Logics of space with contact and connectedness predicates: complete axiomatizations of the universal fragments

Tinko Tinchev

Faculty of Mathematics and Informatics Sofia University

Suported by contract DID02/32 with Bulgarian NFS Theories of space and time: algebraic, topological and logical approaches

International Workshop on Topological Methods in Logic II
June 8–10, Tbilisi, Georgia

The aim of this talk is to present axiomatizations of some region-based theories

and to show their completeness with respect to three different semantics: topological, algebraic and relational (Kripke structures). The aim of this talk is to present axiomatizations of some region-based theories

and to show their completeness with respect to three different semantics: topological, algebraic and relational (Kripke structures).

regions

Let $\mathcal{T} = \langle T, \tau \rangle$ be a topological space. The set of regular closed sets in \mathcal{T} form a Boolean algebra under the set-theoretical inclusion, $RC(\mathcal{T})$.

Let us remind:
$$0 = \emptyset$$
, $1 = T$, $X_1 \sqcup X_2 = X_1 \cup X_2$, $X_1 \sqcap X_2 = CI(Int(X_1 \cap X_2))$, $X^* = CI(T \setminus X)$

The regions: the elements of the Boolean algebra $RC(\mathcal{T})$.

regions

Let $\mathcal{T} = \langle T, \tau \rangle$ be a topological space. The set of regular closed sets in \mathcal{T} form a Boolean algebra under the set-theoretical inclusion, $RC(\mathcal{T})$.

Let us remind:
$$0 = \emptyset$$
, $1 = T$, $X_1 \sqcup X_2 = X_1 \cup X_2$, $X_1 \sqcap X_2 = CI(Int(X_1 \cap X_2))$, $X^* = CI(T \setminus X)$

The regions: the elements of the Boolean algebra $RC(\mathcal{T})$.

polytops

When \mathcal{T} is \mathbb{R}^m for some positive integer m, an important kind of regions are the polytops in \mathbb{R}^m : the subalgebra, $PRC(\mathbb{R}^m)$, of $RC(\mathbb{R}^m)$ generated by the set of simple polytops. Where a simple polytop is a region which is intersection of finitely many closed half-spaces.

Let $a_1, \ldots, a_k, k \geq 2$, be regions. They are in k-contact, $\mathbf{C}^k(a_1, \ldots, a_k)$ iff $a_1 \cap \cdots \cap a_k \neq \emptyset$. If k = 2, then C^2 is the standard contact relation, C.

 $\mathfrak{A}_B = (B, C^2, C^3, \dots)$, where *B* is a Boolean algebra of regions or polytops.

The first order language \mathcal{L} is the extension of the language of the Boolean algebras, $0, 1, \sqcup, \sqcap, ^*$ with the binary predicate C^2 , \mathcal{L}' is the extension of \mathcal{L} with the set of k-ary predicate symbols C^k for all k > 2.

Let $\mathcal K$ be a class of Boolean algebras of regions or polytops and

 $\mathit{Th}_{\forall}(\mathcal{K},\mathcal{L}') = \{\phi \mid \mathfrak{A}_{\mathcal{B}} \models \phi, \mathcal{B} \in \mathcal{K}, \phi \text{ is universal sentence from } \mathcal{L}'\}$

Let $a_1, \ldots, a_k, k \geq 2$, be regions. They are in k-contact, $\mathbf{C}^k(a_1, \ldots, a_k)$ iff $a_1 \cap \cdots \cap a_k \neq \emptyset$. If k = 2, then C^2 is the standard contact relation, C.

 $\mathfrak{A}_B = (B, C^2, C^3, \dots)$, where *B* is a Boolean algebra of regions or polytops.

The first order language \mathcal{L} is the extension of the language of the Boolean algebras, $0, 1, \sqcup, \sqcap, ^*$ with the binary predicate C^2 , \mathcal{L}' is the extension of \mathcal{L} with the set of k-ary predicate symbols C^k for all k > 2.

Let $\mathcal K$ be a class of Boolean algebras of regions or polytops and

 $\mathit{Th}_{\forall}(\mathcal{K},\mathcal{L}') = \{\phi \mid \mathfrak{A}_{B} \models \phi, B \in \mathcal{K}, \phi \text{ is universal sentence from } \mathcal{L}'\}$

Let $a_1, \ldots, a_k, k \ge 2$, be regions. They are in k-contact, $\mathbf{C}^k(a_1, \ldots, a_k)$ iff $a_1 \cap \cdots \cap a_k \ne \emptyset$. If k = 2, then C^2 is the standard contact relation, C.

