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Recognisable languages

Let A be an alphabet, L ⊆ A∗ a language.

The following conditions are equivalent:

I L is recognisable by an automaton;

I L is recognisable by a finite monoid;

I L is given by a rational expression;

I L = Mod(ϕ) for some ϕ In MSO[6, (a)a∈A]

For this talk, I want to explain the last formulation which depends
on Büchi’s logic on words



Logic on words

To each non-empty word u is associated a structure

Mu = ({1, 2, . . . , |u|}, <, (a)a∈A)

where a is interpreted as the set of integers i such that the i-th
letter of u is an a, and < as the usual order on integers.

Example:

Let u = abbaab then

Mu = ({1, 2, 3, 4, 5, 6}, <, (a,b))

where a = {1, 4, 5} and b = {2, 3, 6}.



Some examples

The formula ϕ = ∃x ax interprets as:

There exists a position x in u such that the letter in
position x is an a.

This defines the language L(ϕ) = A∗aA∗.

The formula ∃x ∃y (x < y) ∧ ax ∧ by defines the language
A∗aA∗bA∗.

The formula ∃x ∀y [(x < y) ∨ (x = y)] ∧ ax defines the language
aA∗.



Defining the set of words of even length

Macros:

(x < y) ∨ (x = y) means x 6 y

∀y x 6 y means x = 1

∀y y 6 x means x = |u|
x < y ∧ ∀z (x < z → y 6 z) means y = x + 1

Let ϕ = ∃X (1 /∈ X ∧ |u| ∈ X ∧ ∀x (x ∈ X ↔ x + 1 /∈ X ))

Then 1 /∈ X , 2 ∈ X , 3 /∈ X , 4 ∈ X , . . . , |u| ∈ X . Thus

L(ϕ) = {u | |u| is even} = (A2)∗

This language is often called PARITY.



Monadic second order logic

Only second order quantifiers over unary predicates are allowed.

Theorem: (Büchi ’60, Elgot ’61)

Monadic second order captures exactly the recognisable languages.

This is written as the equation

Rec(A∗) = MSO[6, (a)a∈A]



Basic problems in complexity theory

In complexity theory computing machines are studied, e.g.,
through corresponding formal languages

Typical problems that are studied are:

I decidability of membership in a class of languages

I separation of complexity classes

I comparison of complexity classes



Eilenberg-Reiterman theory
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Various generalisations: [Pin 1995], [Pin-Weil 1996], [Pippenger
1997], [Polák 2001], [Esik 2002], [Straubing 2002], [Kunc 2003]



Eilenberg, Reiterman, and Stone

Classes of monoids

algebras of languages equational theories

(1) (2)

(3)

(1) Eilenberg theorems
(2) Reiterman theorems
(3) extended Stone/Priestley duality

(3) allows generalisation to non-varieties and even to non-regular
languages



Most general form of the Eilenberg-Reiterman theorem

Lattices of recognisable languages are given by profinite equations

This is a spacial case of the duality between

subalgebras ←→ quotient structures

B ↪−→ Rec(A∗)

dually

XB �− Â∗

That is, B is described dually by equating elements of Â∗.



A Galois connection for subalgebras and quotient spaces

Let B be a Boolean algebra, X the dual space of B.

The maps P(B) � P(X × X ) given by

S 7→ ≈S = {(x , y) ∈ X | ∀b ∈ S (b ∈ y ⇐⇒ b ∈ x)}

and

E 7→ BE = {b ∈ B | ∀(x , y) ∈ E (b ∈ y ⇐⇒ b ∈ x)}

establish a Galois connection whose Galois closed sets are the
Boolean equivalence relations and the Boolean subalgebras,
respectively.



Example: the star free languages

The star free languages are those recognisable languages that are
generated by {a} for a ∈ A using the Boolean operations and
concatenation product

In logic terms,
Star free = FO[6, (a)a∈A]



Schützenberger-Simon theorem

Star free = J xω+1 = xωK

Here xω is the unique idempotent in the closed subsemigroup
generated by x , and the theorem means that the class of star free
languages is given by the one pair, (xω+1, xω), when closing under:

I substitution

I monoid congruence

I Stone duality subalgebra-quotient adjunction

That is the class of star free languages is BE where

E = {(uxω+1v , uxωv) | x , u, v ∈ Â∗}



Beyond recognisable languages

B ↪−→ P(A∗)

dually

XB �− β(A∗)

That is, lattices of languages are given by “β-equations”



A case with some handle

Joint work with Andreas Krebs and Jean-Éric Pin. Idea of the
project: start with a relatively small lattice for which some
connection with Rec(A∗) is known

AC0 consists of all families of circuits of bounded depth and
polynomial size, with negation on inputs and unlimited fanin AND
and OR gates
= FO[N , (a)a∈A] where N is the class of all predicates on N

