Two functors induced by *z*-ideals and *d*-ideals of pointfree function rings

Oghenetega Ighedo

Department of Mathematical Sciences

University of South Africa (UNISA)

TALK GIVEN AT

INTERNATIONAL WORKSHOP ON TOPOLOGICAL METHODS IN LOGIC IV

(TBILISI, GEORGIA)

23rd June 2014

< ロ > < 同 > < 回 > < 回 > < 回 > <

- An element *a* of *L* is rather below an element *b*, written *a* ≺ *b*, in case there is an element *s*, called a separating element, such that *a* ∧ *s* = 0 and *s* ∨ *b* = 1.
- The frame *L* is regular if $a = \bigvee \{x \in L \mid x \prec a\}$ for each $a \in L$.
- An element *a* is completely below *b*, written *a* → *b*, if there are elements (*x_r*) indexed by rational numbers Q ∩ [0, 1] such that *a* = *x*₀, *x*₁ = *b* and *x_r* → *x_s* for *r* < *s*.
- The frame L is completely regular if a = \ {x ∈ L | x ≺≺ a} for each a ∈ L.
- Coz L is the cozero part of L, and is the regular sub-a-frame consisting of all the cozero elements of L.

・ロッ ・雪 ・ ・ ヨ ・ ・

- An element *a* of *L* is rather below an element *b*, written *a* ≺ *b*, in case there is an element *s*, called a separating element, such that *a* ∧ *s* = 0 and *s* ∨ *b* = 1.
- The frame *L* is regular if $a = \bigvee \{x \in L \mid x \prec a\}$ for each $a \in L$.
- An element *a* is completely below *b*, written *a* ≺< *b*, if there are elements (*x_r*) indexed by rational numbers Q ∩ [0, 1] such that *a* = *x*₀, *x*₁ = *b* and *x_r* ≺ *x_s* for *r* < *s*.
- The frame L is completely regular if a = \ {x ∈ L | x ≺≺ a} for each a ∈ L.
- Coz L is the cozero part of L, and is the regular sub-a-frame consisting of all the cozero elements of L.

イロン イボン イヨン イヨン

- An element *a* of *L* is rather below an element *b*, written *a* ≺ *b*, in case there is an element *s*, called a separating element, such that *a* ∧ *s* = 0 and *s* ∨ *b* = 1.
- The frame *L* is regular if $a = \bigvee \{x \in L \mid x \prec a\}$ for each $a \in L$.
- An element *a* is completely below *b*, written *a* ≺< *b*, if there are elements (*x_r*) indexed by rational numbers Q ∩ [0, 1] such that *a* = *x*₀, *x*₁ = *b* and *x_r* ≺ *x_s* for *r* < *s*.
- The frame L is completely regular if a = \/ {x ∈ L | x ≺≺ a} for each a ∈ L.
- Coz L is the cozero part of L, and is the regular sub-a-frame consisting of all the cozero elements of L.

< ロ > < 同 > < 回 > < 回 > .

- An element *a* of *L* is rather below an element *b*, written *a* ≺ *b*, in case there is an element *s*, called a separating element, such that *a* ∧ *s* = 0 and *s* ∨ *b* = 1.
- The frame *L* is regular if $a = \bigvee \{x \in L \mid x \prec a\}$ for each $a \in L$.
- An element *a* is completely below *b*, written *a* ≺< *b*, if there are elements (*x_r*) indexed by rational numbers Q ∩ [0, 1] such that *a* = *x*₀, *x*₁ = *b* and *x_r* ≺ *x_s* for *r* < *s*.
- The frame *L* is completely regular if *a* = ∨{*x* ∈ *L* | *x* ≺≺ *a*} for each *a* ∈ *L*.
- Coz L is the cozero part of L, and is the regular sub-o-frame consisting of all the cozero elements of L.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- An element *a* of *L* is rather below an element *b*, written *a* ≺ *b*, in case there is an element *s*, called a separating element, such that *a* ∧ *s* = 0 and *s* ∨ *b* = 1.
- The frame *L* is regular if $a = \bigvee \{x \in L \mid x \prec a\}$ for each $a \in L$.
- An element *a* is completely below *b*, written *a* ≺< *b*, if there are elements (*x_r*) indexed by rational numbers Q ∩ [0, 1] such that *a* = *x*₀, *x*₁ = *b* and *x_r* ≺ *x_s* for *r* < *s*.
- The frame *L* is completely regular if *a* = ∨{*x* ∈ *L* | *x* ≺≺ *a*} for each *a* ∈ *L*.
- Coz *L* is the cozero part of *L*, and is the regular sub- σ -frame consisting of all the cozero elements of *L*.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- An ideal *I* of a ring *A* is a radical ideal if for any *a* ∈ *A*, *a*² ∈ *I* implies *a* ∈ *I*.
- An element *c* of a frame *L* is compact if for any $S \subseteq L$, $c \leq \bigvee S$ implies $c \leq \bigvee T$, for some finite $T \subseteq S$.
- A nucleus on a frame L is a closure operator l : L → L such that ℓ(a ∧ b) = ℓ(a) ∧ ℓ(b) for all a, b ∈ L.
- Did(*RL*) is the lattice of *d*-ideals of *RL*.
- Zid(*RL*) is the lattice of z-ideals of *RL*.
- Rad(*RL*) is the lattice of radical ideals of *RL*.

