THE PRIME SPECTRUM OF MV-ALGEBRAS

based on a joint work with A. Di Nola and P. Belluce

Luca Spada

Department of Mathematics and Computer Science University of Salerno www.logica.dmi.unisa.it/lucaspada

Topological Methods is Logic II. Tbilisi, 8th–10th June 2010.

CONTENTS

- MV-algebras
- 2 Ideals of MV-algebras
- 3 (Priestley) Dualities for MV-algebras
- 4 The Belluce functor
- **5** Properties of MV-spaces
- **6** REDUCED MV-ALGEBRAS
- **7** MV-spring

- 1 MV-ALGEBRAS
- 2 Ideals of MV-algebras
- (Priestley) Dualities for MV-algebras
- 4 The Belluce functor
- 5 Properties of MV-spaces
- 6 REDUCED MV-ALGEBRAS
- **7** MV-spring

MV-algebras were introduced by Chang in 1959 as the algebraic counterpart of Łukasiewicz logic.

MV-algebras were introduced by Chang in 1959 as the algebraic counterpart of Łukasiewicz logic.

Definition

An MV-algebra $\mathcal{A}=\langle A,\oplus,\neg,0\rangle$ is a commutative monoid $\mathcal{A}=\langle A,\oplus,0\rangle$

MV-algebras were introduced by Chang in 1959 as the algebraic counterpart of Łukasiewicz logic.

Definition

An MV-algebra $\mathcal{A}=\langle A,\oplus,\neg,0\rangle$ is a commutative monoid $\mathcal{A}=\langle A,\oplus,0\rangle$ with an involution $(\neg\neg x=x)$

MV-algebras were introduced by Chang in 1959 as the algebraic counterpart of Łukasiewicz logic.

Definition

An **MV-algebra** $\mathcal{A}=\langle A,\oplus,\neg,0\rangle$ is a commutative monoid $\mathcal{A}=\langle A,\oplus,0\rangle$ with an involution $(\neg\neg x=x)$ such that for all $x,y\in A$,

$$x \oplus \neg 0 = \neg 0$$

$$\neg (\neg x \oplus y) \oplus y = \neg (\neg y \oplus x) \oplus x$$

Wajsberg algebras

They were rediscovered, in disguise, by Rodriguez and named Wajsberg algebras

Wajsberg algebras

They were rediscovered, in disguise, by Rodriguez and named Wajsberg algebras

Definition

An Wajsberg algerba $\mathcal{A}=\langle A, \to, \neg, 1 \rangle$ is an algebra such that for all $x,y,z\in A$,

- i) $1 \rightarrow x = x$
- ii) $(x \rightarrow y) \rightarrow ((y \rightarrow z) \rightarrow (x \rightarrow z))$
- iii) $(x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x$
- iv) $(\neg y \rightarrow \neg x) \rightarrow (x \rightarrow y)$

Wajsberg algebras

They were rediscovered, in disguise, by Rodriguez and named Wajsberg algebras

Definition

An Wajsberg algerba $\mathcal{A}=\langle A, \to, \neg, 1 \rangle$ is an algebra such that for all $x,y,z\in A$,

- i) $1 \rightarrow x = x$
- ii) $(x \rightarrow y) \rightarrow ((y \rightarrow z) \rightarrow (x \rightarrow z))$
- iii) $(x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x$
- iv) $(\neg y \rightarrow \neg x) \rightarrow (x \rightarrow y)$

$$x \rightarrow y = \neg x \oplus y$$
 and $1 = \neg 0$

AN EXAMPLE: THE STANDARD MV-ALGEBRA

The structure $[0,1]_{MV}=\langle [0,1],\oplus,\neg,0\rangle$ where the operation are defined as

$$x \oplus y := \min\{1, x + y\}$$
 and $\neg x := 1 - x$,

AN EXAMPLE: THE STANDARD MV-ALGEBRA

The structure $[0,1]_{MV}=\langle [0,1],\oplus,\neg,0\rangle$ where the operation are defined as

$$x \oplus y := \min\{1, x + y\}$$
 and $\neg x := 1 - x$,

is an MV-algebra, called the **standard** MV-algebra.

AN EXAMPLE: THE STANDARD MV-ALGEBRA

The structure $[0,1]_{MV}=\langle [0,1],\oplus,\neg,0\rangle$ where the operation are defined as

$$x \oplus y := \min\{1, x + y\}$$
 and $\neg x := 1 - x$,

is an MV-algebra, called the **standard** MV-algebra.

Theorem (Chang 1958)

The algebra $[0,1]_{MV}=\langle [0,1],\oplus,\neg,0\rangle$ generates the variety of MV-algebras.

Definition

A partially ordered group is called **lattice ordered** (ℓ -group, for short) if its order is a lattice.

Definition

A partially ordered group is called **lattice ordered** (ℓ -group, for short) if its order is a lattice.

An ℓ -group G is called **unital** (ℓu -group, for short) if there exists an element $u \in G$ (called the **strong unit**) such that for any positive $x \in G$ there exists a natural number n such that $\underbrace{u \oplus \ldots \oplus u}_{n \text{ times}} \ge x$

Definition

A partially ordered group is called **lattice ordered** (ℓ -group, for short) if its order is a lattice.

An ℓ -group G is called **unital** (ℓu -group, for short) if there exists an element $u \in G$ (called the **strong unit**) such that for any positive $x \in G$ there exists a natural number n such that $\underbrace{u \oplus \ldots \oplus u}_{n \text{ times}} \geq x$

Given any ℓ -group $G=\langle G,+,-,\leq,0\rangle$ and a positive element $u\in G$ the definable algebra

$$\langle [0,u], \oplus, \neg, 0 \rangle$$
 with $x \oplus y = \min\{x+y,u\}$ and $\neg x = u-x$

is an MV-algebra.

Definition

A partially ordered group is called **lattice ordered** (ℓ -group, for short) if its order is a lattice.

An ℓ -group G is called **unital** (ℓu -group, for short) if there exists an element $u \in G$ (called the **strong unit**) such that for any positive $x \in G$ there exists a natural number n such that $\underbrace{u \oplus \ldots \oplus u}_{n \text{ times}} \geq x$

Given any ℓ -group $G=\langle G,+,-,\leq,0\rangle$ and a positive element $u\in G$ the definable algebra

$$\langle [0,u],\oplus,\neg,0\rangle$$
 with $x\oplus y=\min\{x+y,u\}$ and $\neg x=u-x$

is an MV-algebra. Furthermore, $\mbox{\bf every}$ MV-algebra can be obtained in this way.