 $\mathfrak{A}_B = (B, C^2, C^3, \dots)$, where B is a Boolean algebra of regions or polytops.

The first order language \mathcal{L} is the extension of the language of the Boolean algebras, $0, 1, \sqcup, \sqcap, ^*$ with the binary predicate C^2 , \mathcal{L}' is the extension of \mathcal{L} with the set of k-ary predicate symbols C^k for all k > 2.

Let $\mathcal K$ be a class of Boolean algebras of regions or polytops and

 $\mathit{Th}_{\forall}(\mathcal{K},\mathcal{L}') = \{\phi \mid \mathfrak{A}_{\mathcal{B}} \models \phi, \mathcal{B} \in \mathcal{K}, \phi \text{ is universal sentence from } \mathcal{L}'\}$

Let $a_1, \ldots, a_k, k \geq 2$, be regions. They are in k-contact, $\mathbf{C}^k(a_1, \ldots, a_k)$ iff $a_1 \cap \cdots \cap a_k \neq \emptyset$. If k = 2, then C^2 is the standard contact relation, C.

 $\mathfrak{A}_B = (B, C^2, C^3, \dots)$, where *B* is a Boolean algebra of regions or polytops.

The first order language \mathcal{L} is the extension of the language of the Boolean algebras, $0, 1, \sqcup, \sqcap, ^*$ with the binary predicate C^2 , \mathcal{L}' is the extension of \mathcal{L} with the set of k-ary predicate symbols C^k for all k > 2.

Let $\ensuremath{\mathcal{K}}$ be a class of Boolean algebras of regions or polytops and

 $\mathit{Th}_{\forall}(\mathcal{K},\mathcal{L}') = \{\phi \mid \mathfrak{A}_{\mathcal{B}} \models \phi, \mathcal{B} \in \mathcal{K}, \phi \text{ is universal sentence from } \mathcal{L}'\}$

Our aim is to axiomatize:

- 1. $Th_{\forall}(\mathcal{K}_{all}, \mathcal{L}')$, where \mathcal{K}_{all} is the class of all $RC(\mathcal{T})$
- 2. $\mathit{Th}_{\forall}(\mathcal{K}_{connected}, \mathcal{L}')$, where $\mathcal{K}_{connected}$ is the class of all $\mathit{RC}(\mathcal{T})$ for connected topological spaces \mathcal{T}
- 3. $Th_{\forall}(RC(\mathbb{R}^m), \mathcal{L}'), m \geq 1$
- 4. $Th_{\forall}(PRC(\mathbb{R}^m), \mathcal{L}'), m > 1$
- 5. $Th_{\forall}(PRC(\mathbb{R}), \mathcal{L}')$ and to give a new proof of:

6.
$$Th_{\forall}(\mathcal{K}_{connected}, \mathcal{L}') = Th_{\forall}(RC(\mathbb{R}), \mathcal{L}') = Th_{\forall}(RC(\mathbb{R}^m), \mathcal{L}') = Th_{\forall}(PRC(\mathbb{R}^m), \mathcal{L}'), m \geq 2$$

Our aim is to axiomatize:

- 1. $\mathit{Th}_{\forall}(\mathcal{K}_{\mathit{all}},\mathcal{L}')$, where $\mathcal{K}_{\mathit{all}}$ is the class of all $\mathit{RC}(\mathcal{T})$
- 2. $\mathit{Th}_{\forall}(\mathcal{K}_{connected}, \mathcal{L}')$, where $\mathcal{K}_{connected}$ is the class of all $\mathit{RC}(\mathcal{T})$ for connected topological spaces \mathcal{T}
- 3. $Th_{\forall}(RC(\mathbb{R}^m), \mathcal{L}'), m \geq 1$
- 4. $Th_{\forall}(PRC(\mathbb{R}^m), \mathcal{L}'), m > 1$
- 5. $Th_{\forall}(PRC(\mathbb{R}), \mathcal{L}')$ and to give a new proof of:
- 6. $Th_{\forall}(\mathcal{K}_{connected}, \mathcal{L}') = Th_{\forall}(RC(\mathbb{R}), \mathcal{L}') = Th_{\forall}(RC(\mathbb{R}^m), \mathcal{L}') = Th_{\forall}(PRC(\mathbb{R}^m), \mathcal{L}'), m \geq 2$

