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Two problems.

1. Classify substitution-frames as 
coalgebras.

2. Find an expressive modal logic 
for substitution frames.
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ā | b −→ 0
substitute a for b

∅

{0}

≠



Next-state function
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∈M
Admissible monos       
• contain all isomorphisms; 
• closed under composition;
• and stable under pullback.
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c.f.  M. Jibladze.  A presentation of the initial lift algebra.
A. Kock.  Algebras for the partial map classifier monad.
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Enriched algebraic theories
Operations:

A signature enriched in a cartesian closed category 
consists of

• A collection of operations

• For each operation,  an arity and a coarity,  
which are objects of    .

C

C

An algebra consists of

• An object A of          (carrier)

• For each opn o,  a morphism  coar(o)×Aar(o) → A

C
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Enriched algebraic theory 
for partial maps

• For every admissible mono 
an operation
with arity  D  and coarity  X

• So an algebra A has structure 
whenm : X ×AD → A

whenm : X ×AD → A
m : D � X



Slide     of 97

Enriched algebraic theories

• Start with a signature

31

+ : X 
2 → X



Slide     of 97

Enriched algebraic theories

• Start with a signature

• Induce free algebras T(X )

32

+ : X 
2 → X

(x+y)+(z+x)
x+(x+(x+(x+y)))

x+y
y



Slide     of 97

Enriched algebraic theories

• Start with a signature

• Induce free algebras T(X )

• Equations are functions 

• lhs, rhs :Y → T(X )

33

+ : X 
2 → X

(x+y)+(z+x)
x+(x+(x+(x+y)))

x+y
y

(x+y),(y+x) : 1 → T({x,y})



Slide     of 97

Enriched algebraic theories

• Start with a signature

• Induce free algebras T(X )

• Equations are functions 

• lhs, rhs :Y → T(X )

• Build equations from 
generic effects using 
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The theory of global state has two operations, lk : A → V and upd : A×V → 1. We
use infix notation, respectively !a (“look-up location a”) and a := v (“update location
a to v”). There are 7 equations:

GS1. a : A � let v ⇐ !a in a := v ≈ () : 1

GS2. a : A � let v ⇐ !a in let w ⇐ !a in (v, w) ≈ let v ⇐ !a in (v, v) : V× V
GS3. a : A, v, w : V � a := v; a := w ≈ a := w : 1

GS4. a : A, v : V � a := v; let w ⇐ !a in w ≈ a := v; v : V
GS5. a, b : A � let v ⇐ !a in let w ⇐ !b in (v, w)

≈ let w ⇐ !b in let v ⇐ !a in (v, w) : V× V
GS6. (a, b) : A⊗ A, v, w : V � a := v; b := w ≈ b := w; a := v : 1

GS7. (a, b) : A⊗ A, v : V � a := v; !b ≈ let w ⇐ !b in a := v; w : V

The theory of block has an operation, refn : A⊗n × V → A⊗(n+1), for every natural
number n ∈ N. Infix, we write, refn(�a; v); the intuition is “allocate a new location,
different from �a, initialized with v”. We use a shorthand: ref(v) = ref0(�a; v).

There are two equations and one equation schema. For each n ∈ N, we write pn for
the injection A⊗(n+1) � A⊗n × A.

B1. v : V � let a⇐ ref(v) in () ≈ () : 1

B2. v, w : V � let a⇐ ref(v) in let b⇐ ref(w) in (a, b)
≈ let b⇐ ref(w) in let a⇐ ref(v) in (a, b) : A× A

B3∗. v, w: V � let a⇐ ref(v) in let b⇐ ref(w) in [a
?
=b] ≈ ff : {tt, ff}

The theory of local state combines the theory of global state with the theory of
block, with 4 additional equations:

LS1. v, w : V � let a⇐ ref(v) in a := w; a ≈ let a⇐ ref(w) in a : A
LS2. v : V � let a⇐ ref(v) in let w ⇐ !a in (w, a)