CATEGORICAL EQUIVALENCE

The relationship between MV-algebras and abelian ℓ -groups becomes an equivalence if one restricts to $u\ell$ -groups

CATEGORICAL EQUIVALENCE

The relationship between MV-algebras and abelian ℓ -groups becomes an equivalence if one restricts to $u\ell$ -groups

Theorem (Mundici 1986)

There exists a categorical equivalence between MV-algebras and abelian ℓu -groups.

CATEGORICAL EQUIVALENCE

The relationship between MV-algebras and abelian ℓ -groups becomes an equivalence if one restricts to $u\ell$ -groups

Theorem (Mundici 1986)

There exists a categorical equivalence between MV-algebras and abelian ℓ u-groups.

or to perfect 1 MV-algebras

Theorem (Di Nola and Lettieri 1994)

There exists a categorical equivalence between perfect MV-algebras and abelian ℓ -groups.

¹An MV-algebra is called **perfect** if it is generated by the intersection of all its maximal ideals.

Any MV-algebra has an underlying lattice structure, defined by:

$$x \lor y = \neg(\neg x \oplus y) \oplus y \text{ and } x \land y = \neg(\neg x \lor \neg y).$$

Any MV-algebra has an underlying lattice structure, defined by:

$$x \lor y = \neg(\neg x \oplus y) \oplus y \text{ and } x \land y = \neg(\neg x \lor \neg y).$$

If A is any MV-algebra then:

Any MV-algebra has an underlying lattice structure, defined by:

$$x \lor y = \neg(\neg x \oplus y) \oplus y \text{ and } x \land y = \neg(\neg x \lor \neg y).$$

If A is any MV-algebra then:

i) The underlying lattice of A is **distributive**.

Any MV-algebra has an underlying lattice structure, defined by:

$$x \lor y = \neg(\neg x \oplus y) \oplus y \text{ and } x \land y = \neg(\neg x \lor \neg y).$$

If A is any MV-algebra then:

- i) The underlying lattice of A is **distributive**.
- ii) The (definable) (\lor, \land, \lnot) -reduct is a **Kleene algebra** (so also a **DeMorgan algebra**).

Any MV-algebra has an underlying lattice structure, defined by:

$$x \lor y = \neg(\neg x \oplus y) \oplus y \text{ and } x \land y = \neg(\neg x \lor \neg y).$$

If A is any MV-algebra then:

- i) The underlying lattice of A is **distributive**.
- ii) The (definable) (\lor, \land, \lnot) -reduct is a **Kleene algebra** (so also a **DeMorgan algebra**).
- iii) Define $x\odot y=\neg(\neg x\oplus \neg y)$. The algebra $\langle A,\odot,\rightarrow,0,1\rangle$ is a bounded, commutative, **residuated lattice** (or even a bounded commutative **BCK-algebra**).

The geometry of MV-algebras

Definition

A function $[0,1]^m$ to [0,1] is called **McNaughton function** if it is:

- 1 continuous,
- 2 piece-wise linear
- **3** with integer coefficients.

The geometry of MV-algebras

Definition

A function $[0,1]^m$ to [0,1] is called **McNaughton function** if it is:

- 1 continuous,
- 2 piece-wise linear
- 3 with integer coefficients.

Theorem (McNaughton 1951)

The free MV-algebra over m generators is isomorphic to the algebra McNaughton functions, where the MV operations are defined point-wise.

- 1 MV-algebras
- 2 Ideals of MV-algebras
- (Priestley) Dualities for MV-algebras
- 4 The Belluce functor
- 5 Properties of MV-spaces
- 6 Reduced MV-algebras
- **7** MV-spring

Given an MV-algebra A, a non-empty subset I of A is an **ideal** if it is

Given an MV-algebra A, a non-empty subset I of A is an **ideal** if it is

1 downward closed, i.e. $y \le x$ and $x \in I$ imply $y \in I$ for all $y \in A$,

Given an MV-algebra A, a non-empty subset I of A is an **ideal** if it is

- **1** downward closed, i.e. $y \le x$ and $x \in I$ imply $y \in I$ for all $y \in A$,
- **2 stable** with respect to the MV-algebraic sum: $x, y \in I$ implies $x \oplus y \in I$.

Given an MV-algebra A, a non-empty subset I of A is an **ideal** if it is

- **1** downward closed, i.e. $y \le x$ and $x \in I$ imply $y \in I$ for all $y \in A$,
- **2 stable** with respect to the MV-algebraic sum: $x, y \in I$ implies $x \oplus y \in I$.

An ideal I is called **proper** if $I \neq A$. So MV-ideals are also ideals of the lattice reduct (lattice ideals.)

PRIME IDEALS

Definition

An ideal P of an MV-algebra A is called **prime** if A/P is linearly ordered.

PRIME IDEALS

Definition

An ideal P of an MV-algebra A is called **prime** if A/P is linearly ordered.

Lemma

An ideal P of an MV-algebra A is prime iff it satisfies the following equivalent conditions:

- **1** for all $a, b \in A$, $a \rightarrow b \in P$ or $b \rightarrow a \in P$;
- **2** for all $a, b \in A$, if $a \land b \in P$ then $a \in P$ or $b \in P$;
- **3** for all I, J ideals of A, if $I \cap J \subseteq P$ then $I \subseteq P$ or $J \subseteq P$.

CHANG REPRESENTATION THEOREM

An important insight in the the class of MV-algebras is given by Chang subdirect representation theorem.

CHANG REPRESENTATION THEOREM

An important insight in the the class of MV-algebras is given by Chang subdirect representation theorem.

Theorem

Let A be an MV-algebra and Spec A the set of its prime ideals. Then A is a subdirect product of the family $\{A/P\}_P$ with P ranging among prime ideals of A.

The set Spec **A** of all the prime ideals of A is called the **spectrum** of A.