Let T_{all} be

- the set an universal axiomatization of the Boolean algebras
- the axioms for the equality in \mathcal{L}' +
- universal closure of the following formulas

$$C^{k}(x_{1},\ldots,x_{k}) \rightarrow \bigwedge_{i=1}^{k}(x_{i} \neq 0)$$

$$C^{k}(x_{1},\ldots,x' \sqcup x'',\ldots,x_{k}) \leftrightarrow$$

$$\bigwedge C^{k}(x_{1},\ldots,x',\ldots,x_{k}) \vee C^{k}(x_{1},\ldots,x'',\ldots,x_{k}), 1 \leq i \leq k$$

$$(x \neq 0) \rightarrow C^{2}(x,\ldots,x)$$

$$C^{k}(x_{1},\ldots,x_{k}) \rightarrow C^{k}(x_{\sigma(1)},\ldots,x_{\sigma(k)}), \text{ where } \sigma \text{ is a permutation of } 1,\ldots,k$$

$$C^{k}(x_{1},\ldots,x_{k}) \rightarrow C^{k+1}(x_{1},\ldots,x_{k},x_{k})$$

$$C^{k+1}(x_{1},\ldots,x_{k}) \rightarrow C^{k}(x_{1},\ldots,x_{k},x_{k})$$

$$C^{k+1}(x_{1},\ldots,x_{k}) \rightarrow C^{k}(x_{1},\ldots,x_{k},x_{k})$$

Let T_{all} be

- the set an universal axiomatization of the Boolean algebras
- ullet the axioms for the equality in \mathcal{L}' +
- universal closure of the following formulas

$$C^{k}(x_{1},\ldots,x_{k}) \rightarrow \bigwedge_{i=1}^{k}(x_{i} \neq 0)$$

$$C^{k}(x_{1},\ldots,x' \sqcup x'',\ldots,x_{k}) \leftrightarrow$$

$$\bigwedge C^{k}(x_{1},\ldots,x',\ldots,x_{k}) \vee C^{k}(x_{1},\ldots,x'',\ldots,x_{k}), 1 \leq i \leq k$$

$$(x \neq 0) \rightarrow C^{2}(x,\ldots,x)$$

$$C^{k}(x_{1},\ldots,x_{k}) \rightarrow C^{k}(x_{\sigma(1)},\ldots,x_{\sigma(k)}), \text{ where } \sigma \text{ is a permutation of } 1,\ldots,k$$

$$C^{k}(x_{1},\ldots,x_{k}) \rightarrow C^{k+1}(x_{1},\ldots,x_{k},x_{k})$$

$$C^{k+1}(x_{1},\ldots,x_{k}) \rightarrow C^{k}(x_{1},\ldots,x_{k},x_{k})$$

$$C^{k+1}(x_{1},\ldots,x_{k}) \rightarrow C^{k}(x_{1},\ldots,x_{k},x_{k})$$

Let T_{all} be

- the set an universal axiomatization of the Boolean algebras
- the axioms for the equality in \mathcal{L}' +
- universal closure of the following formulas

$$C^k(x_1,\ldots,x_k) o igwedge_{i=1}^k (x_i
eq 0)$$
 $C^k(x_1,\ldots,x' \sqcup x'',\ldots,x_k) \leftrightarrow igwedge_{i} C^k(x_1,\ldots,x',\ldots,x_k) \lor C^k(x_1,\ldots,x'',\ldots,x_k), \ 1 \le i \le k$
 $(x \ne 0) o C^2(x,\ldots,x)$
 $C^k(x_1,\ldots,x_k) o C^k(x_{\sigma(1)},\ldots,x_{\sigma(k)}), \ \text{where } \sigma \ \text{is a permutation of } 1,\ldots,k$
 $C^k(x_1,\ldots,x_k) o C^{k+1}(x_1,\ldots,x_k,x_k)$
 $C^{k+1}(x_1,\ldots,x_{k+1}) o C^k(x_1,\ldots,x_k)$

Theorem

Let ϕ be an universal sentence from \mathcal{L}' . Then

$$T_{all} \vdash \phi \iff \phi \in Th_{\forall}(\mathcal{K}_{all}, \mathcal{L}')$$