By a deep result of Barrington, Straubing, and Thérien

FO[N , (a)a∈A] ∩ Rec(A∗) = J (xω−1y)ω+1 = (xω−1y)ω

for x , y words of the same length K



An even simpler case

We start by investigating the fragment given by nullary and unary
numerical predicates (in FO without equality)

B = FO[N1,N0, (a)a∈A]

= <LaP , LP | a ∈ A,P ⊆ N>BA

where

LaP = {u ∈ A∗ | ui = a =⇒ i ∈ P}

LP = {u ∈ A∗ | |u| ∈ P}

Problem: Find E ⊆ β(A∗)× β(A∗) so that BE = B



Dual space of B

It is not necessary to compute the dual of B, but, when this is
possible it tends to be useful in language theory

In addition, we thought it might help us in the difficult task of
coming up with a method for picking pairs in β(A∗)

Even though B is quite small and simple, computing its ultrafilters
directly is not easy

To solve this problem we have devised a method based on duality
which I think is interesting in its own right



Some observations

By Priestley (Nerode), it suffices to compute the dual of a
sublattice of B which generates B as a Boolean algebra

We pick

L =<LaP , LP | a ∈ A,P ⊆ N>DL

Let La = <LaP | P ⊆ N>DL and K = <LP | P ⊆ N>DL, then

L = (
∨
a∈A
La) ∨ K



The dual space of the join of two lattices I

If i : K → L and j :M→ L are sublattices with L = K ∨M then
by the universal property of coproducts, we have the following
diagram:

M

K
M⊕K L

i ⊕ j

i

j

The map i ⊕ j is surjective because the union of M and K
generates L. Accordingly, by duality, we obtain the following
diagram:

Y

Z

Y × Z X



The dual space of the join of two lattices II

Let i : K → L and j :M→ L be sublattices with L = K∨M, and
let X ,Y , and Z be the dual spaces of L,M, and K, respectively.

Then X is the (closed) subspace of Y × Z consisting of the points
(y , z) satisfying, for all U1,U2 ∈M⊕K

(i ⊕ j)(U1) 6 (i ⊕ j)(U2) =⇒ ((y , z) ∈ Û1 =⇒ (y , z) ∈ Û2)

or equivalently

[(y , z) ∈ Û1 and (i ⊕ j)(U1) 6 (i ⊕ j)(U2)] =⇒ (y , z) ∈ Û2

That is, for all M,M1, . . . ,Mk ∈M and K ,K1, . . . ,Kk ∈M

[M ∈ y ,K ∈ z , and M∩K ⊆
k⋃

i=1

(Mi∩Ki )] =⇒ ∃i(Mi ∈ y ,Ki ∈ z)



The duals of the Las

Recall La = <LaP ⊆ A∗ | P ⊆ N>DL

Theorem: The dual space of La is (homeomorphic) to Filt(P(N))
with the topology generated by the sets

P̂ = {F ∈ Filt(P(N)) | P ∈ F}

and the Stone embedding given by LaP 7→ P̂

Consider ca : A∗ → P(N), u 7→ {i ∈ N | ui = a}, then LaP = c−1a (P)

We may consider ca : A∗ → V(β(N)) and the unique extension
β(ca) : β(A∗)� V(β(N)) is then the dual of La → P(A∗)



Putting Las together
Let B ( A with |B| = m. For F ∈ Filt(P(N)) = X , define

C (F ) =
⋂

F

Theorem: The dual space of BB =
∨

b∈B consists of all those
F = (F1, . . . ,Fm) ∈ Xm such that

the sets {C (Fi )}mi=1 are pairwise disjoint

Theorem: Let LA =
∨

a∈A La and X = V(β(N)). Denote by XA

the dual of BA viewed as a subspace of X |A|. For F ∈ X |A|, we
have F ∈ XA if and only if either one of the following two
conditions is satisfied:

1. Each Fi = ↑Pi and {Pi}
|A|
i=1 is a decomposition of ↓n for some

n ∈ N
2. {C (Fi )}

|A|
i=1 is a decomposition of N.

That is,

XA = {Fw | w ∈ A∗} ∪ {F | {C (Fi )}
|A|
i=1is a decomposition of N}



The dual of L
Recall K = <LP ⊆ A∗ | P ⊆ N>DL. It is easy to see that
K ∼= P(N) and thus its dual space is β(N)

Putting together LA and K we get

Theorem: The dual space of B is the subspace of

V(β(N))|A| × β(N)

given by

X ={(Fw , ↑|w |) | w ∈ A∗}

∪ {(F , µ) | µ ∈ β(N)− N and {C (Fi )}
|A|
i=1is a decomposition of N}



Equations for B

Intuition: If in a set of spots, both as and bs are allowed, then the
Boolean algebra B can’t count how many of each there are, nor
can it say which order they are in

We make equations expressing this fact in the following way:

To be continued on the whiteboard!
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