The set Spec **A** of all the prime ideals of A is called the **spectrum** of A. As in the case of lattices, for any MV-algebra A, the **spectral topology of** A is defined by means of its family of open sets $\{\tau(I) \mid I \text{ ideal of } A\}$ where $\tau(I) = \{P \in \text{Spec } A \mid I \nsubseteq P\}$.

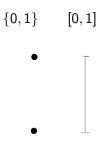
The set Spec **A** of all the prime ideals of A is called the **spectrum** of A. As in the case of lattices, for any MV-algebra A, the **spectral topology of** A is defined by means of its family of open sets $\{\tau(I) \mid I \text{ ideal of } A\}$ where $\tau(I) = \{P \in \text{Spec } A \mid I \nsubseteq P\}$.

Definition

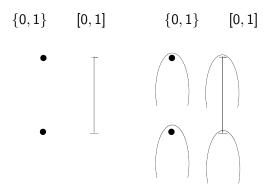
A topological space is an MV-space if it is, up to homeomorphisms, the spectral space of an MV-algebra.

It is easy to see that there are examples of different MV-algebras with the same $\ensuremath{\mathsf{Spec}}.$

It is easy to see that there are examples of different MV-algebras with the same $\ensuremath{\mathsf{Spec}}.$



It is easy to see that there are examples of different MV-algebras with the same $\ensuremath{\mathsf{Spec}}.$



SPECTRAL SPACES

Definition

A topological space X is called **spectral** if

- \bullet X is a compact, T_0 space,
- **2** every non-empty irreducible closed subset of X is the closure of a unique point $(X \text{ is } \mathbf{sober})$,
- $oldsymbol{3}$ and the set Ω of compact open subsets of X is a basis for the topology of X and is closed under finite unions and intersections.

SPECTRAL SPACES

Definition

A topological space X is called **spectral** if

- \bullet X is a compact, T_0 space,
- **2** every non-empty irreducible closed subset of X is the closure of a unique point $(X \text{ is } \mathbf{sober})$,
- $oldsymbol{3}$ and the set Ω of compact open subsets of X is a basis for the topology of X and is closed under finite unions and intersections.

Since a spectral space is T_0 , it is partially ordered by the so-called **specialisation order**: $x \le y$ iff $x \in cl(y)$ where cl(y) is the closure of y.

Pro-finite MV-spaces

Since MV-space are spectral, one may be tempted to try to characterise them through inverse limit of finite spaces. However in 2004 Di Nola and Grigolia characterised the pro-finite MV-spaces and proved that they do not coincide with the full category of MV-space.

Pro-finite MV-spaces

Since MV-space are spectral, one may be tempted to try to characterise them through inverse limit of finite spaces. However in 2004 Di Nola and Grigolia characterised the pro-finite MV-spaces and proved that they do not coincide with the full category of MV-space.

Theorem

An MV-space is pro-finite if and only if it is a completely normal dual Heyting space.

Pro-finite MV-spaces

Since MV-space are spectral, one may be tempted to try to characterise them through inverse limit of finite spaces. However in 2004 Di Nola and Grigolia characterised the pro-finite MV-spaces and proved that they do not coincide with the full category of MV-space.

Theorem

An MV-space is pro-finite if and only if it is a completely normal dual Heyting space.

Theorem

There are MV-spaces, as well as completely normal spectral spaces, which are not pro-finite.

- 1 MV-ALGEBRAS
- 2 Ideals of MV-algebras
- 3 (Priestley) Dualities for MV-algebras
- 4 The Belluce functor
- 5 Properties of MV-spaces
- 6 REDUCED MV-ALGEBRAS
- **7** MV-spring

PRIESTLEY SPACE

Definition

Recall that the triple $\langle X, \leq, \tau \rangle$, where

- **2** $\langle X, \tau \rangle$ is a topological space,

is called a **Priestley space** if

PRIESTLEY SPACE

Definition

Recall that the triple $\langle X, \leq, \tau \rangle$, where

- \bullet $\langle X, \leq \rangle$ is a poset and
- (X, τ) is a topological space,

is called a Priestley space if

- a) au is a Stone space and
- b) for any $x, y \in X$ such that $x \not \leq y$ there is a clopen decreasing set U such that $y \in U$ and $x \notin U$.

Priestley spaces, together with Priestley maps, i.e. continuous and order preserving maps, form the category Pries.

PRIESTLEY SPACE

Definition

Recall that the triple $\langle X, \leq, \tau \rangle$, where

- (X, τ) is a topological space,

is called a Priestley space if

- a) au is a Stone space and
- b) for any $x, y \in X$ such that $x \not \leq y$ there is a clopen decreasing set U such that $y \in U$ and $x \notin U$.

Priestley spaces, together with Priestley maps, i.e. continuous and order preserving maps, form the category Pries.

Note that each closed subset of a Priestley space is in turn a Priestley space with respect to the inherited topology.

PRIESTLEY DUALITY

Consider the controvariant functor $\Delta: BDLat \longrightarrow Pries$ which assigns to Priestley space the lattice of clopen downward sets and $\Delta(f)(U) = f^{-1}(U)$.

PRIESTLEY DUALITY

Consider the controvariant functor Δ : BDLat \longrightarrow Pries which assigns to Priestley space the lattice of clopen downward sets and $\Delta(f)(U) = f^{-1}(U).$

Consider also the functor Ξ , assigning to each bounded distributive lattice L its set of prime ideals, ordered by set inclusion and topologised by the basis given by the sets $\tau(a) = \{ P \in \operatorname{Spec}(L) \mid a \notin P \}$ and their complements for $a \in L$.

Furthermore put $\Xi(h)(P) = h^{-1}(P)$.

PRIESTLEY DUALITY

Consider the controvariant functor $\Delta: BDLat \longrightarrow Pries$ which assigns to Priestley space the lattice of clopen downward sets and $\Delta(f)(U) = f^{-1}(U)$.

Consider also the functor Ξ , assigning to each bounded distributive lattice L its set of prime ideals, ordered by set inclusion and topologised by the basis given by the sets $\tau(a) = \{P \in \operatorname{Spec}(L) \mid a \not\in P\}$ and their complements for $a \in L$.

Furthermore put $\Xi(h)(P) = h^{-1}(P)$.

Theorem

The pair Δ, Ξ is a categorical duality between BDLat and Pries.

