ I, for every a ∈ I.

An ideal Q of RL is a d-ideal iff Q =
⋃
{M(coz α)∗∗ | α ∈ Q}.

Oghenetega Ighedo (UNISA) Z and D as functors 5 / 27



The frames Zid(RL) and Did(RL)

Proposition

Let L be a completely regular frame
1 Zid(RL) = Fix(z), for the z-nucleus on Rad(RL).

2 Did(RL) = Fix(d), for the d-nucleus on Zid(RL).

3 K(Zid(RL)) = {Mcozα | α ∈ RL} = {Mcozα | 0 ≤ α ∈ RL}.

4 K(Did(RL)) = {Mc∗∗ | c ∈ Coz L}.

5 Zid(RL) is a coherent frame.

6 Did(RL) is a coherent frame.
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The functors induced by Zid and Did

We recall from

P. T. Johnstone, Stone Spaces
Cambridge Studies in Advanced Math. No. 3, Camb. Univ. Press 1982.

that if A and B are coherent frames, then any lattice homomorphism
K(A)→ K(B) extends to a frame homomorphism A→ B.

Proposition

The map h̄ : K(Zid(RL))→ K(Zid(RM)) defined by

h̄(Mcozα) = Mcoz (h·α)

is a lattice homomorphism.
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The functors induced by Zid and Did

Proposition

For any morphism h : L→ M in CRegFrm, the map

Zid(h) : Zid(RL)→ Zid(RM)

given by

Zid(h)(Q) =
∨
{Mcoz (h·α) | α ∈ Q}

is a coherent frame homomorphism.
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The functors induced by Zid and Did

We define Z : CRegFrm→ CohFrm by

Z(L) = Zid(RL) and Z(h) = h̄.

It must send an object L ∈ CRegFrm to Zid(RL), and a morphism

h ∈ CRegFrm to the morphism h̄ in CohFrm.

Proposition
Z is a functor.
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The functors induced by Zid and Did

In order to define a functor induced by Did along the lines of the functor
Z, we first show that given any frame homomorphism h : L→ M,

there is a coherent map

Did(h) : Did(RL)→ Did(RM).

We write t for the join in Did(RL) and BL, where BL is the
Booleanization of L whose underlying set is {a∗∗ | a ∈ L} with the meet
calculated as in L, and join

⊔
given by⊔
S =

(∨
L
S
)∗∗

for any S ⊆ BL.
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The functors induced by Zid and Did

Lemma
For any a,b ∈ coz L, we have:

1 Ma∗∗ ∧Mb∗∗ = M(a∧b)∗∗

2 Ma∗∗ tMb∗∗ = M(a∨b)∗∗ .

Lemma
Given a frame homomorphism h : L→ M, the map

φ : K(Did(RL))→ K(Did(RM))

given by

φ(Mc∗∗) = Mh(c)∗∗

is a lattice homomorphism.
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The functors induced by Zid and Did

By the result recalled earlier from Johnstone’s book, we have the
following:

Corollary
For any frame homomorphism h : L→ M, the map

h̃ : Did(RL)→ Did(RM) defined by

h̃(Q) =
∨
{M(h(cozα))∗∗ | α ∈ Q}

is the unique coherent map extending the map φ defined above.
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The functors induced by Zid and Did

Definition
We define D : CRegFrm→ CohFrm by setting D(L) = Did(RL) and
D(h) = h̃.

Proposition
D is a functor.

Proposition
Both D and Z are faithful.
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The functors induced by Zid and Did

Proof.
We prove the faithfulness of D only because that of Z is similar; and, in
fact, more straightforward. We will use the fact that if x ≺≺ a, then
x∗∗ ≤ a. Let h : L→ M and g : L→ M be two morphisms in CRegFrm
such that D(h) = D(g). Then, for any c ∈ Coz L,
D(h)(Mc∗∗) = D(g)(Mc∗∗), which implies Mh(c)∗∗ = Mg(c)∗∗ , and
consequently, h(c)∗∗ = g(c)∗∗.
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The functors induced by Zid and Did

Proof.
Let a ∈ L. Then, by complete regularity,

a =
∨
{c ∈ Coz L | c ≺≺ a},

and hence

h(a) =
∨
{h(c) | c ∈ Coz L and c ≺≺ a}

≤
∨
{h(c)∗∗ | c ∈ Coz L and c ≺≺ a}

=
∨
{g(c)∗∗ | c ∈ Coz L and c ≺≺ a}

≤ g(a) since g(c) ≺≺ g(a) whenever c ≺≺ a.

