Marek Zawadowski (joint work with Stanisław Szawiel)

University of Warsaw

International Workshop on Topological Methods in Logic III Dedicated to the memory of Dito Pataraia Tibilisi, July 26, 2012

1/35

Polynomial and Analytic Monads polynomial functors

The functor part of the free monoid monad

 $M: Set \longrightarrow Set$

can be described by a series

$$M(X) = \sum_{n \in \omega} X^n$$

More generally a (finitary) polynomial functor on Set is a functor

$$P: Set \rightarrow Set$$

(isomorphic to one of) form

$$P(X) = \sum_{n \in \omega} A_n \times X^n$$

Inventors and/or early users of polynomial functors: Y. Diers, G. C. Wraith, P.T. Johnstone, J-Y. Girard, A. Joyal, E. G. Manes, M. A. Arbib, F. Lamarche, P. Taylor, A. Carboni, B. Jay, J. R. B. Cockett, M. Abbott, T. Altenkirch, N. Ghani, J. Kock, N. Gambino, M. Hyland

3/35

Inventors and/or early users of polynomial functors: Y. Diers, G. C. Wraith, P.T. Johnstone, J-Y. Girard, A. Joyal, E. G. Manes, M. A. Arbib, F. Lamarche, P. Taylor, A. Carboni, B. Jay, J. R. B. Cockett, M. Abbott, T. Altenkirch, N. Ghani, J. Kock, N. Gambino, M. Hyland

Theorem

For a finitary functor $P: Set \rightarrow Set$ the following are equivalent

- *P* is a polynomial functor (i.e. $P(X) \cong \sum_{n \in \omega} A_n \times X^n$ for a family of sets $\{A_n\}_n$);
- P preserves wide pullbacks;
- the category $Set \downarrow P$ is a presheaf topos.

Polynomial and Analytic Monads polynomial monads

- The right notion of a morphism of polynomial functors is a *cartesian natural transformation*
- **Poly** is the (monoidal) category of polynomial functors and cartesian natural transformations;
- We have a strict monoidal embedding

$\textbf{Poly} \rightarrow \textbf{End}$

End is the monoidal category on finitary endofunctors on *Set* and natural transformations.

Polynomial and Analytic Monads polynomial monads

- The right notion of a morphism of polynomial functors is a *cartesian natural transformation*
- **Poly** is the (monoidal) category of polynomial functors and cartesian natural transformations;
- We have a strict monoidal embedding

$\textbf{Poly} \rightarrow \textbf{End}$

End is the monoidal category on finitary endofunctors on *Set* and natural transformations.

• Mnd - the category of finitary monads on *Set* is the category of monoids in **End**

4/35

• PolyMnd - the category of polynomial monads on Set.

Polynomial and Analytic Monads polynomial monads

- The right notion of a morphism of polynomial functors is a *cartesian natural transformation*
- **Poly** is the (monoidal) category of polynomial functors and cartesian natural transformations;
- We have a strict monoidal embedding

$\textbf{Poly} \rightarrow \textbf{End}$

End is the monoidal category on finitary endofunctors on *Set* and natural transformations.

• Mnd - the category of finitary monads on *Set* is the category of monoids in **End**

4/35

• PolyMnd - the category of polynomial monads on Set.

Remark The category **Poly** and hence **PolyMnd** does not have good closure properties (limits, colimits).

Polynomial and Analytic Monads symmetrization monad on signatures

- Sig the category of (algebraic) signatures Set^ω;
- $A = \{A_n\}_{n \in \omega}$ a signature; A_n set of *n*-ary operations;
- Sig is a monoidal category with substitution tensor

$$(A \otimes B)_n = \sum_{k,n_1,\dots,n_k,\sum_i n_i=n} A_{n_1} \times \dots \times A_{n_k} \times B_k$$

Polynomial and Analytic Monads symmetrization monad on signatures

- Sig the category of (algebraic) signatures Set^ω;
- $A = \{A_n\}_{n \in \omega}$ a signature; A_n set of *n*-ary operations;
- Sig is a monoidal category with substitution tensor

$$(A \otimes B)_n = \sum_{k,n_1,\dots,n_k,\sum_i n_i=n} A_{n_1} \times \dots \times A_{n_k} \times B_k$$