PRIESTLEY DUALITY FOR WAJSBERG ALGEBRAS

In the nineties Martinez developed a duality for Wajsberg algebras.

Priestley duality for Wajsberg algebras

In the nineties Martinez developed a duality for Wajsberg algebras.

The idea is to think of a Wajsberg algebra as a **distributive lattice**, **enriched** with supplementary operations.

PRIESTLEY DUALITY FOR WAJSBERG ALGEBRAS

In the nineties Martinez developed a duality for Wajsberg algebras.

The idea is to think of a Wajsberg algebra as a **distributive lattice**, **enriched** with supplementary operations.

This allows to exploit Priestly duality and to build on it.

Priestley duality for Wajsberg algebras

In the nineties Martinez developed a duality for Wajsberg algebras.

The idea is to think of a Wajsberg algebra as a **distributive lattice**, **enriched** with supplementary operations.

This allows to exploit Priestly duality and to build on it.

More precisely Martinez works on a **particular case of Priestley duality**, developed by Cornish and Fowler,
characterising Kleene algebras (which in turn are particular De
Morgan algebras.)

MARTINEZ DUALITY

Definition

A tuple $\langle X, \tau, \leq, g, \{\phi_p\}_{p \in X} \rangle$ is called a **Wajsberg space** if:

- $ig(X, \tau, \leq, g)$ is a De Morgan space,
- **2** $\{\phi_p\}_{p\in X}$ is a family of functions $\phi_p: D_p \longrightarrow X$ where $D_p = \{q \in X \mid p \leq g(q)\}$ such that $\forall p, q \in X$:
 - a. $\phi_{\it p}$ is order-preserving and continuous in the upper topology,
 - b. $p \le g(q)$ implies $p, q \le \phi_p(q)$,
 - c. $p \le g(q)$ implies $\phi_p(q) = \phi_q(p)$,
 - d. $p \leq g(q)$ implies $\phi_p(g(\phi_p(q))) \leq g(q)$,
 - e. $p, p' \leq g(q)$ implies $\phi_p(\phi_{p'}(q)) = \phi_{p'}(\phi_p(q))$,
 - f. If $U \in Up(X)$ and $q \notin U$, there exists q_U , the greatest $p \in X$ such that $p \leq g(q)$ and $\phi_p(q) \notin U$; given $U, V \in Up(X)$ if $q \notin U \cup V$ then $(q_V)_V \notin U$.
- **3** For every $U, V \in Up(X)$, $\bigcap_{p \in U} \left(D_p^c \cup \phi^{-1}(V) \right) \in Up(X)$.

Where Up(X) is the lattice of clopen increasing subsets of X.

GEHRKE-PRIESTLEY DUALITY

In 2007 Gehrke&Priestley generalise Martinez' approach to any distributive lattice expansion with operations which satisfy some mild order theoretical conditions.

In 2007 Gehrke&Priestley generalise Martinez' approach to any distributive lattice expansion with operations which satisfy some mild order theoretical conditions.

The turning point is to take a "modal" perspective and to study duality through canonical extensions.

In 2007 Gehrke&Priestley generalise Martinez' approach to any distributive lattice expansion with operations which satisfy some mild order theoretical conditions.

The turning point is to take a "modal" perspective and to study duality through canonical extensions.

This allows to realise that the **failure of canonicity** for MV-algebras lays on an "alternation" of operations in the terms defining the variety.

In 2007 Gehrke&Priestley generalise Martinez' approach to any distributive lattice expansion with operations which satisfy some mild order theoretical conditions.

The turning point is to take a "modal" perspective and to study duality through canonical extensions.

This allows to realise that the **failure of canonicity** for MV-algebras lays on an **"alternation" of operations** in the terms defining the variety.

The problem is overcome by considering class of algebras with a **signature doubled** respect to the initial one and to consider equations as inequalities.

Topology arises as a tool for telling when two operations in the doubled signature are two facets of the same starting operation.

Topology arises as a tool for telling when two operations in the doubled signature are two facets of the same starting operation.

Thanks to this approach the supplementary conditions on the Priestly space become **first order**.

Topology arises as a tool for telling when two operations in the doubled signature are two facets of the same starting operation.

Thanks to this approach the supplementary conditions on the Priestly space become **first order**.

$$\begin{pmatrix} \forall y_1^+, \dots, y_j^+, y_{j+1}^-, \dots, y_k^-, z_1^+, \dots, z_\ell^+, z_{\ell+1}^-, \dots, z_m^- \text{ all in } X^{\Diamond} \end{pmatrix}$$

$$\begin{bmatrix} \left(\left(\bigvee_{\rho_s(y_i^+) = \alpha_1} \underline{y}_i^+ \right) \vee \left(\bigvee_{\rho_t(z_i^-) = \alpha_1} \underline{z}_i^- \right) \right) \leqslant \left(\left(\bigwedge_{\rho_s(y_i^-) = \alpha_1} \overline{y}_i^- \right) \wedge \left(\bigwedge_{\rho_t(z_i^+) = \alpha_1} \overline{z}_i^+ \right) \right)$$

$$& & & & \\ \left(\left(\bigvee_{\rho_s(y_i^+) = \alpha_n} \underline{y}_i^+ \right) \vee \left(\bigvee_{\rho_t(z_i^-) = \alpha_n} \underline{z}_i^- \right) \right) \leqslant \left(\left(\bigwedge_{\rho_s(y_i^-) = \alpha_n} \overline{y}_i^- \right) \wedge \left(\bigwedge_{\rho_t(z_i^+) = \alpha_n} \overline{z}_i^+ \right) \right) \right]$$

$$& & & & \Rightarrow s'(\underline{y}_1^+, \dots, \underline{y}_j^+, \overline{y}_{j+1}^-, \dots, \overline{y}_k^-) \leqslant t'(\overline{z}_1^+, \dots, \overline{z}_\ell^+, \underline{z}_{\ell+1}^-, \dots, \underline{z}_m^-).$$

- 1 MV-algebras
- 2 Ideals of MV-algebras
- (Priestley) Dualities for MV-algebras
- 4 The Belluce functor
- 5 Properties of MV-spaces
- 6 Reduced MV-algebras
- **7** MV-spring

Definition

Let A be an MV-algebra and consider the equivalence relation \equiv defined by

 $x \equiv y$ if and only if, for all $P \in \operatorname{Spec} A$, $x \in P \Leftrightarrow y \in P$.

