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Robin Milner

Two problems.
— b |. Classify substitution-frames as
a coalgebras.
2. Find an expressive modal logic
substitute a for 0 for substitution frames.

ala > 0
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Next-state function

a | bh —— {when a = b then 0}

substitute a for b {when a = a then ()}

alas -{0}
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® A partial function X — Y is
® asubset D C X

® 3 total function D — Y

® A partial map in a category is a span

D
m f Admissible monos M
SM e contain all isomorphisms;
X Y |® closed under composition;
* and stable under pullback.
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® A partial map in a category is a span
D
7N
X Y

® A partial map classifier for YisamonoY — pY

such that

f

D
Y |

>Y
Y

Y
> pY

Y
X

NEXT we will
characterize pY

as a free algebra.

Partial maps into Y

correspond to
(Total) maps into p Y




® A partial map in a category is a span

D
- f NEXT we will
characterize pY
X % as a free algebra.

c.f. M. Jibladze. A presentation of the initial lift algebra.
A. Kock. Algebras for the partial map classifier monad.

® A partial map classifier for YisamonoY — pY
such that

D . Y

Y Y Partial maps into Y
m correspond to

Y Y (Total) maps into p Y

X >pY
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Enriched algebraic theories

Operations:

A signature enriched in a cartesian closed category C
consists of

® A collection of operations

® For each operation, an arity and a coarity,
which are objects of C.

An algebra consists of
® An object A of C  (carrier)

e For each op" 0, a morphism coar(o) X Aere) A
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® For every admissible mono m: D »— X

an operation when,,
with arity D and coarity X

® So an algebra A has structure
when,,: X x A” — A
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® Induce free algebras T(X) (wa(z%ﬂ Y iy
X%(X+(X+(X+y)))
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® Start with a signature +: X —> X
® Induce free algebras T(X) (XHH(Z*X} Xt
| | X%(X+(X+(X+
® Equations are functions ¥)))

o lhs,rhs:Y = T(X) (xty),(y+x):1—= T({zy})

® Build equations from
generic effects using - let x <= choose() in not(x)
metalanguage ~ choose() : {tt, ff}
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Enriched algebraic theories

e Start with a signature +:X?—=> X

y
®lInducel Pty Iy:YFu:Z| x4
e Equati| [ Flety:Y <tinu:Z2 ‘(XHX*(V)))

o lhs,rhs:Y = T(X) (xty),(ytx) :1—= T({zy})

® Build equations from

generic effects using - let x <= choose() in not(x)
metalanguage ~ choose() : {tt, ff}
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Enriched algebraic theory
for partial maps

® For every admissible mono m: D »— X
an operation when,,
with arity D and coarity X

® So an algebra A has structure
when,, : X x AP — A

® The generic effect is
assert,,: X — T(D)
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z: Z b assert,,(assert, (z)) =~ assert,,(z) :T(X)
(X =Y — Z)

y: Y'F f'(assert,, (y)) =~ assert,,(f(y)) : T
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Enriched algebraic theory
for partial maps

r: X Fassertig(x) ~ =z : T(X) (X % X)

THEOREM. If there is a partial map classifier

ithen pX is the free algebra over X. )
(X =Y — Z)

Y- :I'i-IiEOREM. If G is dense inC, then it is )
sufficient to consider the operations arising f!
frommonos D — X € § |




Example in posets

two admissible monos
m: 0 — 1

n:1>—>1L



Example in posets

two admissible monos two operations

m:0—1 when, : 1 x A — A

n:1—1; WhennZ:_J_XAlﬁA



Example in posets

two admissible monos

m: 00— 1

n: 1 —

Ly

two operations

when,,, :

when,, :

when,, (*,a) = a

1x A = A

:_J_XAlﬁA

when, (L, a) = when,, (*)



Example in posets

two admissible monos two operations
m:0—1 when, : 1 x A — A
n:1—1; WhennZ:_J_XAlﬁA

when,, (*,a) = a

when, (L, a) = when,, (*)

THEOREM. For any poset X,

the free algebra for this theory is X |
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Substitution actions

® |n the category of substitution actions,

A
A x A

A x A X A

these are dense

® Hence our monos are predicates over names.

albr > {when a = b then 0}

Ql

Qa F 9{0} = {when a = a then 0}







Enriched algebraic theory
for partial maps

r: X Fassertig(x) ~ =z : T(X) (X % X)

THEOREM. If there is a partial map classifier
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® \VWe want:

THEOREM:

Image-finite relations (—) C X x X

correspond to

Morphisms X — T'(X).

where T(X) is the free algebra for some theory.

