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History

Axiomatization, the finite model property (fmp) and decidability
are some of the most studied properties of non-classical logics.

(Harrop, 1957) If a logic is finitely axiomatizable and has the
fmp, then it is decidable.

In the 1960’s the research on axiomatization and finite model
property was mostly concerned with particular non-classical
logics.

Since the 1970’s general methods started to develop for classes
of non-classical logics.
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de Jongh (1968).

Fine (1974) and Rautenberg (1980) introduced modal
logic analogues of these formulas.

Fine (1985) introduced subframe formulas and axiomatized
large classes of transitive modal logics by these formulas.

There exist intermediate and transitive modal logics that
are not axiomatizable by Jankov or subframe formulas.



History

Jankov (1963, 68) associated with each finite subdirectly
irreducible Heyting algebra A the formula encoding the
“behaviour” of A and showed that uncountably many
intermediate logics can be axiomatized by these formulas.

Similar formulas for finite Kripke frames were defined by
de Jongh (1968).

Fine (1974) and Rautenberg (1980) introduced modal
logic analogues of these formulas.

Fine (1985) introduced subframe formulas and axiomatized
large classes of transitive modal logics by these formulas.

There exist intermediate and transitive modal logics that
are not axiomatizable by Jankov or subframe formulas.



History

Jankov (1963, 68) associated with each finite subdirectly
irreducible Heyting algebra A the formula encoding the
“behaviour” of A and showed that uncountably many
intermediate logics can be axiomatized by these formulas.

Similar formulas for finite Kripke frames were defined by
de Jongh (1968).

Fine (1974) and Rautenberg (1980) introduced modal
logic analogues of these formulas.

Fine (1985) introduced subframe formulas and axiomatized
large classes of transitive modal logics by these formulas.

There exist intermediate and transitive modal logics that
are not axiomatizable by Jankov or subframe formulas.



History

Jankov (1963, 68) associated with each finite subdirectly
irreducible Heyting algebra A the formula encoding the
“behaviour” of A and showed that uncountably many
intermediate logics can be axiomatized by these formulas.

Similar formulas for finite Kripke frames were defined by
de Jongh (1968).

Fine (1974) and Rautenberg (1980) introduced modal
logic analogues of these formulas.

Fine (1985) introduced subframe formulas and axiomatized
large classes of transitive modal logics by these formulas.

There exist intermediate and transitive modal logics that
are not axiomatizable by Jankov or subframe formulas.



History

Jankov (1963, 68) associated with each finite subdirectly
irreducible Heyting algebra A the formula encoding the
“behaviour” of A and showed that uncountably many
intermediate logics can be axiomatized by these formulas.

Similar formulas for finite Kripke frames were defined by
de Jongh (1968).

Fine (1974) and Rautenberg (1980) introduced modal
logic analogues of these formulas.

Fine (1985) introduced subframe formulas and axiomatized
large classes of transitive modal logics by these formulas.

There exist intermediate and transitive modal logics that
are not axiomatizable by Jankov or subframe formulas.



History

Zakharyaschev (1988-92) refined the Jankov and Fine
methods, introduced canonical formulas and showed that
each intermediate and transitive modal logic is
axiomatizable by canonical formulas.

Jerabek (2009) extended canonical formulas to canonical
rules and showed that each intermediate and transitive
modal rule system is axiomatizable by canonical rules.



History

Zakharyaschev (1988-92) refined the Jankov and Fine
methods, introduced canonical formulas and showed that
each intermediate and transitive modal logic is
axiomatizable by canonical formulas.

Jerabek (2009) extended canonical formulas to canonical
rules and showed that each intermediate and transitive
modal rule system is axiomatizable by canonical rules.



Motivation

Zakharyaschev’s method of canonical formulas and Jerabek’s
method of canonical rules do not work in the non-transitive
case.