< ロ > < 同 > < 回 > < 回 > .

- An ideal *I* of a ring *A* is a radical ideal if for any *a* ∈ *A*, *a*² ∈ *I* implies *a* ∈ *I*.
- An element *c* of a frame *L* is compact if for any $S \subseteq L$, $c \leq \bigvee S$ implies $c \leq \bigvee T$, for some finite $T \subseteq S$.
- A nucleus on a frame L is a closure operator l : L → L such that ℓ(a ∧ b) = ℓ(a) ∧ ℓ(b) for all a, b ∈ L.
- Did(*RL*) is the lattice of *d*-ideals of *RL*.
- Zid(*RL*) is the lattice of z-ideals of *RL*.
- $\operatorname{Rad}(\mathcal{R}L)$ is the lattice of radical ideals of $\mathcal{R}L$.

< ロ > < 同 > < 回 > < 回 > .

- An ideal *I* of a ring *A* is a radical ideal if for any *a* ∈ *A*, *a*² ∈ *I* implies *a* ∈ *I*.
- An element *c* of a frame *L* is compact if for any $S \subseteq L$, $c \leq \bigvee S$ implies $c \leq \bigvee T$, for some finite $T \subseteq S$.
- A nucleus on a frame *L* is a closure operator $\ell : L \to L$ such that $\ell(a \land b) = \ell(a) \land \ell(b)$ for all $a, b \in L$.
- Did(*RL*) is the lattice of *d*-ideals of *RL*.
- Zid(*RL*) is the lattice of *z*-ideals of *RL*.
- $\operatorname{Rad}(\mathcal{R}L)$ is the lattice of radical ideals of $\mathcal{R}L$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- An ideal *I* of a ring *A* is a radical ideal if for any *a* ∈ *A*, *a*² ∈ *I* implies *a* ∈ *I*.
- An element *c* of a frame *L* is compact if for any $S \subseteq L$, $c \leq \bigvee S$ implies $c \leq \bigvee T$, for some finite $T \subseteq S$.
- A nucleus on a frame *L* is a closure operator $\ell : L \to L$ such that $\ell(a \land b) = \ell(a) \land \ell(b)$ for all $a, b \in L$.
- $\text{Did}(\mathcal{R}L)$ is the lattice of *d*-ideals of $\mathcal{R}L$.
- Zid(*RL*) is the lattice of *z*-ideals of *RL*.
- Rad($\mathcal{R}L$) is the lattice of radical ideals of $\mathcal{R}L$.

< ロ > < 同 > < 回 > < 回 >

- An ideal *I* of a ring *A* is a radical ideal if for any *a* ∈ *A*, *a*² ∈ *I* implies *a* ∈ *I*.
- An element *c* of a frame *L* is compact if for any $S \subseteq L$, $c \leq \bigvee S$ implies $c \leq \bigvee T$, for some finite $T \subseteq S$.
- A nucleus on a frame *L* is a closure operator $\ell : L \to L$ such that $\ell(a \land b) = \ell(a) \land \ell(b)$ for all $a, b \in L$.
- $\text{Did}(\mathcal{R}L)$ is the lattice of *d*-ideals of $\mathcal{R}L$.
- $\operatorname{Zid}(\mathcal{R}L)$ is the lattice of *z*-ideals of $\mathcal{R}L$.

• Rad($\mathcal{R}L$) is the lattice of radical ideals of $\mathcal{R}L$.

< 同 > < 三 > < 三 >

- An ideal *I* of a ring *A* is a radical ideal if for any *a* ∈ *A*, *a*² ∈ *I* implies *a* ∈ *I*.
- An element *c* of a frame *L* is compact if for any $S \subseteq L$, $c \leq \bigvee S$ implies $c \leq \bigvee T$, for some finite $T \subseteq S$.
- A nucleus on a frame *L* is a closure operator $\ell : L \to L$ such that $\ell(a \land b) = \ell(a) \land \ell(b)$ for all $a, b \in L$.
- $\text{Did}(\mathcal{R}L)$ is the lattice of *d*-ideals of $\mathcal{R}L$.
- $\operatorname{Zid}(\mathcal{R}L)$ is the lattice of *z*-ideals of $\mathcal{R}L$.
- $\operatorname{Rad}(\mathcal{R}L)$ is the lattice of radical ideals of $\mathcal{R}L$.

