Some topological exercises around
 a Boolean algebra

Mai Gehrke

CNRS and Paris Diderot

Recognisable languages

Let A be an alphabet, $L \subseteq A^{*}$ a language.

The following conditions are equivalent:

- L is recognisable by an automaton;
- L is recognisable by a finite monoid;
- L is given by a rational expression;
- $L=\operatorname{Mod}(\varphi)$ for some $\varphi \ln \operatorname{MSO}\left[\leqslant,(\underline{a})_{a \in A}\right]$

For this talk, I want to explain the last formulation which depends on Büchi's logic on words

Logic on words

To each non-empty word u is associated a structure

$$
\mathcal{M}_{u}=\left(\{1,2, \ldots,|u|\},<,(\mathbf{a})_{a \in A}\right)
$$

where \mathbf{a} is interpreted as the set of integers i such that the i-th letter of u is an a, and $<$ as the usual order on integers.

Example:
Let $u=a b b a a b$ then

$$
\mathcal{M}_{u}=(\{1,2,3,4,5,6\},<,(\mathbf{a}, \mathbf{b}))
$$

where $\mathbf{a}=\{1,4,5\}$ and $\mathbf{b}=\{2,3,6\}$.

Some examples

The formula $\varphi=\exists x \mathbf{a} \times$ interprets as:
There exists a position x in u such that the letter in position x is an a.

This defines the language $L(\varphi)=A^{*} a A^{*}$.

The formula $\exists x \exists y(x<y) \wedge \mathbf{a} x \wedge \mathbf{b} y$ defines the language $A^{*} a A^{*} b A^{*}$.

The formula $\exists x \forall y[(x<y) \vee(x=y)] \wedge \mathbf{a x}$ defines the language $a A^{*}$.

Defining the set of words of even length

Macros:

$$
\begin{aligned}
(x<y) & \vee(x=y) \text { means } x \leqslant y \\
& \forall y x \leqslant y \text { means } x=1 \\
& \forall y y \leqslant x \text { means } x=|u| \\
x<y \wedge \forall z(x<z \rightarrow y \leqslant z) & \text { means } y=x+1
\end{aligned}
$$

Let $\varphi=\exists X(1 \notin X \wedge|u| \in X \wedge \forall x(x \in X \leftrightarrow x+1 \notin X))$

Then $1 \notin X, 2 \in X, 3 \notin X, 4 \in X, \ldots,|u| \in X$. Thus

$$
L(\varphi)=\{u| | u \mid \text { is even }\}=\left(A^{2}\right)^{*}
$$

This language is often called PARITY.

Monadic second order logic

Only second order quantifiers over unary predicates are allowed.
Theorem: (Büchi '60, Elgot '61)
Monadic second order captures exactly the recognisable languages.

This is written as the equation

$$
\operatorname{Rec}\left(A^{*}\right)=M S O\left[\leqslant,(\underline{a})_{a \in A}\right]
$$

Basic problems in complexity theory

In complexity theory computing machines are studied, e.g., through corresponding formal languages

Typical problems that are studied are:

- decidability of membership in a class of languages
- separation of complexity classes
- comparison of complexity classes

Eilenberg-Reiterman theory

Various generalisations: [Pin 1995], [Pin-Weil 1996], [Pippenger 1997], [Polák 2001], [Esik 2002], [Straubing 2002], [Kunc 2003]

Eilenberg, Reiterman, and Stone

Classes of monoids

equational theories
(3)

(1) Eilenberg theorems
(2) Reiterman theorems
(3) extended Stone/Priestley duality
(3) allows generalisation to non-varieties and even to non-regular languages

Most general form of the Eilenberg-Reiterman theorem

Lattices of recognisable languages are given by profinite equations
This is a spacial case of the duality between
subalgebras $\quad \longleftrightarrow \quad$ quotient structures
$B \longleftrightarrow \operatorname{Rec}\left(A^{*}\right)$
dually

$$
X_{B} \quad \longleftarrow \quad \widehat{A^{*}}
$$

That is, B is described dually by equating elements of $\widehat{A^{*}}$.