Whether canonical formulas can be extended to all modal logics
(Zakharyaschev) and canonical rules to all modal rule systems
(Jerabek) was left as an open problem.

We will introduce stable canonical rules and give a positive
solution of Jerabek’s problem.

We also show how to utilise stable canonical rules to axiomatize
all modal logics.

This gives a positive solution of Zakharyaschev’s problem.
However, the solution is via rules and not formulas.
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A modal rule system is a set S of modal rules such that

1 ϕ/ϕ ∈ S.
2 ϕ,ϕ→ ψ/ψ ∈ S.
3 ϕ/�ϕ ∈ S.
4 /ϕ ∈ S for each theorem ϕ of K.
5 If Γ/∆ ∈ S, then Γ,Γ′/∆,∆′ ∈ S.
6 If Γ/∆, ϕ ∈ S and Γ, ϕ/∆ ∈ S, then Γ/∆ ∈ S.
7 If Γ/∆ ∈ S and s is a substitution, then s(Γ)/s(∆) ∈ S.

We denote the least modal rule system by SK, and the complete
lattice of modal rule systems by Σ(SK).
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For a set Ξ of multiple-conclusion modal rules, let SK + Ξ be the
least modal rule system containing Ξ.

If S = SK + Ξ, then we say that S is axiomatizable by Ξ.

If ρ ∈ S, then we say that the modal rule system S entails or
derives the modal rule ρ, and write S ` ρ.



Modal rule systems

For a set Ξ of multiple-conclusion modal rules, let SK + Ξ be the
least modal rule system containing Ξ.

If S = SK + Ξ, then we say that S is axiomatizable by Ξ.

If ρ ∈ S, then we say that the modal rule system S entails or
derives the modal rule ρ, and write S ` ρ.



Modal rule systems

For a set Ξ of multiple-conclusion modal rules, let SK + Ξ be the
least modal rule system containing Ξ.

If S = SK + Ξ, then we say that S is axiomatizable by Ξ.

If ρ ∈ S, then we say that the modal rule system S entails or
derives the modal rule ρ, and write S ` ρ.



Modal rule systems and modal logics

Let Λ(K) denote the lattice of all modal logics.

Given a modal rule system S, let Λ(S) = {ϕ : /ϕ ∈ S} be the
corresponding modal logic,

and for a modal logic L, let Σ(L) = SK + {/ϕ : ϕ ∈ L} be the
corresponding modal rule system.



Modal rule systems and modal logics

Let Λ(K) denote the lattice of all modal logics.

Given a modal rule system S, let Λ(S) = {ϕ : /ϕ ∈ S} be the
corresponding modal logic,

and for a modal logic L, let Σ(L) = SK + {/ϕ : ϕ ∈ L} be the
corresponding modal rule system.



Modal rule systems and modal logics

Let Λ(K) denote the lattice of all modal logics.

Given a modal rule system S, let Λ(S) = {ϕ : /ϕ ∈ S} be the
corresponding modal logic,

and for a modal logic L, let Σ(L) = SK + {/ϕ : ϕ ∈ L} be the
corresponding modal rule system.



Modal rule systems and modal logics

Let Λ(K) denote the lattice of all modal logics.

Given a modal rule system S, let Λ(S) = {ϕ : /ϕ ∈ S} be the
corresponding modal logic,

and for a modal logic L, let Σ(L) = SK + {/ϕ : ϕ ∈ L} be the
corresponding modal rule system.



Modal rule systems and modal logics

Then Λ : Σ(SK)→ Λ(K) and Σ : Λ(K)→ Σ(SK) are order-
preserving maps such that Λ(Σ(L)) = L for each L ∈ Λ(K) and
S ⊇ Σ(Λ(S)) for each S ∈ Σ(SK).

Thus, Λ(K) embeds isomorphically into Σ(SK). But the
embedding is not a lattice embedding.

We say that a modal logic L is axiomatized (over K) by a set Ξ of
multiple-conclusion modal rules if L = Λ(SK + Ξ).