-

・ 同 ト ・ ヨ ト ・ ヨ ト

Throughout, by "ring" we mean a commutative ring with identity. For a ring *A* and $a \in A$, we let

 $\mathfrak{M}(a) = \{ M \in \operatorname{Max} A \mid a \in M \}.$

In the article

G. Mason, z-Ideals and Prime Ideals, J. Alg. 26 (1973), 280-297.

Mason calls an ideal I of A a *z-ideal* if for any a and b in A,

 $a \in I$ and $\mathfrak{M}(a) = \mathfrak{M}(b) \Rightarrow b \in I$.

Let L be a completely regular frame, and $\mathcal{R}L$ be the ring of real-valued continuous functions on L.

An ideal *Q* of *RL* is a *z*-ideal iff $Q = \bigcup \{ M_{\cos \alpha} \mid \alpha \in Q \}$, where, for any $a \in L$,

$M_a = \{ \gamma \in \mathcal{R}L \mid \operatorname{coz} \gamma \leq a \}.$

< ロ > < 同 > < 回 > < 回 > .

Throughout, by "ring" we mean a commutative ring with identity. For a ring A and $a \in A$, we let

$$\mathfrak{M}(a) = \{ M \in \operatorname{Max} A \mid a \in M \}.$$

In the article

G. Mason, z-Ideals and Prime Ideals, J. Alg. 26 (1973), 280-297,

Mason calls an ideal I of A a z-ideal if for any a and b in A,

 $a \in I$ and $\mathfrak{M}(a) = \mathfrak{M}(b) \Rightarrow b \in I.$

Let L be a completely regular frame, and $\mathcal{R}L$ be the ring of real-valued continuous functions on L.

An ideal *Q* of *RL* is a *z*-ideal iff $Q = \bigcup \{ M_{\cos \alpha} \mid \alpha \in Q \}$, where, for any $a \in L$,

$M_{a} = \{ \gamma \in \mathcal{R}L \mid \operatorname{coz} \gamma \leq a \}.$

Throughout, by "ring" we mean a commutative ring with identity. For a ring *A* and $a \in A$, we let

$$\mathfrak{M}(a) = \{ M \in \operatorname{Max} A \mid a \in M \}.$$

In the article

G. Mason, z-Ideals and Prime Ideals, J. Alg. 26 (1973), 280-297,

Mason calls an ideal I of A a z-ideal if for any a and b in A,

 $a \in I$ and $\mathfrak{M}(a) = \mathfrak{M}(b) \Rightarrow b \in I$.

Let L be a completely regular frame, and $\mathcal{R}L$ be the ring of real-valued continuous functions on L.

An ideal *Q* of *RL* is a *z*-ideal iff $Q = \bigcup \{ M_{\cos \alpha} \mid \alpha \in Q \}$, where, for any $a \in L$,

$M_a = \{ \gamma \in \mathcal{R}L \mid \operatorname{coz} \gamma \leq a \}.$

Throughout, by "ring" we mean a commutative ring with identity. For a ring *A* and $a \in A$, we let

$$\mathfrak{M}(a) = \{ M \in \operatorname{Max} A \mid a \in M \}.$$

In the article

G. Mason, z-Ideals and Prime Ideals, J. Alg. 26 (1973), 280-297,

Mason calls an ideal I of A a z-ideal if for any a and b in A,

 $a \in I$ and $\mathfrak{M}(a) = \mathfrak{M}(b) \Rightarrow b \in I$.

Let *L* be a completely regular frame, and $\mathcal{R}L$ be the ring of real-valued continuous functions on *L*.

An ideal *Q* of *RL* is a *z*-ideal iff $Q = \bigcup \{ M_{\cos \alpha} \mid \alpha \in Q \}$, where, for any $a \in L$,

$M_a = \{ \gamma \in \mathcal{R}L \mid \operatorname{coz} \gamma \leq a \}.$

Throughout, by "ring" we mean a commutative ring with identity. For a ring *A* and $a \in A$, we let

$$\mathfrak{M}(a) = \{ M \in \operatorname{Max} A \mid a \in M \}.$$

In the article

G. Mason, z-Ideals and Prime Ideals, J. Alg. 26 (1973), 280-297,

Mason calls an ideal I of A a z-ideal if for any a and b in A,

 $a \in I$ and $\mathfrak{M}(a) = \mathfrak{M}(b) \Rightarrow b \in I$.

Let *L* be a completely regular frame, and $\mathcal{R}L$ be the ring of real-valued continuous functions on *L*.

An ideal Q of $\mathcal{R}L$ is a z-ideal iff $Q = \bigcup \{ M_{\cos \alpha} \mid \alpha \in Q \}$, where, for any

$M_{oldsymbol{a}} = \{ \gamma \in \mathcal{R}L \mid \operatorname{coz} \gamma \leq oldsymbol{a} \}.$

Throughout, by "ring" we mean a commutative ring with identity. For a ring *A* and $a \in A$, we let

$$\mathfrak{M}(a) = \{ M \in \operatorname{Max} A \mid a \in M \}.$$

In the article

G. Mason, z-Ideals and Prime Ideals, J. Alg. 26 (1973), 280-297,

Mason calls an ideal I of A a z-ideal if for any a and b in A,

 $a \in I$ and $\mathfrak{M}(a) = \mathfrak{M}(b) \Rightarrow b \in I$.

