Topological groupoid quantales: a non étale setting

Alessandra Palmigiano, Riccardo Re

10 June 2010

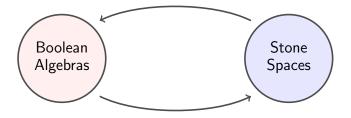
Alessandra Palmigiano, Riccardo Re Topological groupoid quantales: a non étale setting

A Stone-type setting

æ

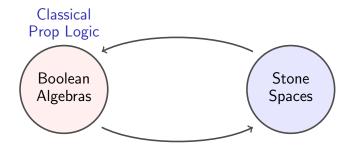
< ∃ →

A Stone-type setting



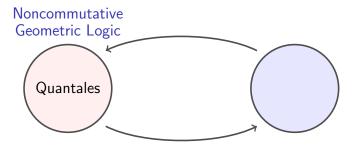
æ

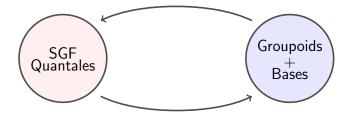
伺 ト イヨト イヨト



э

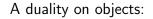
伺 ト く ヨ ト く ヨ ト

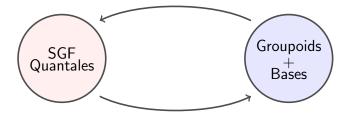




э

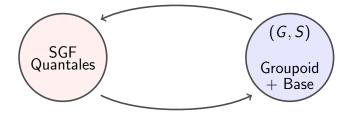
A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



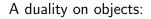


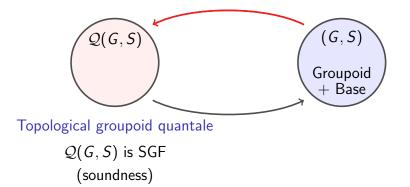
SGF-axioms: 1-3

< ≣ > <

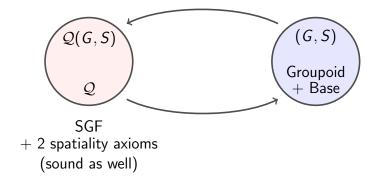


→ Ξ → < Ξ</p>

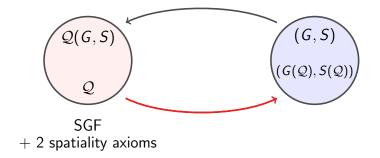




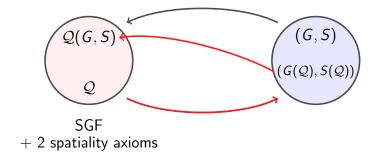
3 N



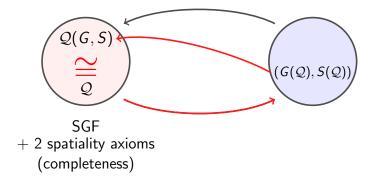
.⊒ . ►

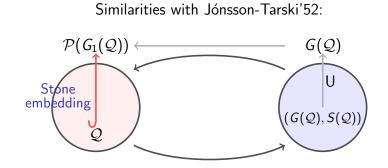


< ∃ >



< ∃ >





Alessandra Palmigiano, Riccardo Re Topological groupoid quantales: a non étale setting

A B > A B >

3

æ

э

・日・ ・ ヨ・・

Set Groupoids: small categories where every arrow is an iso

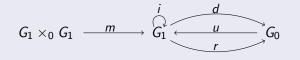
Image: Image:

Set Groupoids: small categories where every arrow is an iso

Set Groupoids are tuples

$$G = (G_0, G_1, m, d, r, u, i)$$

s.t. G_0 and G_1 are sets, and:

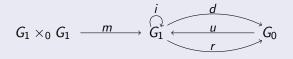


Set Groupoids: small categories where every arrow is an iso

Set Groupoids are tuples

$$G = (G_0, G_1, m, d, r, u, i)$$

s.t. G_0 and G_1 are sets, and:



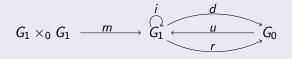
Topological Groupoids: Groupoids in Top.

Set Groupoids: small categories where every arrow is an iso

Set Groupoids are tuples

$$G = (G_0, G_1, m, d, r, u, i)$$

s.t. G_0 and G_1 are sets, and:



Topological Groupoids: Groupoids in Top.

Our setting is intermediate:

Set groupoids such that G_0 is a sober space.