Let
$$T_{connected}$$
 be $T_{all} + \forall x ((x \neq 0) \land (x \neq 1) \rightarrow C^2(x, x^*))$

Theorem

Let ϕ be an universal sentence from \mathcal{L}' . Then

$$T_{connected} \vdash \phi \iff \phi \in Th_{\forall}(\mathcal{K}_{connected}, \mathcal{L}')$$

Theorem

Let ϕ be an universal sentence from \mathcal{L}' . Then

$$T_{all} \vdash \phi \iff \phi \in Th_{\forall}(\mathcal{K}_{all}, \mathcal{L}')$$

Let
$$T_{connected}$$
 be $T_{all} + \forall x ((x \neq 0) \land (x \neq 1) \rightarrow C^2(x, x^*))$

Theorem

Let ϕ be an universal sentence from \mathcal{L}' . Then

$$T_{connected} \vdash \phi \iff \phi \in Th_{\forall}(\mathcal{K}_{connected}, \mathcal{L}')$$

Theorem (K., P., Z.)

$$Th_{\forall}(\mathcal{K}_{connected}, \mathcal{L}') = Th_{\forall}(RC(\mathbb{R}^m), \mathcal{L}') = Th_{\forall}(PRC(\mathbb{R}^m), \mathcal{L}') = Th_{\forall}(RC(\mathbb{R}), \mathcal{L}'), m \geq 2$$

Let T_1 be $T_{connected}$ + the universal closure of $C^3(x_1, x_2, x_3) \rightarrow \bigvee_{1 \leq i < j \leq j} (x_i \sqcap x_j \neq 0)$ and $C^{k+1}(x_1, \ldots, x_{k+1}) \rightarrow \bigvee_{1 < i < j < k+1} C^k(x_i \sqcap x_j, \ldots)$

Theorem

Let ϕ be an universal sentence from \mathcal{L} . Then

$$T_1 \vdash \phi \iff \phi \in Th_{\forall}(PRC(\mathbb{R}), \mathcal{L}')$$

Idea I:

To use more or less standard techniques from classical model theory.

Idea II: modal approach (Vakarelov)

We consider the open formulas of the language $\mathcal L$ as modal formulas:

there are two type of syntactical objects — Boolean terms constructed from the Boolean constants 0, 1 and countably many Boolean variables by means of the Boolean operations. the (modal) formulas are build from atomic formulas — $a \le b$

and C(a, b), where a and b are Boolean terms — by means of the propositional connections

Kripke frame and model are standard notions.

Any Boolean term a has a value $V(a) \subseteq W$ in the model $\mathcal{M} = (W, R, V)$ defined by induction.

Truth value of the atomic formula:

$$\mathcal{M} \models (a \leq b) \text{ iff } V(a) \subseteq V(b)$$

$$\mathcal{M} \models C(a,b) \text{ iff } \exists x \exists y (x \in V(a) \& y \in V(b) \& x R y)$$

Now, the truth value of an arbitrary formula is defined as usual by induction.

Algebraic semantics is given in Boolean algebras with binary relation in a standard way.

Kripke frame and model are standard notions.

Any Boolean term a has a value $V(a) \subseteq W$ in the model

 $\mathcal{M} = (W, R, V)$ defined by induction.

Truth value of the atomic formula:

$$\mathcal{M} \models (a \leq b) \text{ iff } V(a) \subseteq V(b)$$

$$\mathcal{M} \models C(a,b) \text{ iff } \exists x \exists y (x \in V(a) \& y \in V(b) \& xRy)$$

Now, the truth value of an arbitrary formula is defined as usual by induction.

Algebraic semantics is given in Boolean algebras with binary relation in a standard way.

Kripke frame and model are standard notions.

Any Boolean term a has a value $V(a) \subseteq W$ in the model

 $\mathcal{M} = (W, R, V)$ defined by induction.

Truth value of the atomic formula:

 $\mathcal{M} \models (a \leq b) \text{ iff } V(a) \subseteq V(b)$

 $\mathcal{M} \models C(a, b) \text{ iff } \exists x \exists y (x \in V(a) \& y \in V(b) \& xRy)$

Now, the truth value of an arbitrary formula is defined as usual by induction.

Algebraic semantics is given in Boolean algebras with binary relation in a standard way.

Kripke frame and model are standard notions.

Any Boolean term a has a value $V(a) \subseteq W$ in the model

 $\mathcal{M} = (W, R, V)$ defined by induction.

