ON FINITELY VALUED BIMODAL SYMMETRIC GÖDEL LOGICS

PHRIDONI ALSHIBAIA TBILISI STATE UNIVERSITY PALSHIBAIA@YAHOO.COM

A "symmetric" formulation of the intuitionistic propositional calculus Int^2 , suggested by various authors (G. Moisil, A. Kuznetsov, C. Rauszer), presupposes that each of the connectives $\&, \lor, \rightharpoonup, \top, \bot$ has its dual $\lor, \&, \neg, \bot, \top$, and the duality principle of the classical logic is restored. Gödel logic is the extension of intuitionistic logic by linearity axiom: $(p \to q) \lor (q \to p)$. Denote by G_n the *n*-valued Gödel logic.

We investigate symmetric Gödel logic G_n^2 , the language of which is enriched by two modalities \Box_1, \Box_2 . The resulting system is named bimodal symmetric Gödel logic and is denoted by MG_n^2 . MG_n^2 -algebras represent algebraic models of the logic MG_n^2 . The variety $\mathbf{MG_n^2}$ of all MG_n^2 -algebras is generated by finite linearly ordered MG^2 -algebras of finite height m, where $1 \le m \le n$. We focus on MG_n^2 algebras, which correspond to n-valued MG_n^2 logic.

A description and characterization of *m*-generated free and projective MG^2 algebras in the variety $\mathbf{MG_n^2}$ is given.