• We have a lax monoidal symmetrization monad (S_n - n-th symmetric group)

 $\mathcal{S}: Sig \to Sig$ $\mathcal{S}(A)_n = S_n \times A_n$

'all versions' of *n*-ary operations in A

• coherence morphism for ${\cal S}$ is the 'little combing'

$$\phi:\mathcal{S}(A)\otimes\mathcal{S}(B)\to\mathcal{S}(A\otimes B)$$

5/35

6/35

• Mon - monoids

• Mon - monoids

6/35

• Mon - monoids

6/35

• Mon - monoids

6/35

• Mon - monoids

- Mon monoids
- An the category of analytic functors and weakly cartesian natural transformations

6/35

- Mon monoids
- An the category of analytic functors and weakly cartesian natural transformations

6/35

• AnMnd - the category of analytic monads

- Mon monoids
- An the category of analytic functors and weakly cartesian natural transformations

6/35

• AnMnd - the category of analytic monads

 Rigid Operads
 Symmetric Operads

 PolyMnd \simeq Mon(Sig_S)
 Mon(Sig^S) \simeq AnMnd

 Image: sig_S interval in the second sec

- Mon monoids
- An the category of analytic functors and weakly cartesian natural transformations

6/35

• AnMnd - the category of analytic monads

Polynomial and Analytic Monads analytic functors

- $: S_n \times B_n \to B_n$ left action of S_n on the set B_n , $n \in \omega$.
- we have for any set X a right action

 $\begin{aligned} X^n \times S_n \to X^n \\ \langle \vec{x} : \underline{n} \to X, \sigma \rangle &\mapsto \vec{x} \circ \sigma \\ \underline{n} = \{1, \dots, n\}, \ X^n = X^{\underline{n}}. \end{aligned}$

Polynomial and Analytic Monads analytic functors

• $: S_n \times B_n \to B_n$ - left action of S_n on the set B_n , $n \in \omega$.

7/35

• we have for any set X a right action

 $X^{n} \times S_{n} \to X^{n}$ $\langle \vec{x} : \underline{n} \to X, \sigma \rangle \mapsto \vec{x} \circ \sigma$ $\underline{n} = \{1, \dots, n\}, X^{n} = X^{\underline{n}}.$ • Dividing $X^{n} \times B_{n}$ by the relation $\langle \vec{x} \circ \sigma, b \rangle \sim \langle \vec{x}, \sigma \cdot b \rangle$ we get the tensor over S_{n} $X^{n} \otimes_{n} B_{n}$

Polynomial and Analytic Monads analytic functors

• $: S_n \times B_n \to B_n$ - left action of S_n on the set B_n , $n \in \omega$.

• we have for any set X a right action

$$\begin{split} X^n \times S_n \to X^n \\ \langle \vec{x} : \underline{n} \to X, \sigma \rangle \mapsto \vec{x} \circ \sigma \\ \underline{n} = \{1, \dots, n\}, \ X^n = X^{\underline{n}}. \end{split}$$

Dividing $X^n \times B_n$ by the relation $\langle \vec{x} \circ \sigma, b \rangle \sim \langle \vec{x}, \sigma \cdot b \rangle$ we get the tensor over S_n

$$X^n \otimes_n B_n$$

• and an *analytic functor*

$$X\mapsto \sum_{n\in\omega}X^n\otimes_n B_n$$

- $\ensuremath{\mathbbm B}$ skeleton of the category of finite sets and bijections
- $\iota_{\mathbb{B}}:\mathbb{B}
 ightarrow \textit{Set}$ an inclusion

- $\ensuremath{\mathbb{B}}$ skeleton of the category of finite sets and bijections
- $\iota_{\mathbb{B}}:\mathbb{B}\rightarrow\textit{Set}$ an inclusion

Theorem

For a functor $F : Set \rightarrow Set$ the following are equivalent

- *F* is an analytic functor (i.e. $F(X) \cong \sum_{n \in \omega} X^n \otimes_n B_n$ for a family of actions of symmetric groups on sets $\{B_n\}_n$);
- F is finitary and weakly preserves wide pullbacks;
- *F* is a left Kan extension of a functor $B : \mathbb{B} \to Set$ along $\iota_{\mathbb{B}}$.