≈ let a⇐ ref(v) in (v, a) : V× A
LS3. a : A, v, w : V � let b⇐ ref(v) in a := w; b ≈ a := w; let b⇐ ref(v) in b : A
LS4. a : A, v : V � let b⇐ ref(v) in let w ⇐ !a in (w, b)

≈ let w ⇐ !a in let b⇐ ref(v) in (w, b) : A
choose : 1→ {tt, ff}

SL1. � let x⇐ choose() in () ≈ () : 1

SL2. � let x⇐ choose() in not(x) ≈ choose() : {tt, ff}

Fig. 1. The theory of local state, enriched in the category of nominal sets. The theory
is parametrized on a nominal set V of values.
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Informally, f(X,x) takes an element of B and a valuation of A in X, and returns
an element of X.

An equation for a monad T is a pair of morphisms λ, ρ : B → T (A) with com-
mon domain and codomain, such that A is countably presentable. The object B
is to be thought of as the context of the equation, while A is to be thought of
as the type of the variables. A T -algebra (X, x) is said to satisfy an equation
λ, ρ : B → T (A) if we have two equal morphisms:

λ(X,x) = ρ(X,x) : B ×XA → X .

A theory is a pair (Op,Eq) of a signature Op and a set of equations Eq for
TOp . An algebra for a theory (Op,Eq) is an Op-algebra that satisfies all the
equations in Eq . The category of (Op,Eq)-algebras is monadic over C, and the
resulting monad T(Op,Eq) is strong.

2.1 Simple meta-language for a strong monad

We will use a variant of Moggi’s simple meta-language [14] for reasoning about
generalized elements of a strong monad. Let T be a strong monad on a category C
with products.

The types of the meta-language are the objects of C. The terms of the meta-
language are built from variables (roman type) and the following grammar:

t ::= let y : Y ⇐ t in t | f(x1, . . . , xn) (for f : X1 × · · ·×Xn → T (Y )).

When f = η · g, we will elide η, the unit of T .
A typing context is an assignment of variables to types. The typing rules

include structural rules such as

x : X � x : X
and

Γ � t : Z

Γ, y : Y � t : Z

For every morphism f : X1 × · · · × Xn → T (Y ) in C, we we have a well-typed
term x1 : X1, . . . , xn : Xn � f(x1, . . . , xn) : Y . The let construction is typed by
the following rule:

Γ � t : Y Γ, y : Y � u : Z

Γ � let y : Y ⇐ t in u : Z

We use the common syntactic sugar, pattern matching in let, writing (t; u) for
let : Y ⇐ t in u, etc.

For a typing context Γ = (x1 : X1, . . . , xn : Xn), we let �Γ � = X1× · · ·×Xn.
Every typed term-in-context (Γ � t : X) has a semantics in the category C,
�Γ � t : X� : �Γ �→ T (X), given by induction on the structure of typing deriva-
tions. The interesting case is the let construction: Γ � let y : Y ⇐ t in u : Z is
interpreted as the following composite:

�Γ � (id,�t�)−−−−→ �Γ �× T (Y ) str−−→ T (�Γ �× Y )
T (�u�)−−−−→ T (T (Z)) µ−→ T (Z) .

For a monad TOp arising from a signature Op, every operation (op : B → A) ∈ Op

induces a morphism B → TOp(A). These morphisms can be thought of as
“generic effects” in our meta-language.
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• For every admissible mono 
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• So an algebra A has structure 

• The generic effect is 
assertm : X → T (D)

whenm : X ×AD → A

whenm : X ×AD → A
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THEOREM.  If     is dense in   ,  then it is 
sufficient to consider the operations arising 
from monos 

THEOREM.  If there is a partial map classifier 
then pX is the free algebra over X.

