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A partial order (P, <) is called a DCPO (direct complete partial order) if
for an arbitrary directed subset D C P the least upper bound of D exists in
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A map f : P — P is called order preserving (or monotone) if for every pair
of elements x,y € P if x <y thenf(x) < f(y).
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Theorem
Let (P, <) be a pointed DCPO and f : P — P an order preserving map then
f has the least fixpoint.

Let A = {x: x < f(x)} denote the set of all postfixpoints
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b) f(A) € A;

¢) A is a sub-DCPO of P.

Let C denote the intersection of all U C P satisfying a), b) and c).
e C is a pointed DCPO.

Let E(C) denote the set of all increasing and order preserving maps from C
to C.

of € E(C).
e E£(C) is a DCPO.
e E£(C) is a directed set.

Hence the least upper bound of £(C) belongs to E(C). Let m denote the
least upper bound.
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m is the least upper bound of E(C)

As far as m € E(C), m is increasing and order preserving map
efome E(C).

Hence f om < m and m < f o m. Therefore for every element ¢ € C we have

f(m(c)) = m(c).

o m(L) is the least fixpoint of f.
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Theorem
Every order preserving self map f defined on a complete lattice (L, \, V) has
the least and the greatest fixpoints.

As L is a complete lattice the induced partial order <; is a pointed DCPO.
Moreover (L, <") where x <}” y iff x < y is also a pointed DCPO with the
bottom being the top element of (L, A, V). Moreover f : L — L preserves the
order <}’
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Definition
A function f between pointed DCPOs (P, <p) and (Q, <) is called Scott
continuous if:

a) f(D) is a directed set in Q whenever D is a directed set in P;
b) f(LrD) = Ligf (D).

Theorem
Every Scott continuous self map f defined on a DCPO (P, <) has the least
fixpoint.

e f is Scott continuous implies that f is a monotone map.



THANK YOU DITO!



