On Algebraic Analysis of Temporal Heyting Calculus

Phridon Alshibaia

Tbilisi State University

June 26, 2014

(ロ)、

- **IPC** = intuitionistic propositional calculus
- $\mathbf{Grz} = \mathsf{Grzegorczyk} \ \mathsf{modal} \ \mathsf{system}$
- **GL** = Gödel-Löb modal system (provability logic)

$\mathsf{IPC} \xrightarrow[]{\mathrm{Gödel}} \mathsf{Grz} \xrightarrow[]{\mathrm{Splitting}} \mathsf{GL}$

 $\Lambda(IPC) = Iattice of superintuitionistic logics$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $\Lambda(\textbf{Grz}) = \text{lattice of logics above } \textbf{Grz}$
- $\Lambda(\textbf{GL}) = \text{lattice of logics above } \textbf{GL}$

Theorem (Blok-Esakia) $\Lambda(IPC) \cong \Lambda(Grz)$

$\Lambda(\mathsf{IPC})\ncong\Lambda(\mathsf{GL})$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

Kuznetsov-Muravitsky logic **KM** is an intuitionistic modal logic (in the language with " \Box ") containing **IPC** and the following axioms:

$$\blacktriangleright \ \Box(p \to q) \to (\Box p \to \Box q)$$

▶
$$p \rightarrow \Box p$$

$$\blacktriangleright \Box p \rightarrow (q \lor (q \rightarrow p))$$

▶ $(\Box p \rightarrow p) \rightarrow p$ (intuitionistic analogue of the Gödel-Löb axiom)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Kuznetsov-Muravitsky) $\Lambda(KM) \cong \Lambda(GL)$

Modalized Heyting Calculus

mHC-modalized Heyting calculus introduced by Esakia

 $\mathsf{mHC} = \mathsf{KM}$ without axiom $(\Box p \rightarrow p) \rightarrow p$

Algebraic models of **mHC** are frontal Heyting algebras

Frontal Heyting Algebras

Definition

A frontal Heyting algebra is an algebra $(H, \lor, \land, \rightarrow, \Box, 0, 1)$ such that:

- 1. H is a Heyting algebra
- 2. $\Box(x \land y) = \Box x \land \Box y$
- 3. $x \leq \Box x$
- 4. $\Box x \leq y \lor (y \to x)$

The class of frontal Heyting algebras is denoted by **fHA**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Frontal Esakia Spaces

Definition

A frontal Esakia space is a triple (X, \leq, R) , where (X, \leq) is an Esakia space and R is a binary relation on X that satisfies the following conditions:

- 1. $xRy \Rightarrow x \leq y$
- 2. $x < y \Rightarrow xRy$

3. *U* is clopen upset $\Rightarrow \Box_R U$ is clopen upset.

where $\Box_R U = X - R^{-1}(X - U)$

Instead of 1. and 2. we can write: $\langle \subseteq R \subseteq \leq$ Following Esakia, we call the triple (X, \leq, R) a transit.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Frontal Esakia Spaces

Definition

fES is the category whose objects are transits and whose morphisms are functions $f : (X_1, \leq, R_1) \rightarrow (X_2, \leq, R_2)$ such that:

1. $f: (X_1, \leq) \rightarrow (X_2, \leq)$ is a continious p-morphism (Esakia morphism)

2. for every $x \in X_1$: $f(R_1(x)) = R_2 f(x)$

Construction:

For every frontal Heyting algebra (H, \Box) , let H_* be the transit consisting of prime filters of Heyting algebra H; $x \le y \Leftrightarrow x \subseteq y$; $xRy \Leftrightarrow \Box^{-1}x \subseteq y$.

For every transit (X, \leq, R) , let (X^*, \Box_R) be the frontal Heyting algebra, where X^* is the Heyting algebra of clopen upsets and $\Box_R U = X - R^{-1}(X - U)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem (Castiglioni, Sagastume and San Martin) *fHA is dually equivalent to fES*.

Temporal Heyting Calculus

Let $\Diamond_R U = R(U)$ In general $\Diamond_R U$ may not be clopen, so \Diamond_R is not defined on X^* If $\Diamond_R U$ is clopen, then \Diamond_R becomes a diamond-like operator on X^* .