Let *L* be a completely regular frame, and $\mathcal{R}L$ be the ring of real-valued continuous functions on *L*.

An ideal Q of $\mathcal{R}L$ is a *z*-ideal iff $Q = \bigcup \{ M_{\cos \alpha} \mid \alpha \in Q \}$, where, for any $a \in L$,

$$\boldsymbol{M}_{\boldsymbol{a}} = \{ \gamma \in \mathcal{R}L \mid \operatorname{coz} \gamma \leq \boldsymbol{a} \}.$$

of a set $S \subseteq A$ by S^{\perp} , and the annihilator of the singleton $\{a\}$ will be abbreviated as a^{\perp} .

It is shown in

G. Mason, Prime ideals and quotient rings of reduced rings. Math. Japonica, 34(6) (1989), 941–956.

that $P_a = a^{\perp \perp}$.

An ideal *I* of the ring A is called a *d*-ideal if $a^{\perp\perp} \subseteq I$, for every $a \in I$. An ideal *Q* of *RL* is a *d*-ideal iff $Q = \bigcup \{ M_{(coz \alpha)^{ss}} \mid \alpha \in Q \}$.

of a set $S \subseteq A$ by S^{\perp} , and the annihilator of the singleton $\{a\}$ will be abbreviated as a^{\perp} .

It is shown in

G. Mason, Prime ideals and quotient rings of reduced rings Math. Japonica, 34(6) (1989), 941–956.

that $P_a = a^{\perp \perp}$.

An ideal *I* of the ring *A* is called a *d*-ideal if $a^{\perp\perp} \subseteq I$, for every $a \in I$. An ideal *Q* of *RL* is a *d*-ideal iff $Q = \bigcup \{\mathbf{M}_{(cot, \alpha)^{**}} \mid \alpha \in Q\}$.

・ロッ ・雪 ・ ・ ヨ ・ ・

of a set $S \subseteq A$ by S^{\perp} , and the annihilator of the singleton $\{a\}$ will be abbreviated as a^{\perp} .

It is shown in

G. Mason, Prime ideals and quotient rings of reduced rings Math. Japonica, **34**(6) (1989), 941–956.

that $P_a = a^{\perp \perp}$.

An ideal *I* of the ring *A* is called a *d*-ideal if $a^{\perp\perp} \subseteq I$, for every $a \in I$. An ideal *Q* of *RL* is a *d*-ideal iff $Q = \bigcup \{ M_{(coz \alpha)^{**}} \mid \alpha \in Q \}$.

<ロ> <同> <同> < 同> < 同> < 同> = 三目

of a set $S \subseteq A$ by S^{\perp} , and the annihilator of the singleton $\{a\}$ will be abbreviated as a^{\perp} .

It is shown in

G. Mason, Prime ideals and quotient rings of reduced rings Math. Japonica, **34**(6) (1989), 941–956.

that $P_a = a^{\perp \perp}$.

An ideal *I* of the ring *A* is called a *d*-ideal if $a^{\perp\perp} \subseteq I$, for every $a \in I$.

An ideal Q of $\mathcal{R}L$ is a d-ideal iff $Q = \bigcup \{ M_{(coz \alpha)^{**}} \mid \alpha \in Q \}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

of a set $S \subseteq A$ by S^{\perp} , and the annihilator of the singleton $\{a\}$ will be abbreviated as a^{\perp} .

It is shown in

G. Mason, Prime ideals and quotient rings of reduced rings Math. Japonica, **34**(6) (1989), 941–956.

that $P_a = a^{\perp \perp}$.

An ideal *I* of the ring *A* is called a *d*-ideal if $a^{\perp\perp} \subseteq I$, for every $a \in I$.

An ideal Q of $\mathcal{R}L$ is a *d*-ideal iff $Q = \bigcup \{ M_{(\operatorname{coz} \alpha)^{**}} \mid \alpha \in Q \}.$

- Let L be a completely regular frame
 - $Zid(\mathcal{R}L) = Fix(z)$, for the *z*-nucleus on Rad($\mathcal{R}L$).
 - Did(RL) = Fix(d), for the d-nucleus on Zid(RL).
 - $\ \, \bigcirc \ \, \Re(Zid(\mathcal{R}L)) = \{ M_{coz\,\alpha} \mid \alpha \in \mathcal{R}L \} = \{ M_{coz\,\alpha} \mid 0 \le \alpha \in \mathcal{R}L \}.$

 - Zid(RL) is a coherent frame.
 - Did(RL) is a coherent frame.

< ロ > < 同 > < 回 > < 回 > .