- The right notion of a morphism of analytic functors is a *weakly cartesian natural transformation*
- An is the (monoidal) category of analytic functors and weakly cartesian natural transformations;

- The right notion of a morphism of analytic functors is a *weakly cartesian natural transformation*
- An is the (monoidal) category of analytic functors and weakly cartesian natural transformations;
- We have a strict monoidal embedding

$\textbf{An} \rightarrow \textbf{End}$

• AnMnd - the category of analytic monads on Set.

10/35

э

글 > - < 글 >

10/35

10/35

э

∃ ► < ∃ ►</p>

10/35

・ 同 ト ・ ヨ ト ・ ヨ ト

10/35

・ 同 ト ・ ヨ ト ・ ヨ ト

・ 同 ト ・ ヨ ト ・ ヨ ト

・ 同 ト ・ ヨ ト ・ ヨ ト

・ 同 ト ・ ヨ ト ・ ヨ ト
Lawvere Theories

- $\mathbb F$ skeleton of the category of finite sets; $\underline{n}=\{1,\ldots,n\}$
- \mathbb{F}^{op} the initial Lawvere theory
- the unique morphism into another theory Lawvere theory

$$\pi: \mathbb{F}^{op} \to T$$

$$f: \underline{n} \to \underline{m} \mapsto \langle \pi^m_{f(1)}, \ldots, \pi^m_{f(n)} \rangle : m \to n$$

Lawvere Theories

- \mathbb{F} skeleton of the category of finite sets; $\underline{n} = \{1, \dots, n\}$
- \mathbb{F}^{op} the initial Lawvere theory
- the unique morphism into another theory Lawvere theory

$$\pi: \mathbb{F}^{op} \to T$$

$$f: \underline{n} \to \underline{m} \mapsto \langle \pi^m_{f(1)}, \ldots, \pi^m_{f(n)} \rangle : m \to n$$

- Aut(n) is the set of automorphisms of n in T
- We have functions

$$\rho_n: S_n \times Aut(1)^n \longrightarrow Aut(n)$$

such that

$$(\sigma, a_1, \ldots, a_n) \mapsto a_1 \times \ldots \times a_n \circ \pi_\sigma$$

Simple automorphisms

We say that Lawvere theory T has simple automorphisms iff ρ_n is a bijection, for $n \in \omega$.

Simple automorphisms

We say that Lawvere theory T has simple automorphisms iff ρ_n is a bijection, for $n \in \omega$.

12 / 35

Structural morphisms

The class of *structural morphisms* in T is the closure under isomorphism of the image under π of all morphisms in \mathbb{F} .

Simple automorphisms

We say that Lawvere theory T has simple automorphisms iff ρ_n is a bijection, for $n \in \omega$.

Structural morphisms

The class of *structural morphisms* in T is the closure under isomorphism of the image under π of all morphisms in \mathbb{F} .

Analytic morphisms

A morphism in T is *analytic* iff it is right orthogonal to all structural morphisms.

Analytic Lawvere theory

Lawvere theory T is analytic iff

- T has simple automorphisms;
- structural and analytic morphisms form a factorization system in \mathcal{T} .

Analytic Lawvere theory

Lawvere theory T is analytic iff

- T has simple automorphisms;
- structural and analytic morphisms form a factorization system in *T*.

Rigid Lawvere theory

Lawvere theory T is rigid iff

- T is analytic;
- the actions of symmetric groups

 $S_n \times T(n,1) \rightarrow T(n,1)$

$$\langle \sigma, f \rangle \mapsto f \circ \pi_{\sigma}$$

are free on analytic morphisms.

Interpretations of Analytic Lawvere theories

An analytic interpretation of Lawvere theories $I : T \rightarrow T'$ is an interpretation of Lawvere theories that preserves analytic morphisms.

Interpretations of Analytic Lawvere theories

An analytic interpretation of Lawvere theories $I : T \rightarrow T'$ is an interpretation of Lawvere theories that preserves analytic morphisms.

Theorem

- The category of analytic Lawvere theories and analytic morphisms is equivalent the category of analytic monads.
- The category of rigid Lawvere theories and analytic morphisms is equivalent the category of polynomial monads.