In such a case \Box, \Diamond become temporal operators on X^* $\Box \longrightarrow$ always $\Diamond \longrightarrow$ before

This yields the notion of temporal Heyting calculus tHC introduced by Esakia

Algebraic models of **tHC** are temporal Heyting algebras.

Temporal Heyting Algebras

Definition

A temporal Heyting algebra is an algebra $(H, \lor, \land, \rightarrow, \Box, \Diamond, 0, 1)$ such that:

- 1. $(H, \lor, \land, \rightarrow, \Box, 0, 1)$ is a frontal Heyting algebra
- 2. $x \leq \Box \Diamond x$
- 3. $\Diamond \Box x \leq x$
- 4. $\Diamond (x \lor y) = \Diamond x \lor \Diamond y$

The class of temporal Heyting algebras is denoted by tHA.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Temporal Esakia Spaces

Definition

A temporal Esakia space is a transit (X, \leq, R) such that $U \in X^* \Rightarrow R(U) \in X^*$.

Let **tES** be the category whose objects are transits and whose morphisms are functions $f : (X, \leq, R) \rightarrow (X', \leq', R')$ such that:

(1)
$$f$$
 is an **fES**-morphism
(2) $yRf(x) \Rightarrow \exists z : zRx$ and $y \le f(z)$

For a temporal Heyting algebra (H, \Box, \Diamond) we actually have two relations on the Esakia space of H, one is R_{\Box} and the other is R_{\Diamond} , where

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$xR_{\Box}y \Leftrightarrow \Box^{-1}x \subseteq y.$$
$$xR_{\Diamond}y \Leftrightarrow x \subseteq \Diamond^{-1}y.$$

Lemma $R_{\Box} = R_{\Diamond}.$

Consequently, we write *R* instead of R_{\Box} and R_{\Diamond} .

As we know $\varphi: H \to (H_*)^*$ is an isomorphism, where

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

$$\varphi(a) = \{x \in X : a \in x\}$$

Lemma
$$\varphi(\Box a) = \Box_R \varphi(a)$$

$$\varphi(\Diamond a) = \Diamond_R \varphi(a)$$

Thus, if $H \in \mathbf{tHA}$, then $H_* \in \mathbf{tES}$.

Lemma

If (X, \leq, R) is a temporal Esakia space, then $(X^*, \Box_R, \Diamond_R)$ is a temporal Heyting algebra.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Theorem *tHA* is dually equvalent to *tES*.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$\Diamond - \mathit{Filters}$

Definition

Let (H, \Box, \Diamond) be a temporal Heyting algebra. We call a filter F of H a \Diamond -filter if it satisfies:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$a \to b \in F \Rightarrow \Diamond a \to \Diamond b \in F$$

Theorem

 $\Diamond - \mathit{filters} = \mathit{congruences} \ \mathit{of} \ \mathit{tHA}$

$$\Theta \longmapsto F_{\Theta} = \{ a : a\Theta 1 \}$$

$$F \longmapsto \Theta_F \text{ where } a\Theta_F b \text{ iff } a \leftrightarrow b \in F$$

R-Upsets

Definition

Let $(X, \leq, R) \in \mathbf{tES}$. We call an upset U of X an R-upset if the following holds:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\forall x \notin U \; \forall y \in U \; xRy \Rightarrow \exists z \in U : xRzRy$

Theorem

 \Diamond - filters = closed R-upsets.

Corollary

Congruences = \Diamond - filters = closed R-upsets.

R-Upsets

Theorem $\forall S \subseteq X$ there exists the least closed *R*-upset \hat{S} containing *S*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

If S={x}, then
$$\hat{x} := \hat{S}$$
.

Simple and Subdirectly Irreducible tHA-Algebras

Definition Let (X, \leq, R) be a temporal Esakia space.

We call $x \in X$ an *R*-root provided $\hat{x} = X$.

We call X *R*-rooted provided there is at least one *R*-root in X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Simple and Subdirectly Irreducible tHA-algebras

Theorem

Let (H, \Box, \Diamond) be a temporal Heyting algebra and let (X, \leq, R) be its dual temporal Esakia space.

1. *H* is subdirectly irreducible iff *X* is *R*-rooted.

2. *H* is simple iff each $x \in X$ is an *R*-root.

Thank You