Definition

Let A be an MV-algebra and consider the equivalence relation \equiv defined by

 $x \equiv y$ if and only if, for all $P \in \operatorname{Spec} A$, $x \in P \Leftrightarrow y \in P$.

It is easy to see that \equiv is a congruence on the lattice reduct of A and it also preserves the MV-algebraic sum (indeed it equalises \vee and \oplus : $[x\vee y]_{\equiv}=[x\oplus y]_{\equiv}$ for all $x,y\in A$).

Definition

Let A be an MV-algebra and consider the equivalence relation \equiv defined by

 $x \equiv y$ if and only if, for all $P \in \operatorname{Spec} A$, $x \in P \Leftrightarrow y \in P$.

It is easy to see that \equiv is a congruence on the lattice reduct of A and it also preserves the MV-algebraic sum (indeed it equalises \vee and \oplus : $[x \vee y]_{\equiv} = [x \oplus y]_{\equiv}$ for all $x, y \in A$).

Let us call [A] the quotient set A/\equiv and [x] the equivalence class $[x]_{\equiv}$.

Lemma

The structure $[A] = \langle [A], \vee, \wedge, [0], [1] \rangle$ is a bounded distributive lattice, with $[x] \vee [y] := [x \vee y] = [x \oplus y]$ and $[x] \wedge [y] := [x \wedge y]$, for all $x, y \in A$.

Lemma

The structure $[A] = \langle [A], \vee, \wedge, [0], [1] \rangle$ is a bounded distributive lattice, with $[x] \vee [y] := [x \vee y] = [x \oplus y]$ and $[x] \wedge [y] := [x \wedge y]$, for all $x, y \in A$.

Lemma

The map $[\cdot]$ is a functor from the category of MV-algebras to the category of bounded distributive lattice

Lemma

The structure $[A] = \langle [A], \vee, \wedge, [0], [1] \rangle$ is a bounded distributive lattice, with $[x] \vee [y] := [x \vee y] = [x \oplus y]$ and $[x] \wedge [y] := [x \wedge y]$, for all $x, y \in A$.

Lemma

The map $[\cdot]$ is a functor from the category of MV-algebras to the category of bounded distributive lattice

Knowing on which category such a functor is invertible would constitute a key step in the characterisation of MV-spaces.

Theorem

The map γ : Spec $A \to \operatorname{Spec}[A]$, defined by $\gamma(P) = [P]$, is a (Priestley) homeomorphism between the MV-space Spec A and the spectral space Spec A].

Theorem

The map $\gamma: \operatorname{Spec} A \to \operatorname{Spec} [A]$, defined by $\gamma(P) = [P]$, is a (Priestley) homeomorphism between the MV-space $\operatorname{Spec} A$ and the spectral space $\operatorname{Spec} [A]$.

Theorem

Every bounded distributive lattice in the range of $[\cdot]$ is dual completely normal (i.e. the set of prime ideals containing a prime ideal is totally ordered.)

Theorem

The map $\gamma: \operatorname{Spec} A \to \operatorname{Spec} [A]$, defined by $\gamma(P) = [P]$, is a (Priestley) homeomorphism between the MV-space $\operatorname{Spec} A$ and the spectral space $\operatorname{Spec} [A]$.

Theorem

Every bounded distributive lattice in the range of $[\cdot]$ is dual completely normal (i.e. the set of prime ideals containing a prime ideal is totally ordered.)

Corollary

Every MV-space is completely normal.^a

 $^{^{\}it a}X$ is normal if any two disjoint closed subsets of X are separated by neighbourhoods

- 1 MV-ALGEBRAS
- 2 Ideals of MV-algebras
- (Priestley) Dualities for MV-algebras
- 4 The Belluce functor
- **5** Properties of MV-spaces
- 6 Reduced MV-algebras
- **7** MV-spring

Definition

 $X \subseteq \operatorname{Spec} A$ is an $\operatorname{MV-subspace}$ if X with the induced topology is homeomorphic to $\operatorname{Spec} A'$ for some $\operatorname{MV-algebra} A'$, i.e. if it is an $\operatorname{MV-space}$ itself.

Definition

 $X \subseteq \operatorname{Spec} A$ is an $\operatorname{MV-subspace}$ if X with the induced topology is homeomorphic to $\operatorname{Spec} A'$ for some $\operatorname{MV-algebra} A'$, i.e. if it is an $\operatorname{MV-space}$ itself.

Proposition

All closed subspaces of an MV-space are MV-subspaces.

Proposition

Let $\tau(a)$ be compact open in Spec A. Then $\tau(a)$ is an MV-space.

Proposition

Let $\tau(a)$ be compact open in Spec A. Then $\tau(a)$ is an MV-space.

Lemma

Every MV-algebra has the prime extension property (PEP), namely every ideal extending a prime ideal is itself prime.

Proposition

Let $\tau(a)$ be compact open in Spec A. Then $\tau(a)$ is an MV-space.

Lemma

Every MV-algebra has the prime extension property (PEP), namely every ideal extending a prime ideal is itself prime.

Proposition

An MV-algebra A is called **hyper-archimedean** if for each $x \in A$ $nx \in (A)$ for some integer n. Hyper-archimedean MV-algebras are exactly the ones for which Spec A = Max A.

THE ORDER IN MV-SPACES

Proposition

If X is a linearly ordered spectral space, then X is an MV-space.

THE ORDER IN MV-SPACES

Proposition

If X is a linearly ordered spectral space, then X is an MV-space.

Proposition

MV-spaces are root systems with respect to the specialisation order

Definition

Definition

A poset $\langle X, \leq \rangle$ is called a **spectral root** if:

Definition

- \bullet $\langle X, \leq \rangle$ has a maximum.
- 2 No pair of incompatible elements of X has a common lower bound.

Definition

- No pair of incompatible elements of X has a common lower bound.

Definition

- (X, \leq) has a maximum.
- No pair of incompatible elements of X has a common lower bound.
- 4 If $x, y \in X$ are such that x < y, then there exist $s, t \in X$ such that $x \le s < t \le y$ and there is no $z \in X$ such that s < z < t.