Interpretations of Analytic Lawvere theories

An analytic interpretation of Lawvere theories $I : T \rightarrow T'$ is an interpretation of Lawvere theories that preserves analytic morphisms.

Theorem

- The category of analytic Lawvere theories and analytic morphisms is equivalent the category of analytic monads.
- The category of rigid Lawvere theories and analytic morphisms is equivalent the category of polynomial monads.

Theorem

The embedding of the category of analytic Lawvere theories into all Lawvere theories has a right adjoint which is monadic.

•
$$\vec{x}^n = x_1, \ldots, x_n$$

• A term in context

 $t: \vec{x}^n$

is *linear-regular* if every variable in \vec{x}^n occurs in t exactly once.

An equation

$$s = t : \vec{x}^n$$

is *linear-regular* iff both $s : \vec{x}^n$ and $t : \vec{x}^n$ are linear-regular terms in contexts.

•
$$\vec{x}^n = x_1, \ldots, x_n$$

A term in context

 $t: \vec{x}^n$

is *linear-regular* if every variable in \vec{x}^n occurs in t exactly once.

An equation

$$s = t : \vec{x}^n$$

15 / 35

is *linear-regular* iff both $s : \vec{x}^n$ and $t : \vec{x}^n$ are linear-regular terms in contexts.

Linear-regular theory

A an equational theory T is *linear-regular* iff it has a set of linear-regular axioms.

• A linear-regular term in context

$$t(x_1,\ldots,x_n)$$
: \vec{x}^n

is flabby in T iff

$$T \vdash t(x_1, \ldots, x_n) = t(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) : \vec{x}^n$$
 for some $\sigma \in S_n$, $\sigma \neq id_n$.

• A linear-regular term in context

$$t(x_1,\ldots,x_n)$$
: \vec{x}^n

is flabby in T iff

$$T \vdash t(x_1,\ldots,x_n) = t(x_{\sigma(1)},\ldots,x_{\sigma(n)}) : \vec{x}^n$$

for some $\sigma \in S_n$, $\sigma \neq id_n$.

An example of a flabby term

In the theory T_{cm} of commutative monoids the term $x_1 \cdot x_2$ is flabby as

$$T \vdash x_1 \cdot x_2 = x_2 \cdot x_1$$

• A linear-regular term in context

$$t(x_1,\ldots,x_n):\vec{x}^n$$

is flabby in T iff

$$T \vdash t(x_1,\ldots,x_n) = t(x_{\sigma(1)},\ldots,x_{\sigma(n)}) : \vec{x}^n$$

for some $\sigma \in S_n$, $\sigma \neq id_n$.

An example of a flabby term

In the theory T_{cm} of commutative monoids the term $x_1 \cdot x_2$ is flabby as

$$T \vdash x_1 \cdot x_2 = x_2 \cdot x_1$$

Rigid theory

A an equational theory T is *rigid* iff it is linear-regular and has no flabby terms.

Marek Zawadowski(joint work with Stanisław Szawiel)

Linear-regular interpretation

An interpretation of equational theories $I : T \to T'$ is *linear-regular* iff it interprets *n*-ary symbols in *T* as linear-regular terms in contexts $t : \vec{x}^n$ in *T'*.

Linear-regular interpretation

An interpretation of equational theories $I : T \to T'$ is *linear-regular* iff it interprets *n*-ary symbols in *T* as linear-regular terms in contexts $t : \vec{x}^n$ in *T'*.

Theorem

- The category of linear-regular theories and linear-regular interpretations is equivalent to the category of analytic monads.
- The category of rigid theories and linear-regular interpretations is equivalent to the category of polynomial monads.

Linear-regular interpretation

An interpretation of equational theories $I : T \to T'$ is *linear-regular* iff it interprets *n*-ary symbols in *T* as linear-regular terms in contexts $t : \vec{x}^n$ in *T'*.

Theorem

- The category of linear-regular theories and linear-regular interpretations is equivalent to the category of analytic monads.
- The category of rigid theories and linear-regular interpretations is equivalent to the category of polynomial monads.

Theorem[M.Bojanczyk, S.Szawiel, M.Z.]