- Let L be a completely regular frame
 - **1** $Zid(\mathcal{R}L) = Fix(z)$, for the *z*-nucleus on Rad($\mathcal{R}L$).
 - Oid($\mathcal{R}L$) = Fix(d), for the d-nucleus on Zid($\mathcal{R}L$).
 - $\ \, \bigcirc \ \, \Re(Zid(\mathcal{R}L)) = \{ M_{coz\,\alpha} \mid \alpha \in \mathcal{R}L \} = \{ M_{coz\,\alpha} \mid 0 \le \alpha \in \mathcal{R}L \}.$

 - Zid(RL) is a coherent frame.
 - Did(RL) is a coherent frame.

< ロ > < 同 > < 回 > < 回 > .

- Let L be a completely regular frame
 - **1** $Zid(\mathcal{R}L) = Fix(z)$, for the *z*-nucleus on Rad($\mathcal{R}L$).
 - 2 $Did(\mathcal{R}L) = Fix(d)$, for the d-nucleus on $Zid(\mathcal{R}L)$.

 - Zid(RL) is a coherent frame.
 - Did(RL) is a coherent frame.

-

- Let L be a completely regular frame
 - **1** $Zid(\mathcal{R}L) = Fix(z)$, for the *z*-nucleus on Rad($\mathcal{R}L$).
 - 2 $Did(\mathcal{R}L) = Fix(d)$, for the d-nucleus on $Zid(\mathcal{R}L)$.

 - $\mathfrak{K}(Did(\mathcal{R}L)) = \{ M_{c^{**}} \mid c \in CozL \}.$
 - Zid(RL) is a coherent frame.
 - Did(RL) is a coherent frame.

э.

- Let L be a completely regular frame
 - **1** $Zid(\mathcal{R}L) = Fix(z)$, for the *z*-nucleus on Rad($\mathcal{R}L$).
 - 2 $Did(\mathcal{R}L) = Fix(d)$, for the d-nucleus on $Zid(\mathcal{R}L)$.

 - $\mathfrak{K}(Did(\mathcal{R}L)) = \{ M_{c^{**}} \mid c \in CozL \}.$
 - Jid(RL) is a coherent frame.
 - Did(RL) is a coherent frame.

э.

- Let L be a completely regular frame
 - **1** $Zid(\mathcal{R}L) = Fix(z)$, for the *z*-nucleus on Rad($\mathcal{R}L$).
 - 2 $Did(\mathcal{R}L) = Fix(d)$, for the d-nucleus on $Zid(\mathcal{R}L)$.

 - $\mathfrak{K}(Did(\mathcal{R}L)) = \{ M_{c^{**}} \mid c \in CozL \}.$
 - Jid(RL) is a coherent frame.
 - **o** $Did(\mathcal{R}L)$ is a coherent frame.

э.

We recall from

P. T. Johnstone, Stone Spaces Cambridge Studies in Advanced Math. No. 3, Camb. Univ. Press 1982.

that if *A* and *B* are coherent frames, then any lattice homomorphism $\mathfrak{K}(A) \to \mathfrak{K}(B)$ extends to a frame homomorphism $A \to B$.

```
Proposition
The map ar{h}: \Re(Zid(\mathcal{R}L)) 	o \Re(Zid(\mathcal{R}M)) defined by
ar{h}(M_{coz\,lpha}) = M_{coz(h:lpha)}
```

is a lattice homomorphism.

< ロ > < 同 > < 回 > < 回 > .

We recall from

P. T. Johnstone, Stone Spaces Cambridge Studies in Advanced Math. No. 3, Camb. Univ. Press 1982.

that if *A* and *B* are coherent frames, then any lattice homomorphism $\mathfrak{K}(A) \to \mathfrak{K}(B)$ extends to a frame homomorphism $A \to B$.

Proposition The map $\bar{h}: \mathfrak{K}(Zid(\mathcal{R}L)) \to \mathfrak{K}(Zid(\mathcal{R}M))$ defined by $\bar{h}(\mathbf{M}_{coz\alpha}) = \mathbf{M}_{coz(h\cdot\alpha)}$

is a lattice homomorphism.

< 同 > < 回 > < 回 > -

For any morphism h: $L \rightarrow M$ in **CRegFrm**, the map

Zid(h): $Zid(\mathcal{R}L) \rightarrow Zid(\mathcal{R}M)$

given by

$$Zid(h)(Q) = \bigvee \{ M_{coz(h \cdot \alpha)} \mid \alpha \in Q \}$$

is a coherent frame homomorphism.

< ロ > < 同 > < 回 > < 回 > < 回 > <

We define Z: **CRegFrm** \rightarrow **CohFrm** by

$Z(L) = Zid(\mathcal{R}L)$ and $Z(h) = \overline{h}$.

It must send an object $L \in \mathbf{CRegFrm}$ to $\operatorname{Zid}(\mathcal{R}L)$, and a morphism $h \in \mathbf{CRegFrm}$ to the morphism \overline{h} in **CohFrm**.