A Galois connection for subalgebras and quotient spaces

Let B be a Boolean algebra, X the dual space of B.
The maps $\mathcal{P}(B) \leftrightarrows \mathcal{P}(X \times X)$ given by

$$
S \mapsto \approx_{S}=\{(x, y) \in X \mid \forall b \in S \quad(b \in y \Longleftrightarrow b \in x)\}
$$

and

$$
E \mapsto B_{E}=\{b \in B \mid \forall(x, y) \in E \quad(b \in y \Longleftrightarrow b \in x)\}
$$

establish a Galois connection whose Galois closed sets are the Boolean equivalence relations and the Boolean subalgebras, respectively.

Example: the star free languages

The star free languages are those recognisable languages that are generated by $\{a\}$ for $a \in A$ using the Boolean operations and concatenation product

In logic terms,

$$
\text { Star free }=\mathrm{FO}\left[\leqslant,(\underline{a})_{a \in A}\right]
$$

Schützenberger-Simon theorem

$$
\text { Star free }=\llbracket x^{\omega+1}=x^{\omega} \rrbracket
$$

Here x^{ω} is the unique idempotent in the closed subsemigroup generated by x, and the theorem means that the class of star free languages is given by the one pair, $\left(x^{\omega+1}, x^{\omega}\right)$, when closing under:

- substitution
- monoid congruence
- Stone duality subalgebra-quotient adjunction

That is the class of star free languages is B_{E} where

$$
E=\left\{\left(u x^{\omega+1} v, u x^{\omega} v\right) \mid x, u, v \in \widehat{A^{*}}\right\}
$$

Beyond recognisable languages

$$
B \longleftrightarrow \mathcal{P}\left(A^{*}\right)
$$

dually

$$
X_{B} \quad \longleftarrow \quad \beta\left(A^{*}\right)
$$

That is, lattices of languages are given by " β-equations"

A case with some handle

Joint work with Andreas Krebs and Jean-Éric Pin. Idea of the project: start with a relatively small lattice for which some connection with $\operatorname{Rec}\left(A^{*}\right)$ is known
$A C^{0}$ consists of all families of circuits of bounded depth and polynomial size, with negation on inputs and unlimited fanin AND and OR gates
$=F O\left[\mathcal{N},(\underline{a})_{a \in A}\right]$ where \mathcal{N} is the class of all predicates on \mathbb{N}

By a deep result of Barrington, Straubing, and Thérien

$$
\begin{aligned}
F O\left[\mathcal{N},(\underline{a})_{a \in A}\right] \cap \operatorname{Rec}\left(A^{*}\right)= & \llbracket\left(x^{\omega-1} y\right)^{\omega+1}=\left(x^{\omega-1} y\right)^{\omega} \\
& \text { for } x, y \text { words of the same length } \rrbracket
\end{aligned}
$$

An even simpler case

We start by investigating the fragment given by nullary and unary numerical predicates (in FO without equality)

$$
\begin{aligned}
\mathcal{B} & =F O\left[\mathcal{N}_{1}, \mathcal{N}_{0},(\underline{a})_{a \in A}\right] \\
& =\left\langle L_{P}^{a}, L_{P} \mid a \in A, P \subseteq \mathbb{N}\right\rangle_{B A}
\end{aligned}
$$

where

$$
\begin{aligned}
& L_{P}^{a}=\left\{u \in A^{*} \mid u_{i}=a \Longrightarrow i \in P\right\} \\
& L_{P}=\left\{u \in A^{*}| | u \mid \in P\right\}
\end{aligned}
$$

Problem: Find $E \subseteq \beta\left(A^{*}\right) \times \beta\left(A^{*}\right)$ so that $B_{E}=\mathcal{B}$

Dual space of \mathcal{B}

It is not necessary to compute the dual of \mathcal{B}, but, when this is possible it tends to be useful in language theory