The problem whether a finite set of linear-regular axioms defines a rigid equational theory is undecidable.

Monoids

The theory of monoids has two operations \cdot and e, of arity 2 and 0, respectively, and equations

$$(x_1 \cdot (x_2 \cdot x_3)) = (x_1 \cdot x_2) \cdot x_3, \quad x_1 \cdot e = x_1 = e \cdot x_1$$

By the form of these equations, this theory is strongly regular and hence rigid. In the Lawvere theory for monoids T_m a morphism

$$n \rightarrow 1$$

is analytic iff it is of form

$$\langle x_1, \ldots x_n \rangle \mapsto x_{\sigma(1)} \cdot \ldots \cdot x_{\sigma(n)}$$

18 / 35

for some $\sigma \in S_n$.

Monoids with anti-involution

The theory of monoids with anti-involution in a theory of monoids that has an additional unary operation s and additional two axiom

$$s(x_1) \cdot s(x_2) = s(x_2 \cdot x_1), \quad s(s(x_1)) = x_1$$

This theory is not strongly regular but it is not difficult to see that it is rigid. In the Lawvere theory for monoids with anti-involution T_{mai} a morphism

is analytic iff it is of form

$$\langle x_1,\ldots,x_n\rangle\mapsto s^{\varepsilon_n}(x_{\sigma(1)})\cdot\ldots\cdot s^{\varepsilon_n}(x_{\sigma(n)})$$

for some $\sigma \in S_n$ and $\varepsilon_i \in \{0, 1\}$.

Commutative monoids

The theory of commutative monoids is the theory of monoids with an additional axiom

$$m(x_1,x_2)=m(x_2,x_1)$$

Thus is it linear-regular but it is obviously not rigid. In the Lawvere theory for commutative monoids T_{cm} there is exactly one analytic morphism

$$n \rightarrow 1$$

It is of form

$$\langle x_1,\ldots,x_n\rangle\mapsto x_1\cdot\ldots\cdot x_n$$

 T_{cm} is the terminal analytic Lawvere theory.

Equational Theories Lawvere Theories

Operads

Monads

CD OF EQ

æ

Ξ.

э

э

 $\ensuremath{\mathbb{F}}$ - skeleton of the category of finite sets

 $\iota_{\mathbb{F}}: \mathbb{F} \to \mathit{Set}$ - inclusion

 $Lan_{\iota_{\mathbb{F}}}: Set^{\mathbb{F}} \to \mathbf{End}$ - equivalence of monoidal categories

 $\textbf{FOp} \rightarrow \textbf{Mnd}$

 \mathbb{F} - skeleton of the category of finite sets $\iota_{\mathbb{F}} : \mathbb{F} \to Set$ - inclusion $Lan_{\iota_{\mathbb{F}}} : Set^{\mathbb{F}} \to End$ equivalence of monoidal categories

 $\textbf{FOp} \rightarrow \textbf{Mnd}$

Marek Zawadowski(joint work with Stanisław Szawiel)

 \mathbb{F} - skeleton of the category of finite sets $\iota_{\mathbb{F}} : \mathbb{F} \to Set$ - inclusion $Lan_{\iota_{\mathbb{F}}} : Set^{\mathbb{F}} \to End$ equivalence of monoidal categories

 $\textbf{FOp} \rightarrow \textbf{Mnd}$

Marek Zawadowski(joint work with Stanisław Szawiel)

 \mathbb{F} - skeleton of the category of finite sets $\iota_{\mathbb{F}} : \mathbb{F} \to Set$ - inclusion $Lan_{\iota_{\mathbb{F}}} : Set^{\mathbb{F}} \to End$ equivalence of monoidal categories

 $\textbf{FOp} \rightarrow \textbf{Mnd}$

∃ >

21/35

ヨート

Marek Zawadowski(joint work with Stanisław Szawiel)

A term in context

 $t: \vec{x}^n$

is *regular* if every variable in \vec{x}^n occurs in t at least once.

An equation

$$s = t : \vec{x}^n$$

is *regular* iff both $s : \vec{x}^n$ and $t : \vec{x}^n$ are regular terms in contexts.

A an equational theory T is *regular* iff it has a set of regular axioms.