Modal rule systems and modal logics

Then Λ : Σ(SK)→ Λ(K) and Σ : Λ(K)→ Σ(SK) are order-
preserving maps such that Λ(Σ(L)) = L for each L ∈ Λ(K) and
S ⊇ Σ(Λ(S)) for each S ∈ Σ(SK).

Thus, Λ(K) embeds isomorphically into Σ(SK). But the
embedding is not a lattice embedding.

We say that a modal logic L is axiomatized (over K) by a set Ξ of
multiple-conclusion modal rules if L = Λ(SK + Ξ).



Modal rule systems and modal logics

Then Λ : Σ(SK)→ Λ(K) and Σ : Λ(K)→ Σ(SK) are order-
preserving maps such that Λ(Σ(L)) = L for each L ∈ Λ(K) and
S ⊇ Σ(Λ(S)) for each S ∈ Σ(SK).

Thus, Λ(K) embeds isomorphically into Σ(SK). But the
embedding is not a lattice embedding.

We say that a modal logic L is axiomatized (over K) by a set Ξ of
multiple-conclusion modal rules if L = Λ(SK + Ξ).



Modal algebras

A modal algebra A = (A,♦) is a Boolean algebra A endowed
with a unary operator ♦ satisfying
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A modal algebra A = (A,♦) validates a multiple-conclusion
modal rule Γ/∆ provided for every valuation V on A, if V(γ) = 1
for all γ ∈ Γ, then V(δ) = 1 for some δ ∈ ∆.

Otherwise A refutes Γ/∆.

If A validates Γ/∆, we write A |= Γ/∆, and if A refutes Γ/∆, we
write A 6|= Γ/∆.
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If Γ = {φ1, . . . , φn}, ∆ = {ψ1, . . . , ψm}, and φi(x) and ψj(x) are
the terms in the first-order language of modal algebras
corresponding to the φi and ψj, then A |= Γ/∆ iff A is a model
of the universal sentence ∀x (

∧n
i=1 φi(x) = 1→

∨m
j=1 ψj(x) = 1).

Modal rule systems correspond to (are complete for) universal
classes of modal algebras.

A class of modal algebras is a universal class iff it is closed
under isomorphisms, subalgebras, and ultraproducts.
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(closed under homomorphic images, subalgebras, and
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Correspondence

Let S be a modal rule system and U be the universal class
corresponding to S.

Then the variety corresponding to the modal logic Λ(S) is the
variety generated by U .
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A variety is locally finite if its every finitely generated algebra is
finite.

Boolean algebras are locally finite.

Theorem. For each n ∈ ω, the n-generated free Boolean algebra
is isomorphic to the powerset of a 2n-element set.

But Heyting algebras are not.

Theorem (Rieger, 1949, Nishimura, 1960). The 1-generated
free Heyting algebra, also called the Rieger-Nishimura lattice, is
infinite.

The varieties of all modal algebras, K4-algebras and S4-algebras
are not locally finite.
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(Folklore). The variety of distributive lattices is locally
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Connection with filtrations

There are two standard methods for proving the finite model
property for modal and intermediate logics: filtration and
selective filtration.

Taking (∧,→,0)-free reduct corresponds to selective filtration.

Taking (∧,∨,0,1)-free reduct corresponds to filtration.

Modal analogues of (∧,→,0)-canonical formulas for transitive
modal logics (extensions of K4) and weakly transitive modal
logics (extensions of wK4) have been developed (G.B. and N.B
2011, 2012)

These methods are based on an algebraic understanding of
selective filtration (G.B., Ghilardi, Jibladze, 2011).

These formulas are algebraic analogues of Zakharyaschev’s
canonical formulas for transitive modal logics.
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Connection with filtrations

Selective filtration works well only in the transitive case.

In the non-transitive case one needs to employ standard
filtration.

