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Part I

Uniform spaces

Uniform spaces are an abstraction of metric spaces
that formalizes the notion of relative closeness.
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Relations

Let X be a set. We denote by UV the composition
of two relations U and V on X.

UV =
{
(x, y) ∈ X × X | there exists z ∈ X,

(x, z) ∈ U and (z, y) ∈ V
}

The transposed relation of U is the relation

tU =
{
(x, y) ∈ X × X | (y, x) ∈ U

}

Finally, for x ∈ X, we set

U(x) = {y ∈ X | (x, y) ∈ U}
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Uniform spaces

A uniformity on a set X is a nonempty set U of
reflexive relations (entourages) on X such that:

(1) if a relation U on X contains an element of
U , then U ∈ U , (extension property),

(2) the intersection of any two elements of U is in
U , (intersection),

(3) for each U ∈ U , there exists V ∈ U such that
V V ⊆ U (sort of transitivity).

(4) for each U ∈ U , tU ∈ U (symmetry).
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U -closeness

Two points x and y of X are U -close if (x, y) ∈ U .
U -closeness is a reflexive and symmetrical relation.
Further,

(1) if x and y are U -close and if U ⊆ V , then x
and y are V -close,

(2) if x and y are U -close and V -close, then they
are U ∩ V -close,

(3) for each entourage U , there is an entourage V
such that if x and z are V -close and if z and
y are V -close, then x and y are U -close.

A set in which every two points are U -close is
U -small.
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Hausdorff quotient of a uniform structure

The intersection of all entourages is an equivalence
relation ∼ on X. Thus x ∼ y iff x and y are
U -close for each entourage U .

The uniform structure on X induces a uniform
structure on X/∼. The resulting uniform space is
the Hausdorff quotient of X. Further, the map
π : X → X/∼ is uniformly continuous.

The intersection of all entourages of X/∼ is the
diagonal: two points that are U -close for each
entourage U are equal.
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Completion of a uniform space

A uniform space is complete if every Cauchy filter is
converging. Every Hausdorff uniform space X
admits a unique completion (up to isomorphism).

More precisely, X is a dense subspace of a complete
Hausdorff uniform space X̂ having the following
universal property: every uniformly continuous
mapping ϕ : X → Y , where Y is a complete
Hausdorff uniform space, has a unique uniformly
continuous extension ϕ̂ : X̂ → Y .
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Pervin uniformities

Let L be a Boolean algebra of subsets of X. For
each L ∈ L, consider the entourage

VL = (L × L) ∪ (Lc × Lc)

Two elements x
and y are L-close iff
x ∈ L ⇐⇒ y ∈ L.

L

L

Lc

Lc

The uniformity generated by the VL, for L ∈ L, is
the Pervin uniformity defined by L.
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Examples

Let X be a finite set. Then the Pervin uniformity
defined by P(X) contains the diagonal and hence is
equal to the discrete uniformity.

Let X be an infinite set. The Pervin uniformity
defined by P(X) does not contain the diagonal and
hence is different from the discrete uniformity.
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Blocks

A subset L of a uniform space X is a block if
(L × L) ∪ (Lc × Lc) is an entourage. They form a
Boolean algebra.

In particular, the blocks of the Pervin uniformity
defined by L are precisely the elements of L.

More generally, if a uniformity U is generated by a
basis B, the blocks of U are the elements of the
Boolean algebra generated by the blocks of B.
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Blocks are the uniform counterpart of clopen sets

Recall that the characteristic function of a subset L
of X is the function χL from X to {0, 1} defined by

χL(x) =

{
1 if x ∈ L

0 if x /∈ L

Proposition

Let X be a topological space. Then L is clopen iff

χL is continuous.

Let X be a uniform space. Then L is a block iff χL

is uniformly continuous.
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Compactness

A space X is totally bounded if, for each entourage
U , there is a finite cover of X by U -small sets.

Fact. The completion of a uniform space is
compact iff it is totally bounded.

Proposition

Any Pervin space is totally bounded.

For instance, the completion of (X,UP(X)) is
compact even if X is infinite.
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Uniform continuity

Let X and Y be uniform spaces. A function
ϕ : X → Y is uniformly continuous if, for each
entourage V of Y , (ϕ × ϕ)−1(V ) is an entourage of
X.

Proposition

Let (X,UK) and (Y,UL) be two Pervin spaces. A

function ϕ : X → Y is uniformly continuous iff for

each L ∈ L, ϕ−1(L) ∈ K.
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Pervin uniformities and duality

Theorem

Let L be a Boolean algebra of subsets of X. The

completion of a space X for the Pervin uniformity

defined by L is equal to the Stone dual of L.

In particular, the completion of X for the Pervin
uniformity defined by P(X) is equal to the
Stone-Čech compactification of X.
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Part II

Recognition
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Recognition

Let M be a monoid and let L be a subset of M . We
say that L is recognized by a surjective morphism of
monoid ϕ : M → N if there is a subset P of N such
that L = ϕ−1(P ).