Alessandra Palmigiano, Riccardo Re

Topological groupoid quantales: a non étale setting

直 と く ヨ と く ヨ と

• U is an open set of G_0 ;

A B > A B >

- U is an open set of G_0 ;
- $d \circ s = id_U$, and

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- U is an open set of G₀;
- $d \circ s = \mathrm{id}_U$, and
- r ∘ s : U → V is a partial homeomorphism of G₀ (i.e. U, V homeomorphic open sets via r ∘ s).

- U is an open set of G_0 ;
- $d \circ s = \mathrm{id}_U$, and
- r ∘ s : U → V is a partial homeomorphism of G₀ (i.e. U, V homeomorphic open sets via r ∘ s).

A G-set is the image of some local bisection of G.

- U is an open set of G_0 ;
- $d \circ s = \mathrm{id}_U$, and
- r ∘ s : U → V is a partial homeomorphism of G₀ (i.e. U, V homeomorphic open sets via r ∘ s).

A G-set is the image of some local bisection of G.

Remark: Because $d \circ s = id_U$, local bisections are completely determined by their *G*-sets.

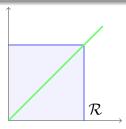
- U is an open set of G_0 ;
- $d \circ s = \mathrm{id}_U$, and
- r ∘ s : U → V is a partial homeomorphism of G₀ (i.e. U, V homeomorphic open sets via r ∘ s).

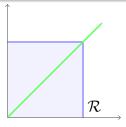
A G-set is the image of some local bisection of G.

Remark: Because $d \circ s = id_U$, local bisections are completely determined by their *G*-sets.

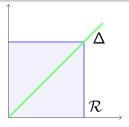
Fact: G-sets naturally form a (unital) inverse semigroup.

-



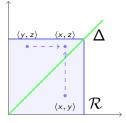


 $(G_0, G_1, \cdot, d, r, u, -1)$



$$(G_0, G_1, \cdot, d, r, u, ^{-1})$$

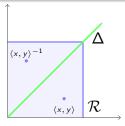
 $\Delta = G_0 \qquad \mathcal{R} = G_1$



$$(G_0, G_1, \cdot, d, r, u, ^{-1})$$

 $\Delta = G_0 \qquad \mathcal{R} = G_1$
 $\langle x, y \rangle \cdot \langle y, z \rangle = \langle x, z \rangle$

Groupoids are the categorification of equivalence relations:



$$(G_0, G_1, \cdot, d, r, u, {}^{-1})$$

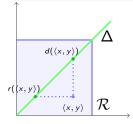
$$\Delta = G_0 \qquad \mathcal{R} = G_1$$

$$\langle x, y \rangle \cdot \langle y, z \rangle = \langle x, z \rangle$$

$$\langle x, y \rangle^{-1} = \langle y, x \rangle$$

Groupoids are the categorification of equivalence relations:

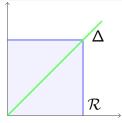
a



$$(G_0, G_1, \cdot, d, r, u, {}^{-1})$$
$$\Delta = G_0 \qquad \mathcal{R} = G_1$$
$$\langle x, y \rangle \cdot \langle y, z \rangle = \langle x, z \rangle$$
$$\langle x, y \rangle^{-1} = \langle y, x \rangle$$
$$\mathcal{U}(\langle x, y \rangle) = \langle x, x \rangle \ r(\langle x, y \rangle) = \langle y, y \rangle$$

Groupoids are the categorification of equivalence relations:

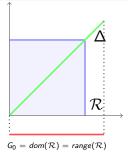
0



$$\begin{array}{l} (G_0, G_1, \cdot, d, r, u, {}^{-1}) \\ \Delta = G_0 \qquad \mathcal{R} = G_1 \\ \langle x, y \rangle \cdot \langle y, z \rangle = \langle x, z \rangle \\ \langle x, y \rangle^{-1} = \langle y, x \rangle \\ \ell(\langle x, y \rangle) = \langle x, x \rangle \ r(\langle x, y \rangle) = \langle y, y \rangle \\ u : \Delta \subset \mathcal{R}; \ \text{alternatively} \end{array}$$

Groupoids are the categorification of equivalence relations:

d

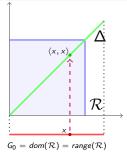


$$\begin{array}{l} \left(G_{0}, G_{1}, \cdot, d, r, u, ^{-1}\right) \\ \Delta = G_{0} \qquad \mathcal{R} = G_{1} \\ \langle x, y \rangle \cdot \langle y, z \rangle = \langle x, z \rangle \\ \langle x, y \rangle^{-1} = \langle y, x \rangle \\ \mathcal{I}(\langle x, y \rangle) = \langle x, x \rangle \ r(\langle x, y \rangle) = \langle y, y \rangle \\ u : \Delta \subset \mathcal{R}; \text{ alternatively} \end{array}$$