An interpretation of equational theories $I : T \to T'$ is *regular* iff it interprets *n*-ary symbols in *T* as regular terms in contexts $t : \vec{x}^n$ in T'.

Examples of regular theories

• The theory of sup-semilattices: two operations ∨ and ⊥, of arity 2 and 0, respectively, and equations

$$x_1 \lor (x_2 \lor x_3) = (x_1 \lor x_2) \lor x_3, \quad x_1 \lor \bot = x_1 = \bot \lor x_1,$$

$$x_1 \lor x_2 = x_2 \lor x_1, \quad x_1 \lor x_1 = x_1$$

It is the terminal regular theory.

Examples of regular theories

• The theory of sup-semilattices: two operations ∨ and ⊥, of arity 2 and 0, respectively, and equations

$$x_1 \lor (x_2 \lor x_3) = (x_1 \lor x_2) \lor x_3, \quad x_1 \lor \bot = x_1 = \bot \lor x_1,$$

$$x_1 \lor x_2 = x_2 \lor x_1, \quad x_1 \lor x_1 = x_1$$

23 / 35

It is the terminal regular theory.

- Monoids, monoids with involutions, abelian monoids, rigs without 0, commutative rigs without 0.
- Groups, rings, modules ARE NOT!

Regular operads and Semi-analytic monads semi-analytic functors

i : S → F is an inclusion of a subcategory with the same objects whose morphisms are surjections

Regular operads and Semi-analytic monads semi-analytic functors

i : S → F is an inclusion of a subcategory with the same objects whose morphisms are surjections

 San - the essential image of Set^S → End; it is the category of semi-analytic functors and semi-cartesian natural transformations.

Regular operads and Semi-analytic monads semi-analytic functors

i : S → F is an inclusion of a subcategory with the same objects whose morphisms are surjections

- San the essential image of Set^S → End; it is the category of semi-analytic functors and semi-cartesian natural transformations.
- \bullet the monoids in $\mathit{Set}^{\mathbb{S}}$ is the category of regular operads RegOp
- the monoids in **San** is the category of semi-analytic monads **SanMnd**.

24 / 35

(4 문) (4 문)

Regular operads and Semi-analytic monads semi-analytic series, notation

•
$$\begin{bmatrix} Y\\n \end{bmatrix}$$
 - the set of injections from $\underline{n} = \{1, \dots, n\}$ to the set Y

Regular operads and Semi-analytic monads semi-analytic series, notation

- $\begin{bmatrix} Y \\ n \end{bmatrix}$ the set of injections from $\underline{n} = \{1, \dots, n\}$ to the set Y
- We have a right action of permutation group S_n

$$\left[\begin{array}{c}Y\\n\end{array}\right]\times S_n\longrightarrow \left[\begin{array}{c}Y\\n\end{array}\right]$$

$$\langle \vec{y}, \tau \rangle \mapsto \vec{y} \circ \tau$$

Regular operads and Semi-analytic monads semi-analytic series, notation

- $\begin{bmatrix} Y \\ n \end{bmatrix}$ the set of injections from $\underline{n} = \{1, \dots, n\}$ to the set Y
- We have a right action of permutation group S_n

$$\left[\begin{array}{c} Y\\n\end{array}\right] \times S_n \longrightarrow \left[\begin{array}{c} Y\\n\end{array}\right]$$

$$\left<\vec{y},\tau\right>\mapsto\vec{y}\circ\tau$$

• $A: \mathbb{S} \to Set$ functor then on A_n we have a left action of S_n

$$S_n imes A_n \longrightarrow A_n$$

 $\langle \tau, a
angle \mapsto A(\tau)(a)$

25 / 35
Regular operads and Semi-analytic monads semi-analytic series (continuation)

• Dividing
$$\begin{bmatrix} Y\\n \end{bmatrix} \times A_n$$
 by the relation

$$\langle \vec{y} \circ \tau, a \rangle \sim \langle \vec{y}, A(\tau)(a) \rangle$$

can form the set

$$\left[\begin{array}{c}Y\\n\end{array}\right]\otimes_n A_n$$

26 / 35

 \dots NOT functorial in Y

Regular operads and Semi-analytic monads semi-analytic series (continuation)