By extension, we say that N recognizes L if there
exists a morphism ϕ : M → N that recognizes L.

A subset L of M is said to be recognizable if it is
recognized by some finite monoid.
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Syntactic monoid of a subset

Let L be a subset of a monoid M . The syntactic
congruence of L is the relation ∼L defined on M
by: u ∼L v iff, for all x, y ∈ M ,

xuy ∈ L ⇐⇒ xvy ∈ L

The quotient monoid M/∼L is called the syntactic
monoid of L.

Universal property. A monoid N recognizes L iff
the syntactic monoid of L is a homomorphic image
of N .
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Subsets recognized by a morphism

Note that if ϕ : M → N is a morphism, the subsets
of M recognized by ϕ form a Boolean algebra.
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Subsets recognized by a morphism

Note that if ϕ : M → N is a morphism, the subsets
of M recognized by ϕ form a Boolean algebra.

Boolean algebra,

you said Boolean

algebra? Then it

has a dual !
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Subsets recognized by a morphism

Note that if ϕ : M → N is a morphism, the subsets
of M recognized by ϕ form a Boolean algebra.

Boolean algebra,

you said Boolean

algebra? Then it

has a dual !

That’s the way its all started. . .
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Duality comes in. . .

Let L be a subset of a monoid M and let x, y ∈ M .
The quotient of L by x and y is the subset

x−1Ly−1 = {u ∈ M | xuy ∈ L}

It was shown in Mai’s lecture than the syntactic
monoid of a recognizable subset L of M is the dual
space of the Boolean algebra generated by the sets
x−1Ly−1, for x, y ∈ M .

One can actually consider the dual space of any
Boolean algebra of subsets of M closed under
quotients.
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Translations and quotients

Let L be a Boolean algebra of subsets of a monoid
M . Let UL be the Pervin uniformity defined by L.

Proposition

The translations x 7→ xs and x 7→ sx are

UL-uniformly continuous for each s ∈ M iff L is

closed under quotients.

A monoid in which the translations are uniformly
continuous is called a semiuniform monoid.
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Syntactic congruence

Let ∼L be the relation on M defined by u ∼L v iff,
for all L ∈ L, for all x, y ∈ M ,

xuy ∈ L ⇐⇒ xvy ∈ L

Then ∼L is the intersection of all entourages of L.

Thus M/∼L is the Hausdorff quotient of the Pervin
space (M,UL) and the canonical map M → M/∼L

is uniformly continuous. But ∼L is also a monoid
congruence and the monoids M and M/∼L are
both semiuniform.
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Minimum recognizer

The semiuniform monoid M/∼L is called the
minimum recognizer of L in M .

To state the universal property of this object, we
have to define the category of Pervin monoids. Let
(M,K) and (N,L) be two Pervin monoids. A
morphism from M to N is a uniformly continuous
monoid morphism such that ϕ(K) = L.

The latter condition is mandatory: uniformly
continuous maps do not suffice in this theory.
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Universal property of the minimum recognizer

Definition. A semiuniform monoid N recognizes a
Boolean algebra L of subsets of M closed under
quotients if there is a surjective morphism of Pervin
monoids ϕ : (M,L) → (N, ϕ(L)).

This condition implies that the lattices L and ϕ(L)
are isomorphic.

Universal property. A semiuniform monoid N
recognizes L iff the minimum recognizer of L is a
homomorphic image of N .
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Syntactic space

Definition. The syntactic space of a Boolean
algebra closed under quotient is the completion of
its minimum recognizer.

Theorem

The syntactic space of a Boolean algebra closed

under quotient is isomorphic to its Stone dual.

In particular, the syntactic space of a Boolean
algebra closed under quotient is always compact.
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The case of a single recognizable set

If L is a recognizable subset of M , its syntactic
space is finite and its uniform structure is discrete
(and hence useless!). It is equal to its completion.

This explains why, for recognizable sets, only the
algebraic properties of the syntactic monoid are
important.
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Comparing the two approaches

In the classical theory, we just have the algebraic
notion of a syntactic monoid, which applies to a
single subset of M . In our new approach,

• the notion of a minimum recognizer extends
that of a syntactic monoid. It can be applied
to any Boolean algebra of subsets of M .

• It is a topological notion. The minimum
recognizer is a Pervin space and its completion,
the syntactic space, is always compact.

The minimum recognizer is a semi-uniform monoid,
but in general, the product (u, v) → uv is not
uniformly continuous.
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When is the product uniformly continuous?

Theorem

Let L be a Boolean algebra of subsets of M closed

under quotients. TFCAE:

(1) its minimum recognizer is a uniform monoid,

(2) the closure of the product of its minimum

recognizer is functional,

(3) its syntactic space is a compact monoid,

(4) the elements of L are all recognizable.
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Two examples

Theorem

The syntactic space of Rec(M) is the profinite

monoid on M .