In addition, we thought it might help us in the difficult task of coming up with a method for picking pairs in $\beta\left(A^{*}\right)$

Even though \mathcal{B} is quite small and simple, computing its ultrafilters directly is not easy

To solve this problem we have devised a method based on duality which I think is interesting in its own right

Some observations

By Priestley (Nerode), it suffices to compute the dual of a sublattice of \mathcal{B} which generates \mathcal{B} as a Boolean algebra

We pick

$$
\mathcal{L}=<L_{P}^{a}, L_{P} \mid a \in A, P \subseteq \mathbb{N}>_{D L}
$$

Let $\mathcal{L}_{a}=\left\langle L_{P}^{a}\right| P \subseteq \mathbb{N}>_{D L}$ and $\mathcal{K}=<L_{P} \mid P \subseteq \mathbb{N}>_{D L}$, then

$$
\mathcal{L}=\left(\bigvee_{a \in A} \mathcal{L}_{a}\right) \vee \mathcal{K}
$$

The dual space of the join of two lattices I

If $i: \mathcal{K} \rightarrow \mathcal{L}$ and $j: \mathcal{M} \rightarrow \mathcal{L}$ are sublattices with $\mathcal{L}=\mathcal{K} \vee \mathcal{M}$ then by the universal property of coproducts, we have the following diagram:

The map $i \oplus j$ is surjective because the union of \mathcal{M} and \mathcal{K} generates \mathcal{L}. Accordingly, by duality, we obtain the following diagram:

The dual space of the join of two lattices II

Let $i: \mathcal{K} \rightarrow \mathcal{L}$ and $j: \mathcal{M} \rightarrow \mathcal{L}$ be sublattices with $\mathcal{L}=\mathcal{K} \vee \mathcal{M}$, and let X, Y, and Z be the dual spaces of \mathcal{L}, \mathcal{M}, and \mathcal{K}, respectively.

Then X is the (closed) subspace of $Y \times Z$ consisting of the points (y, z) satisfying, for all $U_{1}, U_{2} \in \mathcal{M} \oplus \mathcal{K}$

$$
(i \oplus j)\left(U_{1}\right) \leqslant(i \oplus j)\left(U_{2}\right) \Longrightarrow\left((y, z) \in \widehat{U}_{1} \Longrightarrow(y, z) \in \widehat{U}_{2}\right)
$$

or equivalently

$$
\left[(y, z) \in \widehat{U}_{1} \text { and }(i \oplus j)\left(U_{1}\right) \leqslant(i \oplus j)\left(U_{2}\right)\right] \Longrightarrow(y, z) \in \widehat{U}_{2}
$$

That is, for all $M, M_{1}, \ldots, M_{k} \in \mathcal{M}$ and $K, K_{1}, \ldots, K_{k} \in \mathcal{M}$
$\left[M \in y, K \in z\right.$, and $\left.M \cap K \subseteq \bigcup_{i=1}^{k}\left(M_{i} \cap K_{i}\right)\right] \Longrightarrow \exists i\left(M_{i} \in y, K_{i} \in z\right)$

The duals of the $\mathcal{L}_{\mathrm{a}} \mathrm{S}$

Recall $\mathcal{L}_{a}=<L_{P}^{a} \subseteq A^{*} \mid P \subseteq \mathbb{N}>_{D L}$

Theorem: The dual space of \mathcal{L}_{a} is (homeomorphic) to $\operatorname{Filt}(\mathcal{P}(\mathbb{N}))$ with the topology generated by the sets

$$
\widehat{P}=\{F \in \operatorname{Filt}(\mathcal{P}(\mathbb{N})) \mid P \in F\}
$$

and the Stone embedding given by $L_{P}^{a} \mapsto \widehat{P}$

Consider $c_{a}: A^{*} \rightarrow \mathcal{P}(\mathbb{N}), u \mapsto\left\{i \in \mathbb{N} \mid u_{i}=a\right\}$, then $L_{P}^{a}=c_{a}^{-1}(P)$
We may consider $c_{a}: A^{*} \rightarrow \mathcal{V}(\beta(\mathbb{N}))$ and the unique extension $\beta\left(c_{a}\right): \beta\left(A^{*}\right) \rightarrow \mathcal{V}(\beta(\mathbb{N}))$ is then the dual of $\mathcal{L}_{a} \rightarrow \mathcal{P}\left(A^{*}\right)$