• Dividing
$$\begin{bmatrix} Y\\n \end{bmatrix} \times A_n$$
 by the relation

$$\langle \vec{y} \circ \tau, a \rangle \sim \langle \vec{y}, A(\tau)(a) \rangle$$

can form the set

$$\left[\begin{array}{c}Y\\n\end{array}\right]\otimes_n A_n$$

... NOT functorial in Y

• ... and whole semi-analytic series

$$\hat{A}(Y) = \sum_{n \in \omega} \begin{bmatrix} Y \\ n \end{bmatrix} \otimes_n A_n$$

which IS functorial in Y!

•
$$f: X \to Y$$
 - function, $[\vec{x}, a]$ an element of $\begin{bmatrix} X \\ n \end{bmatrix} \otimes_n A_n$

•
$$f: X \to Y$$
 - function, $[\vec{x}, a]$ an element of $\begin{bmatrix} X \\ n \end{bmatrix} \otimes_n A_n$

• We take the epi-mono factorization α , \vec{y} of $f \circ \vec{x}$

•
$$f: X \to Y$$
 - function, $[\vec{x}, a]$ an element of $\begin{bmatrix} X \\ n \end{bmatrix} \otimes_n A_n$

• We take the epi-mono factorization α , \vec{y} of $f \circ \vec{x}$

and we put

 $\hat{A}(f)([\vec{x},a]) = [\vec{y},A(\alpha)(a)]$

•
$$f: X \to Y$$
 - function, $[\vec{x}, a]$ an element of $\begin{bmatrix} X \\ n \end{bmatrix} \otimes_n A_n$

• We take the epi-mono factorization α , \vec{y} of $f \circ \vec{x}$

•
$$f: X \to Y$$
 - function, $[\vec{x}, a]$ an element of $\begin{bmatrix} X \\ n \end{bmatrix} \otimes_n A_n$

• We take the epi-mono factorization α , \vec{y} of $f \circ \vec{x}$

Regular operads and Semi-analytic monads $(\hat{-})$ on natural transformations

• If $\tau: A \to B$ is a natural transformation in $Set^{\mathbb{S}}$ we define

$\hat{\tau}: \hat{A} \longrightarrow \hat{B}$

Regular operads and Semi-analytic monads (-) on natural transformations

• If $\tau: A \to B$ is a natural transformation in $Set^{\mathbb{S}}$ we define

$$\hat{\tau}: \hat{A} \longrightarrow \hat{B}$$

for
$$[\vec{x}, a]$$
 in $\begin{bmatrix} X\\ n \end{bmatrix} \otimes_n A_n$ we put
 $\hat{\tau}([\vec{x}, a]) = [\vec{x}, \tau_n(a)]$

Regular operads and Semi-analytic monads (-) on natural transformations

• If $\tau : A \to B$ is a natural transformation in $Set^{\mathbb{S}}$ we define

$$\hat{\tau}: \hat{A} \longrightarrow \hat{B}$$

for
$$[\vec{x}, a]$$
 in $\begin{bmatrix} X\\ n \end{bmatrix} \otimes_n A_n$ we put
 $\hat{\tau}([\vec{x}, a]) = [\vec{x}, \tau_n(a)]$

Thus we have a functor

$$(\hat{-}): Set^{\mathbb{S}} \longrightarrow End$$

Examples of semi-analytic functors

The functor

 $\mathcal{P}_{\leq n}: Set \longrightarrow Set$

associating to a set X the set of subsets of X with at most n-elements is not analytic, if n > 2, as it can be easily seen that it does not preserve weak pullbacks. However, it preserves pullbacks along monos and hence it is semi-analytic.

Examples of semi-analytic functors

• The functor

 $\mathcal{P}_{\leq n}: Set \longrightarrow Set$

associating to a set X the set of subsets of X with at most n-elements is not analytic, if n > 2, as it can be easily seen that it does not preserve weak pullbacks. However, it preserves pullbacks along monos and hence it is semi-analytic.

If U is a set, n ∈ ω then the functor (-)^U_{≤n}: Set → Set, associating to a set X the set of functions from U to X with an at most n-element image, is not analytic, if |U| > n > 2. Again it can be easily seen that it does not preserve weak pullbacks. However, it is semi-analytic.