Proposition

3

We define Z: **CRegFrm** \rightarrow **CohFrm** by

$$Z(L) = Zid(\mathcal{R}L)$$
 and $Z(h) = \overline{h}$.

It must send an object $L \in \mathbf{CRegFrm}$ to $\mathbf{Zid}(\mathcal{R}L)$, and a morphism

$h \in \mathbf{CRegFrm}$ to the morphism \overline{h} in **CohFrm**.

Proposition Z *is a functor*:

< ロ > < 同 > < 回 > < 回 > .

We define Z: **CRegFrm** \rightarrow **CohFrm** by

$$Z(L) = Zid(\mathcal{R}L)$$
 and $Z(h) = \overline{h}$.

It must send an object $L \in \mathbf{CRegFrm}$ to $\mathbf{Zid}(\mathcal{R}L)$, and a morphism

$h \in \mathbf{CRegFrm}$ to the morphism \overline{h} in **CohFrm**.

Proposition

Z is a functor.

< 同 > < 三 > < 三 >

In order to define a functor induced by Did along the lines of the functor Z,

 $\mathsf{Did}(h): \mathsf{Did}(\mathcal{R}L) \to \mathsf{Did}(\mathcal{R}M).$

We write \sqcup for the join in Did($\mathcal{R}L$) and $\mathfrak{B}L$, where $\mathfrak{B}L$ is the Booleanization of L whose underlying set is $\{a^{**} \mid a \in L\}$ with the meet calculated as in L, and join | | given by

 $\bigcup S = \left(\bigvee_L S\right)^{**}$

for any $S \subseteq \mathfrak{B}L$.

In order to define a functor induced by Did along the lines of the functor Z, we first show that given any frame homomorphism $h: L \to M$, there is a coherent map

 $\operatorname{Did}(h) \colon \operatorname{Did}(\mathcal{R}L) \to \operatorname{Did}(\mathcal{R}M).$

We write \sqcup for the join in Did($\mathcal{R}L$) and $\mathfrak{B}L$, where $\mathfrak{B}L$ is the Booleanization of L whose underlying set is $\{a^{**} \mid a \in L\}$ with the meet calculated as in L, and join | | given by

 $\bigcup S = \left(\bigvee_L S\right)^{**}$

for any $S \subseteq \mathfrak{B}L$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

In order to define a functor induced by Did along the lines of the functor Z, we first show that given any frame homomorphism $h: L \to M$, there is a coherent map

 $\operatorname{Did}(h)$: $\operatorname{Did}(\mathcal{R}L) \to \operatorname{Did}(\mathcal{R}M)$.

We write \sqcup for the join in $\text{Did}(\mathcal{R}L)$ and $\mathfrak{B}L$, where $\mathfrak{B}L$ is the Booleanization of *L* whose underlying set is $\{a^{**} \mid a \in L\}$ with the meet calculated as in *L*, and join || given by

$$\bigcup S = \left(\bigvee_L S\right)^{**}$$

for any $S \subseteq \mathfrak{B}L$.

For any $a, b \in coz L$, we have:

- **1** $M_{a^{**}} \wedge M_{b^{**}} = M_{(a \wedge b)^{**}}$
- **2** $M_{a^{**}} \sqcup M_{b^{**}} = M_{(a \lor b)^{**}}.$

Lemma

Given a frame homomorphism h: L
ightarrow M, the map

$\phi \colon \mathfrak{K}(\mathit{Did}(\mathcal{R}L)) o \mathfrak{K}(\mathit{Did}(\mathcal{R}M))$

given by

$\phi(\mathbf{M}_{c^{**}}) = \mathbf{M}_{h(c)^{**}}$

is a lattice homomorphism.

э

・ロッ ・雪 ・ ・ ヨ ・ ・

For any $a, b \in coz L$, we have:

1
$$M_{a^{**}} \wedge M_{b^{**}} = M_{(a \wedge b)^{**}}$$

2
$$M_{a^{**}} \sqcup M_{b^{**}} = M_{(a \lor b)^{**}}.$$

Lemma

Given a frame homomorphism $h: L \rightarrow M$, the map

 $\phi \colon \mathfrak{K}(\mathit{Did}(\mathcal{R}L)) \to \mathfrak{K}(\mathit{Did}(\mathcal{R}M))$

given by

$$\phi(\mathbf{M}_{\mathbf{C}^{**}}) = \mathbf{M}_{h(\mathbf{C})^{**}}$$

is a lattice homomorphism.

< ロ > < 同 > < 回 > < 回 >

By the result recalled earlier from Johnstone's book, we have the following:

Corollary

For any frame homomorphism $h\colon L o M$, the map

 $ilde{h}\colon\operatorname{\mathsf{Did}}(\mathcal{R}L) o\operatorname{\mathsf{Did}}(\mathcal{R}M)$ defined by

 $ilde{h}({m Q}) = igvee \{ {m M}_{(h(coz\,lpha))^{**}} \mid lpha \in {m Q} \}$

is the unique coherent map extending the map ϕ defined above.