Putting $\mathcal{L}_{a} s$ together

Let $B \subsetneq A$ with $|B|=m$. For $F \in \operatorname{Filt}(\mathcal{P}(\mathbb{N}))=X$, define

$$
C(F)=\bigcap F
$$

Theorem: The dual space of $\mathcal{B}_{B}=\bigvee_{b \in B}$ consists of all those $\overline{\bar{F}}=\left(F_{1}, \ldots, F_{m}\right) \in X^{m}$ such that
the sets $\left\{C\left(F_{i}\right)\right\}_{i=1}^{m}$ are pairwise disjoint
Theorem: Let $\mathcal{L}_{A}=\bigvee_{a \in A} \mathcal{L}_{a}$ and $X=\mathcal{V}(\beta(\mathbb{N}))$. Denote by X_{A} the dual of \mathcal{B}_{A} viewed as a subspace of $X^{|A|}$. For $\bar{F} \in X^{|A|}$, we have $\bar{F} \in X_{A}$ if and only if either one of the following two conditions is satisfied:

1. Each $F_{i}=\uparrow P_{i}$ and $\left\{P_{i}\right\}_{i=1}^{|A|}$ is a decomposition of $\downarrow n$ for some $n \in \mathbb{N}$
2. $\left\{C\left(F_{i}\right)\right\}_{i=1}^{|A|}$ is a decomposition of \mathbb{N}.

That is,

$$
X_{A}=\left\{\bar{F}_{w} \mid w \in A^{*}\right\} \cup\left\{\bar{F} \mid\left\{C\left(F_{i}\right)\right\}_{i=1}^{|A|} \text { is a decomposition of } \mathbb{N}\right\}
$$

The dual of \mathcal{L}

Recall $\mathcal{K}=<L_{P} \subseteq A^{*} \mid P \subseteq \mathbb{N}>_{D L}$. It is easy to see that $\mathcal{K} \cong \mathcal{P}(\mathbb{N})$ and thus its dual space is $\beta(\mathbb{N})$

Putting together \mathcal{L}_{A} and \mathcal{K} we get

Theorem: The dual space of \mathcal{B} is the subspace of

$$
\mathcal{V}(\beta(\mathbb{N}))^{|A|} \times \beta(\mathbb{N})
$$

given by

$$
X=\left\{\left(\bar{F}_{w}, \uparrow|w|\right) \mid w \in A^{*}\right\}
$$

$\cup\left\{(\bar{F}, \mu) \mid \mu \in \beta(\mathbb{N})-\mathbb{N}\right.$ and $\left\{C\left(F_{i}\right)\right\}_{i=1}^{|A|}$ is a decomposition of $\left.\mathbb{N}\right\}$

Equations for \mathcal{B}

Intuition: If in a set of spots, both as and bs are allowed, then the Boolean algebra \mathcal{B} can't count how many of each there are, nor can it say which order they are in

We make equations expressing this fact in the following way:

To be continued on the whiteboard!

References

The following are the papers from which the research discussed at the two talks I gave at AAA88 came:

1. Mai Gehrke, Serge Grigorieff, and Jean-Éric Pin, Duality and Equational Theory of Regular Languages, LNCS (ICALP) 5125 (2008), 246-257.
2. Mai Gehrke, Stone duality, topological algebra, and recognition, preprint. See, http://hal.archives-ouvertes.fr/hal-00859717
3. Mai Gehrke, Andreas Krebs, and Jean-Éric Pin, From ultrafilters on words to the expressive power of a fragment of logic, to appear in Proceedings of the 16th International Workshop on Descriptional Complexity of Formal Systems, 2014.