Examples of semi-analytic functors

The functor

 $\mathcal{P}_{\leq n}: Set \longrightarrow Set$

associating to a set X the set of subsets of X with at most n-elements is not analytic, if n > 2, as it can be easily seen that it does not preserve weak pullbacks. However, it preserves pullbacks along monos and hence it is semi-analytic.

- If U is a set, n ∈ ω then the functor (-)^U_{≤n}: Set → Set, associating to a set X the set of functions from U to X with an at most n-element image, is not analytic, if |U| > n > 2. Again it can be easily seen that it does not preserve weak pullbacks. However, it is semi-analytic.
- The functor part of any monad on Set that comes from a regular equational theory (e.g. $\mathcal{P}_{<\omega}$) is semi-analytic.

equivalence of monoidal categories

Theorem

The following are three descriptions of the same (monoidal) category

Regular operads and Semi-analytic monads equivalence of monoidal categories

Theorem

The following are three descriptions of the same (monoidal) category

- the category San of semi-analytic functors, the essential image of the left Kan extension Set^S → End;
- the essential image of the functor $(\hat{-}): Set^{\mathbb{S}} \longrightarrow End;$
- the category of finitary endofunctors on Set that preserve pullbacks along monos, with semi-cartesian natural transformations i.e. such that the naturality squares for monos are pullbacks. (= the category of finitary taut functors on Set E. G. Manes)

Regular operads and Semi-analytic monads equivalence of monoidal categories

Theorem

The following are three descriptions of the same (monoidal) category

- the category San of semi-analytic functors, the essential image of the left Kan extension Set^S → End;
- the essential image of the functor $(-): Set^{\mathbb{S}} \longrightarrow End;$
- the category of finitary endofunctors on *Set* that preserve pullbacks along monos, with semi-cartesian natural transformations i.e. such that the naturality squares for monos are pullbacks. (= the category of finitary taut functors on *Set* E. G. Manes)

The above monoidal category is equivalent (as a monoidal category) to

• the category $Set^{\mathbb{S}}$;

Projection morphisms

The class of *projections* in a Lawvere theory T is the closure under isomorphism of the image under $\pi : \mathbb{F}^{op} \to Set$ of all injections in \mathbb{F} .

Projection morphisms

The class of *projections* in a Lawvere theory T is the closure under isomorphism of the image under $\pi : \mathbb{F}^{op} \to Set$ of all injections in \mathbb{F} .

31 / 35

Regular morphisms

A morphism in T is *regular* iff it is right orthogonal to all projections.

Projection morphisms

The class of *projections* in a Lawvere theory T is the closure under isomorphism of the image under $\pi : \mathbb{F}^{op} \to Set$ of all injections in \mathbb{F} .

Regular morphisms

A morphism in T is *regular* iff it is right orthogonal to all projections.

Regular Lawvere theory

Lawvere theory T is regular iff

- T has simple automorphisms;
- projections and regular morphisms form a factorization system in T.

Interpretations of Regular Lawvere theories

A regular interpretation of Lawvere theories $I : T \rightarrow T'$ is an interpretation of Lawvere theories that preserves regular morphisms.

Theorem

The following four categories are equivalent

Marek Zawadowski(joint work with Stanisław Szawiel)

Theorem

The following four categories are equivalent

- the category RegET of regular equational theories and regular interpretations;
- the category **RegOp** of regular operads, i.e. monoids in *Set*^S;
- the category SanMnd of semi-analytic monads, i.e. monoids in San;

33 / 35

• the category **RegLT** of regular Lawvere theories monads.

Theorem

The following four categories are equivalent

- the category RegET of regular equational theories and regular interpretations;
- the category **RegOp** of regular operads, i.e. monoids in *Set*^S;
- the category SanMnd of semi-analytic monads, i.e. monoids in San;
- the category **RegLT** of regular Lawvere theories monads.

Remark. A version of equivalence $\text{RegET} \simeq \text{SanMnd}$ is due to E. G. Manes (1998).

Categories of Equational Theories (again)

Marek Zawadowski(joint work with Stanisław Szawiel)

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Thank You for Your Attention!