® TJo obtain this theory we combine the theory of
semilattices with the theory of partial maps.
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Combined theory

Operations:
+: A2 5 A when, : X x AP — A
form: D »— X
Equations:

r: X Fassertig(z) ~ x : T(X)
z: 7 &= assert,,(assert,,(z)) =~ asserty;,(z) :T(X)

r +xr ==x
T+ Y=Y+
x4+ (y+2)=(x+y) + = y: Y+ f'(assertm (y)) ~ asserty,(f(y)) : T(X)

xr: X Flet b= choose() in let d = assert,,(x) in (b,d)
~ let d = assert,,(x) in let b = choose() in (b, d)

r: X F (if choose() then m(assert,,x) else n(assertna:))

~ (m Vn)(assert,,vnt)



Combined theory
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+: A% > A when, : X x AP — A
. form: D »— X
EC_IUGUOI’)S.’ THEOREM:
r+ T ==x
z + y = y|In a topos, free algebras exist and : T(X)
z + (y + 2) = ({classify a class of relations. T'(X)
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Combined theory

Operations:
+: A% > A when, : X x AP — A
. form: D »— X
Equatlons: THEOREM:
r+ T ==x
z + y = y|In a topos, free algebras exist and : T(X)
z + (y + 2) = ({classify a class of relations. T(X)
z: X F let b 5The free algebra X is f((X)
~ let d = c.f. P.Freyd, Numerology in topoi

r: X F (if choose() then m(assert,,x) else n(assertna:))

~ (m Vn)(assert,,vnt)
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Semi-lattices in substitution actions

+: X XX — X 0:1 — X
when : A X Ax X — X

r+ xr=x
r+ Y=Yy +x

4+ (y+z)=@+y +=z
r+ 0==<x



Semi-lattices in substitution actions

+: X XX —- X 0:1 — X
when : A X Ax X — X

M 0 =t][a=b]z=la=tlz
x 5 z;x ’ - la=0bllc=dlxz=|c=d]|la=0bx
+(yx—:—())::(v+y)+ [aZb][bzcx:a:b[a:c]g;
la =a]lx =«
la=blz=[b=al|x




Semi-lattices in substitution actions

+: X XX — X

when: A x A x X — X

r + xr=x

[a = 0] |a
ST A @ =bl[c
r+ 0=x la=1"b]b
la
la
la=b]0=0

la=0](z + y) = (la="blz) + ([a =b]y)

la=blzx + x ==«
la = blz = [a = b] ({*/p})

0:1— X
=blx =|la=0blx
=dlxz=|c=d]la=0lx
=clz =la="blla=_clx
=alr ==
=blx =[b=alx



Semi-lattices in substitution actions

+: X XX — X 0:1 —- X

when : A X A x X — X
THEOREM: | = b]x

Substitution-frames X [

[l
O,

correspond bijectively with

coalgebras for the free substitution semilattice

a=b](z +y) = (a=blz) + (ja=0by)
la=blzx + x ==«
a=0blz = [a=b] ({%})




Semi-lattices in substitution actions

+: X XX — X 0:1 — X
when : A X Ax X — X

THEOREM: = b2
Substitution-frames -~ d| |a - b
1 =0blla=c|x

correspond bijectively with

coalgebras for the free substitution semilattice

e.g. albr > {when a = b then 0}

Qa F 9{0} = {when a = a then 0}

Ql



Semi-lattices in substitution actions

+: X XX — X 0:1 —- X

when: A X A x X — X
THEOREM: L= b

Substitution-frames

correspond bijectively with

coalgebras for the free substitution semilattice

a=t](z +y) = (la=bz) + (a=0]y) &
la=blzx + x ==« L
a=blz = [a="b({%}o)

c.f. Davide Sangiorgi
A theory of bisimulation for the Tt-calculus
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® We want a modal logic for substitution frames such that

THEOREM.
If plko¢ then(f-pl- f-o).

Two states satisfy the same formulae
iff
they are related by a
substitution-closed bisimulation

® Aside: we do already have the following:

THEOREM (Bartek Klin, 2008).
Every finitary functor on a strongly
locally finitely presentable category
admits an expressive logic.
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A modal logic

o o= IR 000 10v) 00 1]

- T always

- I never

gAY iff(pl- @) and (p I )
-oVvy  Hi(plk @) or (plk )

- Qo iff 4g. p — ¢ and (q I @)

VDTN
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A modal logic

= TiE onolavel oo [T
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- 09

- (a=1b)

always

never

iff( pIF @) and (p IF )

iff( plF @) or (p - )

iff 3¢. p — q¢ and (q I+ ¢)

iff a is equal to b

(a,b € A)
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A modal logic

always

never

iff( pIF ¢) and (p IF )

iff( p - ) or (p IF 1)

iff 4g. p — ¢ and (q I @)

iff a is equal to b (a,b e A)

it Vi (f-pl- f-¢) implies (f -plFE f-4)
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A modal logic

always

never

iff( pIF ¢) and (p IF )

iff( p - ) or (p IF 1)

iff 4g. p — ¢ and (q I @)

iff a is equal to b (a,b e A)

it Vi (f-pl- f-¢) implies (f -plFE f-4)
iff Vf. Vq. (f -p) = q = ql-(f-9)
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THEOREM.
If pl-o then(f-pl-f-9).

2= T | F | & A ¢ Two states satisfy the same formulae

iff
they are related by a
substitution-closed bisimulation

iff( p I-3) and (pTF ¥)

iff( p - ) or (p IF 1)

iff 4g. p — ¢ and (q I @)

iff a is equal to b (a,b e A)

it Vi (f-pl- f-¢) implies (f -plF f-9)
iff Vf. Vq. (f -p) = q = ql-(f-9)

always

never