Definition

A poset $\langle X, \leq \rangle$ is called a **spectral root** if:

- (X, \leq) has a maximum.
- No pair of incompatible elements of X has a common lower bound.
- 4 If $x, y \in X$ are such that x < y, then there exist $s, t \in X$ such that $x \le s < t \le y$ and there is no $z \in X$ such that s < z < t.

Definition

A poset $\langle X, \leq \rangle$ is called a **spectral root system** if it the disjoint union of spectral roots.

A CHARACTERISATION OF THE ORDER

Theorem

A poset is a spectral root system if, and only if, it is order isomorphic to some MV-space.

A CHARACTERISATION OF THE ORDER

Theorem

A poset is a spectral root system if, and only if, it is order isomorphic to some MV-space.

Definition

Recalling that an MV-algebra is called **local** if it has a unique maximal ideal, an MV-space is called **local** if it has a greatest element or, equivalently, if its corresponding MV-algebra is local.

A CHARACTERISATION OF THE ORDER

Theorem

A poset is a spectral root system if, and only if, it is order isomorphic to some MV-space.

Definition

Recalling that an MV-algebra is called **local** if it has a unique maximal ideal, an MV-space is called **local** if it has a greatest element or, equivalently, if its corresponding MV-algebra is local.

Corollary

Every MV-space is a disjoint union of local MV-spaces.

- 1 MV-algebras
- 2 Ideals of MV-algebras
- (Priestley) Dualities for MV-algebras
- 4 The Belluce functor
- 5 Properties of MV-spaces
- 6 Reduced MV-algebras
- **7** MV-spring

REDUCED MV-ALGEBRAS

Let A be a linearly ordered MV-algebra, and let $\Pr A$ be the set of principal ideals of A.

REDUCED MV-ALGEBRAS

Let A be a linearly ordered MV-algebra, and let Pr A be the set of principal ideals of A.

For each $P \in \Pr A$ let us choose a generator u_P of P, and set $A_0 = \langle u_P \mid P \in \Pr A \rangle$, the subalgebra generated by the u_P 's.

 A_0 is called the **reduced subalgebra** of A.

REDUCED MV-ALGEBRAS

Let A be a linearly ordered MV-algebra, and let $\Pr A$ be the set of principal ideals of A.

For each $P \in \Pr A$ let us choose a generator u_P of P, and set $A_0 = \langle u_P \mid P \in \Pr A \rangle$, the subalgebra generated by the u_P 's.

 A_0 is called the **reduced subalgebra** of A.

A linearly ordered algebra A is **reduced** if $A = \langle u_P \mid (u_P) = P \in \Pr A \rangle$. In this case, the set $\{u_P \mid P \in \Pr A\}$ will be called a set of **principal generators** of A. Note that a set of principal generators is not unique in general.

REDUCED ALGEBRA ARE SUFFICIENT

Lemma

Let A be a reduced MV-algebra with principal generators $\{u_P \mid P \in \Pr A\}$. Then for every $a \neq 1$ in A there is some principal generator u_P , $\tau(a) = \tau(u_P)$.

REDUCED ALGEBRA ARE SUFFICIENT

Lemma

Let A be a reduced MV-algebra with principal generators $\{u_P \mid P \in \Pr A\}$. Then for every $a \neq 1$ in A there is some principal generator u_P , $\tau(a) = \tau(u_P)$.

Proposition

Any reduced MV-algebra is perfect.

REDUCED ALGEBRA ARE SUFFICIENT

Lemma

Let A be a reduced MV-algebra with principal generators $\{u_P \mid P \in \Pr A\}$. Then for every $a \neq 1$ in A there is some principal generator u_P , $\tau(a) = \tau(u_P)$.

Proposition

Any reduced MV-algebra is perfect.

Lemma

 $\operatorname{\mathsf{Spec}} A_0 \cong \operatorname{\mathsf{Spec}} A$

Three simple results and one remark

Corollary

Let X be a spectral space such that, for each $x \in X$, cl(x) is an upward chain under the specialisation order (i.e., if $y, z \in cl(x)$, then $x \le y \le z$ or $x \le z \le y$) then there is a reduced MV-algebra A_x such that $Spec A_x \cong cl(x)$.

Three simple results and one remark

Corollary

Let X be a spectral space such that, for each $x \in X$, cl(x) is an upward chain under the specialisation order (i.e., if $y, z \in cl(x)$, then $x \le y \le z$ or $x \le z \le y$) then there is a reduced MV-algebra A_x such that $Spec A_x \cong cl(x)$.

Lemma

In a reduced MV-algebra A there is a bijection between the set of proper compact open sets of Spec A and Pr A.

Three simple results and one remark

Corollary

Let X be a spectral space such that, for each $x \in X$, cl(x) is an upward chain under the specialisation order (i.e., if $y, z \in cl(x)$, then $x \le y \le z$ or $x \le z \le y$) then there is a reduced MV-algebra A_x such that $Spec\ A_x \cong cl(x)$.

Lemma

In a reduced MV-algebra A there is a bijection between the set of proper compact open sets of Spec A and Pr A.

Remark

Note that, in a reduced algebra, $u_P \leq u_Q$ iff $\tau(u_P) \subseteq \tau(u_Q)$ iff $(u_P) \subseteq (u_Q)$.

- 1 MV-ALGEBRAS
- 2 Ideals of MV-algebras
- (Priestley) Dualities for MV-algebras
- 4 The Belluce functor
- 5 Properties of MV-spaces
- 6 REDUCED MV-ALGEBRAS
- **7** MV-spring

Remark

In the following X is a spectral space such that, for each $x \in X$, cl(x) is an upward chain under the specialisation order.

Remark

In the following X is a spectral space such that, for each $x \in X$, cl(x) is an upward chain under the specialisation order.

Starting from X we seek for a construction that yields an MV-algebra A such that X and Spec A are homeomorphic. The theory of springs below gives a partial solution to this problem.

Given X as above, let Ω be the set of its compact open subsets. For any $x \in X$ we set $\Omega_x = \{\omega \in \Omega \mid x \in \omega\}$.

Given X as above, let Ω be the set of its compact open subsets. For any $x \in X$ we set $\Omega_x = \{\omega \in \Omega \mid x \in \omega\}$.