G C

D � X ∈ G
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ā | b −→ 0

{0}

{when a = b then 0}

{when a = a then 0}=





(                      )

X
id−→ X

X
m� Y

n� Z

X � f �
��

��
m�

��

�
� X

��
m

��
Y �

f
�� Y

x : X � assertid(x) ≈ x : T (X)

z : Z � assertm(assertn(z)) ≈ assertnm(z) : T (X)

y : Y � � f �(assertm�(y)) ≈ assertm(f(y)) : T (X)

Enriched algebraic theory 
for partial maps

(             )

THEOREM.  If there is a partial map classifier 
then pX is the free algebra over X.



1. Partial map classifiers

2. Relation classifiers

3. Modal logic



• We want:

where T(X) is the free algebra for some theory.

• To obtain this theory we combine the theory of 
semilattices with the theory of partial maps.

THEOREM:

Image-finite relations                     .

correspond to

Morphisms                   .X → T (X)

(→) ⊆ X ×X



 Combined theory



 Combined theory
Operations:

+: A2 → A whenm : X ×AD → A
for m : D � X



 Combined theory
Operations:

+: A2 → A whenm : X ×AD → A

6.2 Coalgebras and notions of non-determinism

We now investigate how the transition relation for the π-calculus can be viewed
in a coalgebraic way. As a starting point, we note that NomSub is a topos,
and hence to give an substitution-closed transition relation is to give a coalgebra
for P(Lπ × (−)), i.e. a homomorphism X → P(Lπ × X) (writing P for the
power object of NomSub). This approach is not without drawbacks, however:
(i) an explicit description of P is cumbersome; (ii) the functor P is not finitary,
and there is no final coalgebra for cardinality reasons. To remedy this, we now
consider an explicit description of a finitary subfunctor of P.

A theory of equality testing and non-determinism. In Figure 3, we present a
theory of ‘conditional-semilattices’. A conditional-semilattice has enough struc-
ture to describe both nondeterminism and name-equality testing. Conditional-
semilattices form a category CSL, with the evident morphisms, and the forgetful
functor CSL→ NomSub is monadic. The free conditional-semilattice, Pcsl(X),
on a nominal substitution X, can be constructed by considering the set of all
well-formed terms built from +, 0, if, and elements of X, quotiented by the
equations in Figure 3. Alternatively, Figure 3 can be understood as a presenta-
tion of an enriched algebraic theory in NomSub, following [28], and a finitary
monad Pcsl arises from the general results there.

Proposition 14. The monad Pcsl classifies homomorphisms f : Y → X in
NomSub for which {y ∈ Y | f(y) = x} is finite, for each x ∈ X. That is:
the following data are equivalent, for all nominal substitutions X and Y .
1. A homomorphism X → Pcsl(Y ).
2. A subset R ⊆ X × Y such that

(a) If x R y then {b/a}x R {b/a}y (“R is substitution closed”); and
(b) For all x ∈ X, the image {y ∈ Y |x R y} is finite.

We write Scsl for the class of morphisms that Pcsl classifies. This class satisfies
all the axioms of Figure 1.

For the curious topos theorist, we record that Pcsl is the free semilattice
generated by the partial map classifier (see also [13, 32]).

A conditional-semilattice is a nominal substitution X together with three homomorphisms

+: X ×X → X 0 : 1→ X if : A× A×X → X

that satisfy the following equations. (We abbreviate if(a, b, x) by [a = b] x.)

x + x = x
x + y = y + x

x + (y + z) = (x + y) + z
x + 0 = x

[a = b]0 = 0
[a = b] (x + y) = ([a = b] x) + ([a = b] y)

[a = b] x + x = x

[a = b] [a = b] x = [a = b] x
[a = b] [c = d] x = [c = d] [a = b] x
[a = b] [b = c] x = [a = b] [a = c] x

[a = a] x = x
[a = b] x = [b = a] x

[a = b] x = [a = b] ({a/b}x)

Fig. 3. Theory of conditional-semilattices (c.f. [40, Sec. 4.1])

11
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c.f.  Davide Sangiorgi
A theory of bisimulation for the π-calculus
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• Aside:  we do already have the following:
THEOREM (Bartek Klin, 2008).
Every finitary functor on a strongly 
locally finitely presentable category 
admits an expressive logic.                          
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