The method of filtration was originally developed by McKinsey
and Tarski (1930s and 40s). Their technique was algebraic.

Lemmon (1960s) and Segerberg (1960s and 70s) developed
model-theoretic approach to filtrations.

The two are connected through duality.

The modern account is discussed in Ghilardi (2010) and van
Alten et al. (2013).
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Filtrations model theoretically

Let M = (X,R,V) be a Kripke model and let Σ be a set of
formulas closed under subformulas.

Define an equivalence relation ∼Σ on X by

x ∼Σ y iff (∀ϕ ∈ Σ)(x |= ϕ⇔ y |= ϕ).

Let X ′ = X/∼Σ and let V′(p) = {[x] : x ∈ V(p)}, where [x] is the
equivalence class of x with respect to ∼Σ.

Definition. For a binary relation R′ on X ′, we say that the triple
M′ = (X ′,R′,V′) is a filtration of M through Σ if the following
two conditions are satisfied:

(F1) xRy⇒ [x]R′[y].
(F2) [x]R′[y]⇒ (∀♦ϕ ∈ Σ)(y |= ϕ⇒ x |= ♦ϕ).
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Stable homomorphisms and CDC

The key concepts for developing an algebraic approach to
filtrations are stable homomorphisms and the closed domain
condition (CDC).

Definition. Let A = (A,♦) and B = (B,♦) be modal algebras
and let h : A→ B be a Boolean homomorphism. We call h a
stable homomorphism provided ♦h(a) 6 h(♦a) for each a ∈ A.

It is easy to see that h : A→ B is stable iff h(�a) ≤ �h(a) for
each a ∈ A.

Stable homomorphisms were studied by G. B., Mines, Morandi
(2008), Ghilardi (2010), and Coumans, van Gool (2012).
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Stable homomorphisms and CDC

Definition. Let A = (A,♦) and B = (B,♦) be modal algebras
and let h : A→ B be a stable homomorphism. We say that h
satisfies the closed domain condition (CDC) for D ⊆ A if
h(♦a) = ♦h(a) for a ∈ D.



Key idea

Let (A,♦) and (B,♦) be modal algebras, (X,R) and (Y,R) be
their duals, h : A→ B be a Boolean homomorphism and
f : Y → X be the dual of h.

Then

1 h is one-to-one iff f is onto.

2 h is stable iff f is stable (that is, xRy implies f(x)Rf(y)).

3 h is a modal homomorphism iff f is a p-morphism.

4 If h is stable but not a modal homomorphism it may still be
the case that h(♦a) = ♦h(a) for some a ∈ D ⊆ A.
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Consequently:

1 Being a stable homomorphism dually corresponds to
satisfying condition (F1) in the definition of filtration.

2 Satisfying (CDC) dually corresponds to satisfying condition
(F2) in the definition of filtration.
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Filtrations and finite refutation patterns

Refutation Pattern Theorem.

1 If SK 6` Γ/∆, then there exist (A1,D1), . . . , (An,Dn) such
that each Ai = (Ai,♦i) is a finite modal algebra, Di ⊆ Ai,
and for each modal algebra B = (B,♦), we have B 6|= Γ/∆
iff there is i ≤ n and a stable embedding h : Ai � B
satisfying (CDC) for Di.

2 If K 6` ϕ, then there exist (A1,D1), . . . , (An,Dn) such that
each Ai = (Ai,♦i) is a finite modal algebra, Di ⊆ Ai, and for
each modal algebra B = (B,♦), we have B 6|= ϕ iff there is
i ≤ n and a stable embedding h : Ai � B satisfying (CDC)
for Di.



Proof sketch

If SK 6` Γ/∆, then there is a modal algebra A = (A,♦) refuting
Γ/∆.

Therefore, there is a valuation V on A such that V(γ) = 1A for
each γ ∈ Γ and V(δ) 6= 1A for each δ ∈ ∆.