Truth value of the atomic formula:

$$\mathcal{M} \models (a \leq b) \text{ iff } V(a) \subseteq V(b)$$

$$\mathcal{M} \models C(a,b) \text{ iff } \exists x \exists y (x \in V(a) \& y \in V(b) \& xRy)$$

Now, the truth value of an arbitrary formula is defined as usual by induction.

Algebraic semantics is given in Boolean algebras with binary relation in a standard way.

Kripke frame and model are standard notions.

Any Boolean term a has a value $V(a) \subseteq W$ in the model

 $\mathcal{M} = (W, R, V)$ defined by induction.

Truth value of the atomic formula:

$$\mathcal{M} \models (a \leq b) \text{ iff } V(a) \subseteq V(b)$$

$$\mathcal{M} \models C(a, b) \text{ iff } \exists x \exists y (x \in V(a) \& y \in V(b) \& xRy)$$

Now, the truth value of an arbitrary formula is defined as usual by induction.

Algebraic semantics is given in Boolean algebras with binary relation in a standard way.

Formal system *L* for the modal formulas:

Axioms — corresponding to the matrices of the given axioms Rule of inference: (MP)

Theorem (B., T., V.)

For any modal formula ϕ the following conditions are equivalent (i) ϕ is a theorem of L

(ii) ϕ is true in the class of all (finite) Kripke frames with reflexive and symmetric relation

(iii) ϕ is true in the class of all (finite) contact Boolean algebras (iv) ϕ is true in the class of all RC(\mathcal{T}).

The same is true when $L_1 = L + (a \neq 0, 1 \rightarrow C(a, a^*))$ and we add in (ii) connectedness of the frames, in (iii) — the corresponding condition, and in (iv) — connectedness of the topological spaces.

Formal system *L* for the modal formulas:

Axioms — corresponding to the matrices of the given axioms Rule of inference: (MP)

Theorem (B., T., V.)

For any modal formula ϕ the following conditions are equivalent (i) ϕ is a theorem of L

(ii) ϕ is true in the class of all (finite) Kripke frames with reflexive and symmetric relation

(iii) ϕ is true in the class of all (finite) contact Boolean algebras (iv) ϕ is true in the class of all RC(\mathcal{T}).

The same is true when $L_1 = L + (a \neq 0, 1 \rightarrow C(a, a^*))$ and we add in (ii) connectedness of the frames, in (iii) — the corresponding condition, and in (iv) — connectedness of the topological spaces.

The above theorem(s) can be easily modified for the language \mathcal{L}' . But the cases concerning $RC(\mathbb{R}^m)$ and $PRC(\mathbb{R}^m)$ require additional efforts.

Roughly speaking, for a given finite model over the frame for the logic we have to find appropriated p-morphic preimage which can be "realized" in $PRC(\mathbb{R}^m)$.

In the $RC(\mathcal{T})$ one of the predicates with a good meaning is the unary predicate c: c(a), where $a \in RC(\mathcal{T})$, iff a is connected subset.

Now in the modal approach we add one more type of atomic formulas: c(a)

Kripke semantics: $\mathcal{M} \models c(a)$ iff V(a) is a connected subset of W (in the graph theory sense).

Let L^c be the extension of L with the axiom

$$c(a) \land a = p \sqcup q \land p, q \neq 0 \rightarrow C(p, q)$$

and the rule

$$\frac{\alpha \wedge p \sqcup q = a \wedge p, q \neq 0 \rightarrow C(p, q)}{\alpha \rightarrow c(a)},$$

where p, q are different Boolean variables not occurring in the term a and in the formula α

In the $RC(\mathcal{T})$ one of the predicates with a good meaning is the unary predicate c: c(a), where $a \in RC(\mathcal{T})$, iff a is connected subset.

Now in the modal approach we add one more type of atomic formulas: c(a)

Kripke semantics: $\mathcal{M} \models c(a)$ iff V(a) is a connected subset of W (in the graph theory sense).

Let L^c be the extension of L with the axiom $c(a) \wedge a = p \sqcup q \wedge p, q \neq 0 \rightarrow C(p,q)$ and the rule

$$\frac{\alpha \wedge p \sqcup q = a \wedge p, q \neq 0 \rightarrow C(p,q)}{\alpha \rightarrow c(a)},$$

where p, q are different Boolean variables not occurring in the term a and in the formula α .