One can define the profinite monoid on M as the
projective limit of the directed system all morphisms
from M to a finite monoid.

Theorem

The syntactic space of P(M) is βM , the

Stone-Čech compactification of M .
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Another example

Let M = (Z, +) and let L be the Boolean algebra
of finite or cofinite subsets of Z. The associated
Pervin completion of Z is Ẑ = Z ∪ {∞}: the Z part
corresponds to the principal ultrafilters on L and ∞
is the ultrafilter of cofinite subsets of Z.

The closure of the addition on Z is the relation +̂

+̂ i ∞

j {i + j} {∞}

∞ {∞} Ẑ
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Extension to lattices

This theory extends from Boolean algebras to
lattices of subsets. One needs quasi-uniformities. In
particular, the Pervin quasi-uniformity associated
with a lattice of subsets L is generated by the sets

VL = (Lc × X) ∪ (X × L)

for each L ∈ L.

If L is closed under quotients, the minimal
recognizer is an ordered monoid. For a recognizable
language, one gets the syntactic ordered monoid.
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Equations

Theorem

A set of recognizable languages of A∗ is a Boolean

algebra closed under quotients iff it can be defined

by a set of equations of the form u = v, where u, v
are profinite words.

Theorem

A set of languages of A∗ is a Boolean algebra closed

under quotients iff it can be defined by a set of

equations of the form u = v, where u, v ∈ βA∗.
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Equations: the recognizable case

If L is a Boolean algebra of recognizable languages,
its syntactic space is by duality a quotient of the
syntactic space of Rec(A∗), i.e. the free profinite

monoid Â∗.

A quotient space is defined by identifying points.

Let (u, v) be a pair of elements of Â∗. We say that
L satisfies the equation u = v if, for all L ∈ L and
for all x, y ∈ A∗, the conditions xuy ∈ L and
xvy ∈ L are equivalent.

This is equivalent to state that η̂(u) = η̂(v), where
η : A∗ → ML is the minimum recognizing map of L.
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Equations: the general case

If L is a Boolean algebra of languages, then its
syntactic space is a quotient of the syntactic space
of P(A∗), namely βA∗.

Let (u, v) be a pair of elements of βA∗. We say
that L satisfies the equation u = v if, for all L ∈ L
and for all x, y ∈ A∗ the conditions xuy ∈ L and
xvy ∈ L are equivalent.

This is equivalent to state that η̂(u) = η̂(v), where
η : A∗ → ML is the minimum recognizing map of L.
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Part III

Applications to logic
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Logic on words

To each nonempty word u = a1 · · · an is associated
a structure

Mu = ({1, 2, . . . , n}, (a)a∈A)

where a is a predicate symbol interpreted as the set
of positions i such that the i-th letter of u is an a.

If u = abbaab, then Dom(u) = {1, 2, 3, 4, 5, 6},
a = {1, 4, 5} and b = {2, 3, 6}.

We also use the relation symbol < with its usual
interpretation on the integers.
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Some examples

The language defined by a sentence ϕ is

L(ϕ) = {u ∈ A∗ | Mu satisfies ϕ}

For instance the sentence ∃x ax defines the
language A∗aA∗.

The formula ∃x ∃y (x < y) ∧ ax ∧ by defines the
language A∗aA∗bA∗.

The formula ∃x ∀y (x < y) ∨ (x = y) ∧ ax defines
the language aA∗.



LIAFA, CNRS and University Paris Diderot

Characterization of some logical fragments

Theorem [Büchi 1960, Elgot 1961]
A language is MSO[<, a]-definable iff it is
recognizable.

Def. If x is a profinite word, then the sequence xn!

is Cauchy and converges to a profinite word xω.

Theorem [Schützenberger 65 + McNaughton 71]
A language is FO[<, a]-definable iff its syntactic
monoid satisfies the profinite equation xω+1 = xω.

Corollary. One can effectively decide whether a
given recognizable language is FO[<, a]-definable.
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Aperiodic and quasi-aperiodic monoids

Let MOD be the set of modular predicates, e.g.
x ≡ 1 mod 6.

Theorem [Barrington et al. 1992]
A language is FO[<,MOD, a]-definable iff its
syntactic monoid satisfies the profinite equation
(xω−1y)ω = (xω−1y)ω+1 for all words x, y of the
same length.
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Logic and circuit complexity

Let N be the class of all numerical predicates.
Then the FO[N ]-definable languages of A∗ form a
Boolean algebra, whose syntactic space is βN.

It is known that FO[N , a] defines AC0, the class of
languages computed by unbounded fanin,
polynomial size, constant-depth Boolean circuits.

What is the syntactic space of the Boolean algebra
of all FO[N , a]-definable languages?
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Beyond recognizable languages

It is also known that

FO[N , a] ∩ Rec(A∗) = FO[<,MOD, a]

Is it possible to prove this result by using syntactic
spaces?

This would permit to attack difficult conjectures in
circuit complexity.
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