Lemma

In a spectral space X, the intersection of a compact open set U and a closed set V is a compact open subset of V.

THE THEORY OF SPRINGS

Given X as above, let Ω be the set of its compact open subsets. For any $x \in X$ we set $\Omega_x = \{\omega \in \Omega \mid x \in \omega\}$.

Lemma

In a spectral space X, the intersection of a compact open set U and a closed set V is a compact open subset of V.

Taking, in particular $V = \operatorname{cl}(x)$, this suggests an equivalence relation on Ω of being *indistinguishable over* x, namely

$$\omega \equiv_{\mathsf{x}} \omega'$$
 if, and only if, $\omega \cap \mathsf{cl}(\mathsf{x}) = \omega' \cap \mathsf{cl}(\mathsf{x})$.

This is an equivalence relation and, so let $[\omega]_x$ denote the class of ω .

THE THEORY OF SPRINGS

Then $[\omega]_x$ corresponds to a unique principal ideal $u_{[\omega]_x}$ in A_x via the homeomorphism between Spec A_x and $\operatorname{cl}(x)$.

THE THEORY OF SPRINGS

Then $[\omega]_x$ corresponds to a unique principal ideal $u_{[\omega]_x}$ in A_x via the homeomorphism between Spec A_x and $\mathrm{cl}(x)$. The correspondence is (strictly) order preserving. Observe that, if $x \notin \omega$, then $\omega \cap \mathrm{cl}(x) = \varnothing$, so we may limit ourselves to $\omega \in \Omega_x$.

Springs

Definition

A triple $\langle X, \{A_x\}_{x \in X}, A \rangle$ is an **MV-spring** provided X is a spectral space, each A_x is a reduced MV-algebra and A is a subdirect product of the family of A_x 's

Springs

Definition

A triple $\langle X, \{A_x\}_{x \in X}, A \rangle$ is an **MV-spring** provided X is a spectral space, each A_x is a reduced MV-algebra and A is a subdirect product of the family of A_x 's

Example

Let A_i be a family of reduced MV-algebras and let A be a subdirect product of the A_i . Then $\langle \operatorname{Spec} A, \{A_i\}_{i\in I}, A\rangle$ is an MV-spring.

Let Ω as above and $\mathfrak F$ be the free MV-algebra generated by Ω .

Let
$$\chi_{\omega} \in \mathfrak{F}^X$$
 be defined by $\chi_{\omega}(x) = \begin{cases} \omega & \text{if } x \in \omega \\ 0 & \text{otherwise} \end{cases}$

Let Ω as above and \mathfrak{F} be the free MV-algebra generated by Ω .

Let
$$\chi_{\omega} \in \mathfrak{F}^X$$
 be defined by $\chi_{\omega}(x) = \begin{cases} \omega & \text{if } x \in \omega \\ 0 & \text{otherwise} \end{cases}$

Let $A_1 = \langle \chi_\omega \mid \omega \in \Omega \rangle$ be the subalgebra of \mathfrak{F}^X generated by the χ_ω , and, for each $x \in X$, let $\mathbf{F}_x = \langle u_{[\omega]_x} \mid \omega \in \Omega_x \rangle$.

Fix an $x \in X$, the algebra A_1 can be projected into \mathbf{F}_x by the following function.

$$\mu_{\mathsf{X}}: A_1 \overset{\mathsf{ev}_{\mathsf{X}}}{\twoheadrightarrow} \mathfrak{F}_{\mathsf{X}} \overset{\eta_{\mathsf{X}}}{\twoheadrightarrow} \mathbf{F}_{\mathsf{X}},$$

Fix an $x \in X$, the algebra A_1 can be projected into \mathbf{F}_x by the following function.

$$\mu_{\mathsf{X}}: A_1 \overset{\mathsf{ev}_{\mathsf{X}}}{\twoheadrightarrow} \mathfrak{F}_{\mathsf{X}} \overset{\eta_{\mathsf{X}}}{\twoheadrightarrow} \mathbf{F}_{\mathsf{X}},$$

$$\bullet \ \mathfrak{F}_{\mathsf{x}} = \langle \omega \mid \omega \in \Omega_{\mathsf{x}} \rangle \subseteq \mathfrak{F}, \text{ i.e. the free algebra generated by } \Omega_{\mathsf{x}}$$

Fix an $x \in X$, the algebra A_1 can be projected into \mathbf{F}_x by the following function.

$$\mu_{\mathsf{X}}: A_1 \overset{\mathsf{ev}_{\mathsf{X}}}{\twoheadrightarrow} \mathfrak{F}_{\mathsf{X}} \overset{\eta_{\mathsf{X}}}{\twoheadrightarrow} \mathbf{F}_{\mathsf{X}},$$

- $oldsymbol{\mathfrak{F}}_{x}=\langle\omega\mid\omega\in\Omega_{x}
 angle\subseteq\mathfrak{F}$, i.e. the free algebra generated by Ω_{x}
- \mathbf{Q} ev_x : $A_1 \longleftrightarrow \mathfrak{F}_x$ is the evaluation map, given by $\operatorname{ev}_x(f) = f(x)$. It is not hard to see that ev_x is onto.

Fix an $x \in X$, the algebra A_1 can be projected into \mathbf{F}_x by the following function.

$$\mu_{\mathsf{X}}: A_1 \overset{\mathsf{ev}_{\mathsf{X}}}{\twoheadrightarrow} \mathfrak{F}_{\mathsf{X}} \overset{\eta_{\mathsf{X}}}{\twoheadrightarrow} \mathbf{F}_{\mathsf{X}},$$

- $oldsymbol{\mathfrak{F}}_{x}=\langle\omega\mid\omega\in\Omega_{x}
 angle\subseteq\mathfrak{F}$, i.e. the free algebra generated by Ω_{x}
- \mathbf{Q} ev_x : $A_1 \longleftrightarrow \mathfrak{F}_x$ is the evaluation map, given by $\operatorname{ev}_x(f) = f(x)$. It is not hard to see that ev_x is onto.
- 3 $\eta_{x}: \mathfrak{F}_{x} \longleftrightarrow \mathbf{F}_{x}$ is the unique epimorphic extension of the partial function $f(\omega) = u_{[\omega]_{x}}$ (note that f is surjective on the generators).