Groupoids and equivalence relations

Groupoids are the categorification of equivalence relations:

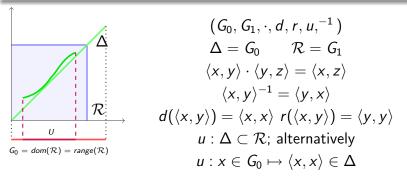
0



$$\begin{array}{l} \left(G_{0},G_{1},\cdot,d,r,u,^{-1}\right)\\ \Delta=G_{0} \qquad \mathcal{R}=G_{1}\\ \langle x,y\rangle\cdot\langle y,z\rangle=\langle x,z\rangle\\ \langle x,y\rangle^{-1}=\langle y,x\rangle\\ l(\langle x,y\rangle)=\langle x,x\rangle \ r(\langle x,y\rangle)=\langle y,y\rangle\\ u:\Delta\subset\mathcal{R}; \ \text{alternatively}\\ u:x\in G_{0}\mapsto\langle x,x\rangle\in\Delta \end{array}$$

Groupoids and equivalence relations

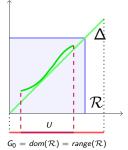
Groupoids are the categorification of equivalence relations:



G-sets are graphs of partial homeomorphisms of Δ as subrel's of \mathcal{R} .

Groupoids and equivalence relations

Groupoids are the categorification of equivalence relations:



$$\begin{array}{l} \left(G_{0},G_{1},\cdot,d,r,u,^{-1}\right)\\ \Delta=G_{0} \qquad \mathcal{R}=G_{1}\\ \langle x,y\rangle\cdot\langle y,z\rangle=\langle x,z\rangle\\ \langle x,y\rangle^{-1}=\langle y,x\rangle\\ d(\langle x,y\rangle)=\langle x,x\rangle \ r(\langle x,y\rangle)=\langle y,y\rangle\\ u:\Delta\subset\mathcal{R}; \ \text{alternatively} \end{array}$$

G-sets are graphs of partial homeomorphisms of Δ as subrel's of \mathcal{R} .

A restriction of our setting:

 G_1 is covered by G-sets.

Alessandra Palmigiano, Riccardo Re Topological groupoid quantales: a non étale setting

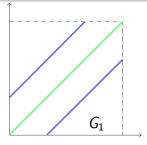
э

Intuitively, they are 'thin' and 'combed':

Image: Image:

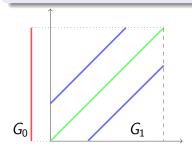
э

Intuitively, they are 'thin' and 'combed':



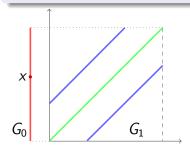
 $(G_0, G_1, \cdot, -1, d, r, u)$

Intuitively, they are 'thin' and 'combed':



$$(G_0, G_1, \cdot, ^{-1}, d, r, u)$$

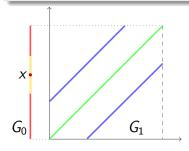
Intuitively, they are 'thin' and 'combed':



$$(G_0, G_1, \cdot, ^{-1}, d, r, u)$$

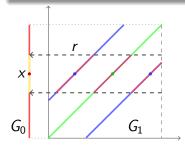
for every $x \in G_0$

Intuitively, they are 'thin' and 'combed':



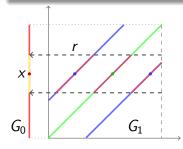
 $(G_0, G_1, \cdot, {}^{-1}, d, r, u)$ for every $x \in G_0$ there exists $U \ni x$ open, s.t.

Intuitively, they are 'thin' and 'combed':

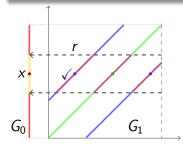


 $(G_0, G_1, \cdot, {}^{-1}, d, r, u)$ for every $x \in G_0$ there exists $U \ni x$ open, s.t. $r^{-1}[U] = \biguplus_i V_i, V_i$ open in G_0

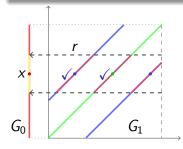
Intuitively, they are 'thin' and 'combed':



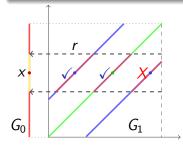
Intuitively, they are 'thin' and 'combed':



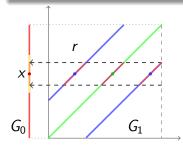
Intuitively, they are 'thin' and 'combed':