Let Σ be the set of subformulas of Γ ∪∆, A′ be the Boolean
subalgebra of A generated by V(Σ), and A′ = (A′,♦′) be a
filtration of A through Σ.

Then A′ is a finite modal algebra refuting Γ/∆. In fact, |A′| 6 m,
where m = 22|Σ|

is the size of the free Boolean algebra on
|Σ|-generators.
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Let A1, . . . ,An be the list of all finite modal algebras
Ai = (Ai,♦i) of size 6 m refuting Γ/∆.

Let Vi be a valuation on Ai refuting Γ/∆; that is, Vi(γ) = 1Ai for
each γ ∈ Γ and Vi(δ) 6= 1Ai for each δ ∈ ∆. Set
Di = {Vi(ψ) : ♦ψ ∈ Σ}.

Key step: Given a modal algebra B = (B,♦), we show that
B 6|= Γ/∆ iff there is i ≤ n and a stable embedding h : Ai � B
satisfying (CDC) for Di.
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Stable canonical rules

Definition. Let A = (A,♦) be a finite modal algebra and let D be
a subset of A. For each a ∈ A we introduce a new propositional
letter pa and define the stable canonical rule ρ(A,D) associated
with A and D as Γ/∆, where:

Γ = {pa∨b ↔ pa ∨ pb : a, b ∈ A} ∪
{p¬a ↔ ¬pa : a ∈ A} ∪
{♦pa → p♦a : a ∈ A} ∪
{p♦a → ♦pa : a ∈ D},

and

∆ = {pa ↔ pb : a, b ∈ A, a 6= b}.



Stable canonical rules

Stable Canonical Rule Theorem. Let A = (A,♦) be a finite
modal algebra, D ⊆ A, and B = (B,♦) be a modal algebra. Then
B 6|= ρ(A,D) iff there is a stable embedding h : A� B satisfying
(CDC) for D.



Stable canonical rules

Corollary.

1 If SK 6` Γ/∆, then there exist (A1,D1), . . . , (An,Dn) such
that each Ai = (Ai,♦i) is a finite modal algebra, Di ⊆ Ai,
and for each modal algebra B = (B,♦), we have:

B |= Γ/∆ iff B |= ρ(A1,D1), . . . , ρ(An,Dn).

2 If K 6` ϕ, then there exist (A1,D1), . . . , (An,Dn) such that
each Ai = (Ai,♦i) is a finite modal algebra, Di ⊆ Ai, and for
each modal algebra B = (B,♦), we have:

B |= ϕ iff B |= ρ(A1,D1), . . . , ρ(An,Dn).



Proof

Suppose SK 6` Γ/∆.

By the Refutation Pattern Theorem, there exist
(A1,D1), . . . , (An,Dn) such that each Ai = (Ai,♦i) is a finite
modal algebra, Di ⊆ Ai, and for each modal algebra B = (B,♦),
we have B 6|= Γ/∆ iff there is i ≤ n and a stable embedding
h : Ai � B satisfying (CDC) for Di.

By the Stable Canonical Rule Theorem, this is equivalent to the
existence of i ≤ n such that B 6|= ρ(Ai,Di).

Thus, B |= Γ/∆ iff B |= ρ(A1,D1), . . . , ρ(An,Dn).
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Main Theorem

1 Each modal rule system S over SK is axiomatizable by
stable canonical rules.

2 Each modal logic L is axiomatizable by stable canonical
rules.



Conclusions

Part 1 of the Main Theorem yields a solution of an open
problem of Jerabek.

Part 2 yields a solution of an open problem of Zakharyaschev.
However, our solution is by means of multiple-conclusion rules
rather than formulas.

Also our axiomatization requires to work with all finite modal
algebras. It is not sufficient to work with only finite s.i. modal
algebras.

Various applications of this method will be discussed in the talks
of Silvio Ghilardi and Julia Ilin.
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Thank you!