In the $RC(\mathcal{T})$ one of the predicates with a good meaning is the unary predicate c: c(a), where $a \in RC(\mathcal{T})$, iff a is connected subset.

Now in the modal approach we add one more type of atomic formulas: c(a)

Kripke semantics: $\mathcal{M} \models c(a)$ iff V(a) is a connected subset of W (in the graph theory sense).

Let L^c be the extension of L with the axiom

$$c(a) \land a = p \sqcup q \land p, q \neq 0 \rightarrow C(p,q)$$

and the rule

$$\frac{\alpha \wedge p \sqcup q = a \wedge p, q \neq 0 \rightarrow C(p,q)}{\alpha \rightarrow c(a)},$$

where p, q are different Boolean variables not occurring in the term a and in the formula α .

In the $RC(\mathcal{T})$ one of the predicates with a good meaning is the unary predicate c: c(a), where $a \in RC(\mathcal{T})$, iff a is connected subset.

Now in the modal approach we add one more type of atomic formulas: c(a)

Kripke semantics: $\mathcal{M} \models c(a)$ iff V(a) is a connected subset of W (in the graph theory sense).

Let L^c be the extension of L with the axiom

$$c(a) \land a = p \sqcup q \land p, q \neq 0 \rightarrow C(p,q)$$
 and the rule

$$\frac{\alpha \land p \sqcup q = a \land p, q \neq 0 \rightarrow C(p, q)}{\alpha \rightarrow c(a)},$$

where p, q are different Boolean variables not occurring in the term a and in the formula α .

Theorem

The logic L^c is complete with respect to

- (i) the class of all (finite) Kripke frames
- (ii) the class of all algebras of the type $RC(\mathbb{R}^3)^A$, where A is a polytop in \mathbb{R}^3
- (iii) the class of all topological spaces

Let
$$L_1^c = L^c + (a \neq 0, 1 \rightarrow C(a, a^*))$$
.

Theorem

The logic L_1^c is complete with respect to

- (i) the class of all (finite) Kripke frames connected in graph theory sense
- (ii) the class of all algebras of the type $RC(\mathbb{R}^3)^A$, where A is a connected polytop in \mathbb{R}^3
- (iii) the class of all connected topological spaces.

One application of L_1^c

Let us define the predicates SC and Sc in $PRC(\mathbb{R}^2)$ in the following way

Sc(A) iff Int(A) is connected in topological sense

SC(A,B) iff $(\exists A' \leq A)(\exists B' \leq B)(A,B \neq 0 \land Sc(A' \cup B'))$

Let $L_2 = L_1^c +$ the following two axioms

$$\neg (\bigwedge_{1 \leq i \leq 5} (x_i \neq 0 \land c(x_i)) \land \bigwedge_{1 \leq i < j \leq 5} (C(x_i, x_j) \land (x_i \sqcap x_j = 0)))$$

$$\neg (\bigwedge_{1 \leq i \leq 6} (x_i \neq 0 \land c(x_i)) \land \bigwedge_{1 \leq i < j \leq 6} (x_i \sqcap x_j = 0) \land \bigwedge_{\substack{1 \leq i \leq 3 \\ 4 \leq j \leq 6}} (C(x_i, x_j)))$$

One application of L_1^c

Let us define the predicates SC and Sc in $PRC(\mathbb{R}^2)$ in the following way

Sc(A) iff Int(A) is connected in topological sense SC(A,B) iff $(\exists A' \leq A)(\exists B' \leq B)(A,B \neq 0 \land Sc(A' \cup B'))$ Let $L_2 = L_1^c +$ the following two axioms

$$\neg (\bigwedge_{1 \leq i \leq 5} (x_i \neq 0 \land c(x_i)) \land \bigwedge_{1 \leq i < j \leq 5} (C(x_i, x_j) \land (x_i \sqcap x_j = 0)))$$

$$\neg (\bigwedge_{1 \leq i \leq 6} (x_i \neq 0 \land c(x_i)) \land \bigwedge_{1 \leq i < j \leq 6} (x_i \sqcap x_j = 0) \land \bigwedge_{\substack{1 \leq i \leq 3 \\ 4 \leq j \leq 6}} (C(x_i, x_j)))$$

Theorem

The logic L_2 is complete with respect to the structure $\langle PRC(\mathbb{R}^2), SC, Sc \rangle$