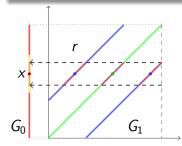
Intuitively, they are 'thin' and 'combed':



Intuitively, they are 'thin' and 'combed':



Intuitively, they are 'thin' and 'combed':

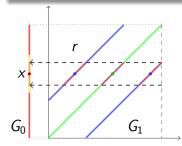


 $(G_0, G_1, \cdot, {}^{-1}, d, r, u)$ for every $x \in G_0$ there exists $U \ni x$ open, s.t. $r^{-1}[U] = \biguplus_i V_i, V_i$ open in G_1 $\forall i, r : V_i \rightarrow U$ homeomorphism

<u>Fact</u>: If G_0 is locally compact then:

- if G is étale, the G-sets form a base for the topology of G_1 .
- If the topology of G_1 has a base of G-sets, then G is étale.

Intuitively, they are 'thin' and 'combed':



 $(G_0, G_1, \cdot, {}^{-1}, d, r, u)$ for every $x \in G_0$ there exists $U \ni x$ open, s.t. $r^{-1}[U] = \biguplus_i V_i, V_i$ open in G_1 $\forall i, r : V_i \rightarrow U$ homeomorphism

<u>Fact</u>: If G_0 is locally compact then:

- if G is étale, the G-sets form a base for the topology of G_1 .
- If the topology of G_1 has a base of G-sets, then G is étale.

If \mathcal{R} étale, partial homeom's of Δ can only intersect over opens.

Let G be a groupoid and S(G) be the collection of its G-sets.

э

Let G be a groupoid and S(G) be the collection of its G-sets. Assume that $G_1 = \bigcup S(G)$.

3

Let G be a groupoid and S(G) be the collection of its G-sets. Assume that $G_1 = \bigcup S(G)$. Let $E = u[G_0]$.

• • = • • = •

3

Let G be a groupoid and S(G) be the collection of its G-sets. Assume that $G_1 = \bigcup S(G)$. Let $E = u[G_0]$.

A selection base for G is a family S of G-sets s.t.:

伺 ト イヨト イヨト

Let G be a groupoid and S(G) be the collection of its G-sets. Assume that $G_1 = \bigcup S(G)$. Let $E = u[G_0]$.

A selection base for G is a family S of G-sets s.t.:

• S is a sub inverse monoid of S(G);

Let G be a groupoid and S(G) be the collection of its G-sets. Assume that $G_1 = \bigcup S(G)$. Let $E = u[G_0]$.

A selection base for G is a family S of G-sets s.t.:

- S is a sub inverse monoid of S(G);
- $u[U] \in S$ for every open set U in G_0 ;

- A 🖻 🕨 - A

Let G be a groupoid and S(G) be the collection of its G-sets. Assume that $G_1 = \bigcup S(G)$. Let $E = u[G_0]$.

A selection base for G is a family S of G-sets s.t.:

- S is a sub inverse monoid of S(G);
- $u[U] \in S$ for every open set U in G_0 ;
- for every $\mathcal{X} \subseteq S$, if $S \cdot T^* \subseteq E$ and $S^* \cdot T \subseteq E$ for every $S, T \in \mathcal{X}$, then $\bigcup \mathcal{X} \in S$.

Let G be a groupoid and S(G) be the collection of its G-sets. Assume that $G_1 = \bigcup S(G)$. Let $E = u[G_0]$.

A <u>selection base</u> for G is a family S of G-sets s.t.:

- S is a sub inverse monoid of S(G);
- $u[U] \in S$ for every open set U in G_0 ;
- for every $\mathcal{X} \subseteq S$, if $S \cdot T^* \subseteq E$ and $S^* \cdot T \subseteq E$ for every $S, T \in \mathcal{X}$, then $\bigcup \mathcal{X} \in S$.
- for every $S, T \in S$, $\{p \in G_0 \mid s(p) = t(p)\}$ is union of locally closed subsets of G_0 ;

通 と イ ヨ と イ ヨ と

Let G be a groupoid and S(G) be the collection of its G-sets. Assume that $G_1 = \bigcup S(G)$. Let $E = u[G_0]$.

A selection base for G is a family S of G-sets s.t.:

- S is a sub inverse monoid of S(G);
- $u[U] \in S$ for every open set U in G_0 ;
- for every $\mathcal{X} \subseteq S$, if $S \cdot T^* \subseteq E$ and $S^* \cdot T \subseteq E$ for every $S, T \in \mathcal{X}$, then $\bigcup \mathcal{X} \in S$.
- for every $S, T \in S$, $\{p \in G_0 \mid s(p) = t(p)\}$ is union of locally closed subsets of G_0 ;
- S covers G_1 .