< ロ > < 同 > < 回 > < 回 > .

By the result recalled earlier from Johnstone's book, we have the following:

Corollary

For any frame homomorphism $h: L \rightarrow M$, the map

 \tilde{h} : $\mathsf{Did}(\mathcal{R}L) \to \mathsf{Did}(\mathcal{R}M)$ defined by

 $\tilde{h}(\boldsymbol{Q}) = \bigvee \{ \boldsymbol{M}_{(h(coz\,\alpha))^{**}} \mid \alpha \in \boldsymbol{Q} \}$

is the unique coherent map extending the map ϕ defined above.

We define D: **CRegFrm** \rightarrow **CohFrm** by setting D(*L*) = Did($\mathcal{R}L$) and D(*h*) = \tilde{h} .

Proposition *D is a functor.*

Proposition *Both D and Z are faithful.*

э

イロン イボン イヨン イヨン

We define D: **CRegFrm** \rightarrow **CohFrm** by setting $D(L) = \text{Did}(\mathcal{R}L)$ and $D(h) = \tilde{h}$.

Proposition D is a functor.

Proposition *Both D and Z are faithful*.

We define D: **CRegFrm** \rightarrow **CohFrm** by setting D(*L*) = Did($\mathcal{R}L$) and D(*h*) = \tilde{h} .

Proposition D is a functor.

Proposition Both D and Z are faithful.

< ロ > < 同 > < 三 > < 三 >

Proof.

We prove the faithfulness of D only because that of Z is similar; and, in fact, more straightforward. We will use the fact that if $x \prec a$, then $x^{**} \leq a$. Let $h: L \to M$ and $g: L \to M$ be two morphisms in **CRegFrm** such that D(h) = D(g). Then, for any $c \in \text{Coz } L$, $D(h)(M_{c^{**}}) = D(g)(M_{c^{**}})$, which implies $M_{h(c)^{**}} = M_{g(c)^{**}}$, and consequently, $h(c)^{**} = g(c)^{**}$.

< ロ > < 同 > < 回 > < 回 > .

Proof.

Let $a \in L$. Then, by complete regularity,

$$a = \bigvee \{ c \in \operatorname{Coz} L \mid c \prec a \},$$

and hence

$$h(a) = \bigvee \{h(c) \mid c \in \operatorname{Coz} L \text{ and } c \prec a\}$$

$$\leq \bigvee \{h(c)^{**} \mid c \in \operatorname{Coz} L \text{ and } c \prec a\}$$

$$= \bigvee \{g(c)^{**} \mid c \in \operatorname{Coz} L \text{ and } c \prec a\}$$

$$\leq g(a) \quad \operatorname{since} g(c) \prec g(a) \text{ whenever } c \prec a.$$

By symmetry, we conclude that h(a) = g(a), so that h = g. Therefore D is faithful.

Oghenetega Ighedo (UNISA)

< ロ > < 同 > < 三 > < 三 >

For any frame *L* we write δ_L for the frame homomorphism

$\delta_L \colon \operatorname{Zid}(\mathcal{R}L) \to \operatorname{Did}(\mathcal{R}L)$

induced by the *d*-nucleus on $Zid(\mathcal{R}L)$. Now we have the following result.

э

The correspondence $L \mapsto \delta_L$ is a natural transformation $Z \to D$.

< ロ > < 同 > < 回 > < 回 > .

The correspondence $L \mapsto \delta_L$ is a natural transformation $Z \to D$.

Proof.

(OUTLINE) We need to check that the diagram

< ロ > < 同 > < 三 > < 三 >

Follow the compact element *M_c*:

э

Recall that a frame homomorphism $h: L \to M$ is said to be skeletal if it sends dense elements to dense elements. By a result of Banaschewski and Pultr, in the article

Variants of Openness Applied Categorical Structures. No. 2, 331–350, 1994.

h is skeletal precisely if $h(a^{**}) \le h(a)^{**}$ for every $a \in L$. Weakening this, we introduce the following definition.

Definition

A frame homomorphism $h \colon L \to M$ is coz-skeletal if $h(c^{**}) \le h(c)^{**}$ for every $c \in \text{Coz } L$.

Recall that a frame homomorphism $h: L \to M$ is said to be skeletal if it sends dense elements to dense elements. By a result of Banaschewski and Pultr, in the article

Variants of Openness Applied Categorical Structures. No. 2, 331–350, 1994.

h is skeletal precisely if $h(a^{**}) \le h(a)^{**}$ for every $a \in L$. Weakening this, we introduce the following definition.

Definition A frame homomorphism $h: L \to M$ is coz-skeletal if $h(c^{**}) \le h(c)^{**}$ for every $c \in \text{Coz } L$.