Fix an $x \in X$, the algebra A_1 can be projected into \mathbf{F}_x by the following function.

$$\mu_{\mathsf{X}}: A_1 \overset{\mathsf{ev}_{\mathsf{X}}}{\twoheadrightarrow} \mathfrak{F}_{\mathsf{X}} \overset{\eta_{\mathsf{X}}}{\twoheadrightarrow} \mathbf{F}_{\mathsf{X}},$$

where:

- $oldsymbol{\mathfrak{F}}_{x}=\langle\omega\mid\omega\in\Omega_{x}
 angle\subseteq\mathfrak{F}$, i.e. the free algebra generated by Ω_{x}
- \mathbf{Q} $\operatorname{ev}_{x}: A_{1} \longleftrightarrow \mathfrak{F}_{x}$ is the evaluation map, given by $\operatorname{ev}_{x}(f) = f(x)$. It is not hard to see that ev_{x} is onto.
- 3 $\eta_{x}: \mathfrak{F}_{x} \longleftrightarrow \mathbf{F}_{x}$ is the unique epimorphic extension of the partial function $f(\omega) = u_{[\omega]_{x}}$ (note that f is surjective on the generators).

Now consider $J_1 = \bigcap_x \ker \mu_x$ and define $\hat{A} = A_1/J_1$.

Proposition

The triple $\langle X, \{\mathbf{F}_x\}_{x \in X}, \hat{A} \rangle$ is a spring.

Proposition

The triple $\langle X, \{\mathbf{F}_x\}_{x \in X}, \hat{A} \rangle$ is a spring.

Given a spring $\langle X, \{A_x\}_{x \in X}, A \rangle$, we have a family of projections $\pi_X : A \longrightarrow A_X$ and we can define a new map

$$\varphi_A: X \longleftrightarrow \operatorname{Spec} A$$
 by setting $\varphi_A(x) = \ker \pi_x$.

Proposition

The triple $\langle X, \{\mathbf{F}_x\}_{x \in X}, \hat{A} \rangle$ is a spring.

Given a spring $\langle X, \{A_x\}_{x \in X}, A \rangle$, we have a family of projections $\pi_x : A \longrightarrow A_x$ and we can define a new map

$$\varphi_A: X \longleftrightarrow \operatorname{Spec} A$$
 by setting $\varphi_A(x) = \ker \pi_x$.

Since A_x is linearly ordered, $\ker \pi_x \in \operatorname{Spec} A$ and the mapping is well-defined.

Proposition

The triple $\langle X, \{\mathbf{F}_x\}_{x \in X}, \hat{A} \rangle$ is a spring.

Given a spring $\langle X, \{A_x\}_{x\in X}, A\rangle$, we have a family of projections $\pi_x:A\longrightarrow A_x$ and we can define a new map

$$\varphi_A: X \longleftrightarrow \operatorname{Spec} A$$
 by setting $\varphi_A(x) = \ker \pi_x$.

Since A_x is linearly ordered, $\ker \pi_x \in \operatorname{Spec} A$ and the mapping is well-defined.

Definition

An MV-spring $\langle X, \{A_x\}_{x \in X}, A \rangle$ will be called an **affine MV-spring** provided φ_A is continuous.

DENSE SUBSET OF $\mathsf{Spec}\,A$

Given the MV-spring above, $\langle X, \{\mathbf{F}_x\}_{x \in X}, \hat{A} \rangle$, we will write φ for $\varphi_{\hat{A}}$; so we have the map $\varphi : X \longleftrightarrow \operatorname{Spec} \hat{A}$ given by $\varphi(x) = \ker \pi_x$.

DENSE SUBSET OF $\mathsf{Spec}\,A$

Given the MV-spring above, $\langle X, \{\mathbf{F}_x\}_{x \in X}, \hat{A} \rangle$, we will write φ for $\varphi_{\hat{A}}$; so we have the map $\varphi : X \longleftrightarrow \operatorname{Spec} \hat{A}$ given by $\varphi(x) = \ker \pi_x$.

Theorem

In $\langle X, \{\mathbf{F}_x\}_{x \in X}, \hat{A} \rangle$ the following properties hold.

- (i) φ is injective;
- (ii) $\varphi^{-1}: \varphi(X) \longleftrightarrow X$ is continuous;
- (iii) φ^{-1} is order preserving;
- (iv) $\varphi(X)$ is a dense subspace of Spec \hat{A} .

FURTHER READING I

Cignoli, R., D'Ottaviano, I., Mundici, D.:

Algebraic Foundations of Many-valued Reasoning. Volume 7 of Trends in Logic, Studia Logica Library.

Kluwer Academic (2000)

Hájek, P.:

Metamathematics of Fuzzy Logic. Volume 4 of Trends in Logic, Studia Logica Library.

Kluwer Academic, Berlin (1998)

L. P. Belluce.

Semisimple algebras of infinite valued logic and bold fuzzy set theory. *Canad. J. Math*, 38(6):1356–1379, 1986.

L. P. Belluce, A. Nola, and S. Sessa.

The prime spectrum of an MV-algebra.

Mathematical Logic Quarterly, 40(3):331-346, 1994.

R. Cignoli, A. Di Nola, and A. Lettieri.

Priestley duality and quotient lattices of many-valued algebras.

Rendiconti del Circolo Matematico di Palermo, 40(3):371-384, 1991.

FURTHER READING II

A. Di Nola, R. Grigolia

Pro-finite MV-spaces

Discrete Mathematics, 283(1-3):61-69, 2004.

M. Gehrke and H.A. Priestley.

Duality for double quasioperator algebras via their canonical extensions. *Studia Logica*, 86(1):31–68, 2007.

M. Gehrke and HA Priestley.

Canonical extensions of double quasioperator algebras: An algebraic perspective on duality for certain algebras with binary operations.

Journal of Pure and Applied Algebra, 209(1):269–290, 2007.

M. Hochster.

Prime ideal structure in commutative rings.

Transactions of the American Mathematical Society, 142:43-60, 1969.

N. G. Martinez.

The Priestley duality for Wajsberg algebras.

Studia Logica, 49(1):31-46, 1990.

G. Panti.

Prime Ideals in Free I-Groups and Free Vector Lattices.

Journal of Algebra, 219(1):173-200, 1999.