By symmetry, we conclude that h(a) = g(a), so that h = g. Therefore
D is faithful.
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The functors induced by Zid and Did

For any frame L we write δL for the frame homomorphism

δL : Zid(RL)→ Did(RL)

induced by the d-nucleus on Zid(RL). Now we have the following
result.
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The functors induced by Zid and Did

Proposition
The correspondence L 7→ δL is a natural transformation Z→ D.

Proof.
(OUTLINE) We need to check that the diagram

Zid(RL)
Z(h)

- Zid(RM)

Did(RL)

δL

? D(h)
- Did(RM)

δM

?

commutes.
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The functors induced by Zid and Did

Follow the compact element Mc :

Mc
Z(h)

- Mh(c)

Mc∗∗

δL

? D(h)
- Mh(c)∗∗

δM

?
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Preservation and reflection of certain properties

Recall that a frame homomorphism h : L→ M is said to be skeletal if it
sends dense elements to dense elements. By a result of
Banaschewski and Pultr, in the article

Variants of Openness
Applied Categorical Structures. No. 2, 331–350, 1994.

h is skeletal precisely if h(a∗∗) ≤ h(a)∗∗ for every a ∈ L. Weakening
this, we introduce the following definition.

Definition
A frame homomorphism h : L→ M is coz-skeletal if h(c∗∗) ≤ h(c)∗∗ for
every c ∈ Coz L.
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Preservation and reflection of certain properties

Lemma

For any L ∈ CRegFrm, the map σL : Zid(RL)→ L given by

σL(Q) =
∨
{cozα | α ∈ Q}

is a dense onto frame homomorphism.
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Preservation and reflection of certain properties

Proposition
Let h : L→ M be a skeletal frame homomorphism between completely
regular frames. Then in the diagram,

Zid(RL)
Z (h) - Zid(RM)

Did(RL)
D(h)-

δ
L
-

Did(RM)
�
δ M

BL

τL

?

B(h)
- BM

τM

?

L

σL

?

h
-

[ L
-

M

σM

?

�
[
M

every quadrilateral is commutative.
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Preservation and reflection of certain properties

Proposition
The following are equivalent for a frame homomorphism h : L→ M.

1 h is skeletal.
2 Z(h) is skeletal.
3 D(h) is skeletal.

Proposition
The following are equivalent for any frame homomorphism h : L→ M.

1 h is ∗-dense.
2 D(h) is ∗-dense.
3 Z(h) is ∗-dense.
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CONCLUSION

Definition
A frame homomorphism h : L→ M is open if h has a left adjoint
h! : M → L which satisfies the Frobenius identity

h!(h(a) ∧ b) = a ∧ h!(b),

for all a ∈ L and b ∈ M.
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CONCLUSION

We recall from

T. Dube and I. Naidoo, On openness and surjectivity of lifted frame
homomorphisms,
Top. Appl., 157 (2010), 2159–2171.

that a homomorphism h : L→ M is a λ-map if the diagram

λL
hλ
- λM

L

(λL)∗

6

h
- M

(λM)∗

6

is round; that is, if (λM)∗ · h = hλ · (λL)∗.
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CONCLUSION

Lemma

Z(h)(Ma) = Mh(a) for every a ∈ L if and only if h is a λ-map.

Proposition

A λ-map h : L→ M has a left adjoint if and only if Z(h) has a left
adjoint.

Corollary

A λ-map h : L→ M is open if and only if Z(h) is open.
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CONCLUSION

Example
Let X be a pseudocompact Tychonoff space which is not locally compact. Let
L = OX . The map jL : βL→ L is coz-surjective and coz-faithful since L is
pseudocompact. Thus, by the result quoted above, Zid(jL) is an isomorphism,
and hence open. However, jL is not open. Indeed, because X is not locally
compact, the inclusion map X ↪→ βX is not open, and hence the induced
frame homomorphism O(βX )→ OX is not open. But O(βX ) ∼= β(OX ), so
the claim is established.
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