< ロ > < 同 > < 回 > < 回 >

Recall that a frame homomorphism $h: L \to M$ is said to be skeletal if it sends dense elements to dense elements. By a result of Banaschewski and Pultr, in the article

Variants of Openness Applied Categorical Structures. No. 2, 331–350, 1994.

h is skeletal precisely if $h(a^{**}) \le h(a)^{**}$ for every $a \in L$. Weakening this, we introduce the following definition.

Definition

A frame homomorphism $h: L \to M$ is coz-skeletal if $h(c^{**}) \le h(c)^{**}$ for every $c \in \text{Coz } L$.

For any $L \in \mathbf{CRegFrm}$, the map $\sigma_L \colon \mathbf{Zid}(\mathcal{R}L) \to L$ given by

$$\sigma_L(\boldsymbol{Q}) = \bigvee \{ \operatorname{coz} \alpha \mid \alpha \in \boldsymbol{Q} \}$$

is a dense onto frame homomorphism.

< ロ > < 同 > < 回 > < 回 >

Let $h: L \to M$ be a skeletal frame homomorphism between completely regular frames. Then in the diagram,

every quadrilateral is commutative.

.⊒⇒

Let $h: L \to M$ be a skeletal frame homomorphism between completely regular frames. Then in the diagram,

every quadrilateral is commutative.

< A >

- B- 6

The following are equivalent for a frame homomorphism $h: L \rightarrow M$.

- h is skeletal.
- 2 Z(h) is skeletal.
- O(h) is skeletal.

Proposition

The following are equivalent for any frame homomorphism h: L ightarrow M.

- 🕕 h is *-dense.
- O(h) is *-dense.
- Z(h) is *-dense.

< ロ > < 同 > < 回 > < 回 > .

The following are equivalent for a frame homomorphism $h: L \rightarrow M$.

- h is skeletal.
- 2 Z(h) is skeletal.
- O(h) is skeletal.

Proposition

The following are equivalent for any frame homomorphism $h: L \rightarrow M$.

- h is *-dense.
- 2 D(h) is *-dense.
- Z(h) is *-dense.

< A >

I ≥ ►

A frame homomorphism $h: L \to M$ is open if h has a left adjoint $h_l: M \to L$ which satisfies the Frobenius identity

 $h_!(h(a) \wedge b) = a \wedge h_!(b),$

for all $a \in L$ and $b \in M$.

< ロ > < 同 > < 三 > < 三 >

We recall from

T. Dube and I. Naidoo, On openness and surjectivity of lifted frame homomorphisms, Top. Appl., **157** (2010), 2159–2171.

that a homomorphism $h: L \to M$ is a λ -map if the diagram

is round; that is, if $(\lambda_M)_* \cdot h = h^{\lambda} \cdot (\lambda_L)_*$.

$Z(h)(M_a) = M_{h(a)}$ for every $a \in L$ if and only if h is a λ -map.

Proposition

A λ -map h: L \rightarrow M has a left adjoint if and only if Z(h) has a left adjoint.

Corollary A λ -map h: L \rightarrow M is open if and only if Z(h) is open.

Oghenetega Ighedo (UNISA)

э

イロン イボン イヨン イヨン

 $Z(h)(M_a) = M_{h(a)}$ for every $a \in L$ if and only if h is a λ -map.

Proposition

A λ -map $h: L \to M$ has a left adjoint if and only if Z(h) has a left adjoint.

Corollary A λ -map h: L \rightarrow M is open if and only if Z(h) is open

・ロン ・聞と ・ ヨン・ モン・

 $Z(h)(M_a) = M_{h(a)}$ for every $a \in L$ if and only if h is a λ -map.

Proposition

A λ -map h: L \rightarrow M has a left adjoint if and only if Z(h) has a left adjoint.

Corollary A λ -map $h: L \to M$ is open if and only if Z(h) is open.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Example

Let X be a pseudocompact Tychonoff space which is not locally compact. Let $L = \mathfrak{O}X$. The map $j_L : \beta L \to L$ is coz-surjective and coz-faithful since L is pseudocompact. Thus, by the result quoted above, $\operatorname{Zid}(j_L)$ is an isomorphism, and hence open. However, j_L is not open. Indeed, because X is not locally compact, the inclusion map $X \hookrightarrow \beta X$ is not open, and hence the induced frame homomorphism $\mathfrak{O}(\beta X) \to \mathfrak{O}X$ is not open. But $\mathfrak{O}(\beta X) \cong \beta(\mathfrak{O}X)$, so the claim is established.

ACKNOWLEDGEMENT

I wish to acknowledge the UNISA Topology and Category Research Chair for financial assistance.

THANK YOU FOR YOUR ATTENTION.

< ロ > < 同 > < 回 > < 回 >

ACKNOWLEDGEMENT

I wish to acknowledge the UNISA Topology and Category Research Chair for financial assistance.

THANK YOU FOR YOUR ATTENTION.

< 同 > < 三 > < 三 >