伺 ト イ ヨ ト イ ヨ ト

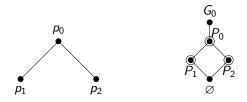
Let G be a groupoid and S(G) be the collection of its G-sets. Assume that $G_1 = \bigcup S(G)$. Let $E = u[G_0]$.

A <u>selection base</u> for G is a family S of G-sets s.t.:

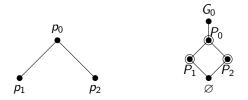
- S is a sub inverse monoid of S(G);
- $u[U] \in S$ for every open set U in G_0 ;
- for every $\mathcal{X} \subseteq S$, if $S \cdot T^* \subseteq E$ and $S^* \cdot T \subseteq E$ for every $S, T \in \mathcal{X}$, then $\bigcup \mathcal{X} \in S$.
- for every $S, T \in S$, $\{p \in G_0 \mid s(p) = t(p)\}$ is union of locally closed subsets of G_0 ;

• S covers G_1 .

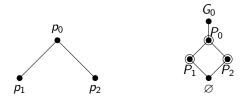
Selection bases: in general not topological bases



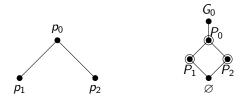
э



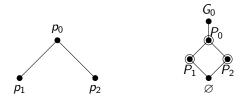
Group acting on X: $G = \{\varphi, id_X\}$, where $(\varphi(p_0) = p_0, \varphi(p_1) = p_2, \varphi(p_2) = p_1)$



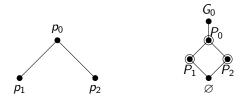
Group acting on X: $G = \{\varphi, id_X\}$, where $(\varphi(p_0) = p_0, \varphi(p_1) = p_2, \varphi(p_2) = p_1)$ X as a groupoid: $(G_0, R), R = \Delta \cup \{(p_1, p_2), (p_2, p_1)\}$



Group acting on X: $G = \{\varphi, id_X\}$, where $(\varphi(p_0) = p_0, \varphi(p_1) = p_2, \varphi(p_2) = p_1)$ X as a groupoid: $(G_0, R), R = \Delta \cup \{(p_1, p_2), (p_2, p_1)\}$ selection base: all the restrictions of φ, id_X to opens



Group acting on X: $G = \{\varphi, id_X\}$, where $(\varphi(p_0) = p_0, \varphi(p_1) = p_2, \varphi(p_2) = p_1)$ X as a groupoid: $(G_0, R), R = \Delta \cup \{(p_1, p_2), (p_2, p_1)\}$ selection base: all the restrictions of φ, id_X to opens graphs of φ and id_X coincide over $\{(p_0, p_0)\}$:



Group acting on X: $G = \{\varphi, id_X\}$, where $(\varphi(p_0) = p_0, \varphi(p_1) = p_2, \varphi(p_2) = p_1)$ X as a groupoid: $(G_0, R), R = \Delta \cup \{(p_1, p_2), (p_2, p_1)\}$ selection base: all the restrictions of φ, id_X to opens graphs of φ and id_X coincide over $\{(p_0, p_0)\}$: not a G-set $(\{p_0\} \text{ closed not open})$

Unital involutive quantales

-

Unital involutive quantales

Unital involutive quantales

Quantales: complete \bigvee -semilattices

noncommutative

associative, completely distributive:

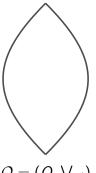
Quantales: complete V-semilattices

noncommutative

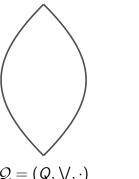
associative, completely distributive:

$$c \cdot \bigvee S = \bigvee_{s \in S} c \cdot s$$

$$\bigvee S \cdot c = \bigvee_{s \in S} s \cdot c$$



 $\mathcal{Q} = (\mathcal{Q}, \bigvee, \cdot)$ quantale



Quantales: complete V-semilattices

noncommutative

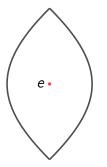
associative, completely distributive:

$$c \cdot \bigvee S = \bigvee_{s \in S} c \cdot s$$

$$\bigvee S \cdot c = \bigvee_{s \in S} s \cdot c$$

 $\mathcal{Q} = (Q, \bigvee, \cdot)$ quantale

Every quantale is a complete (non distributive) lattice



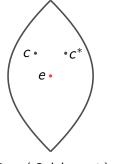
Quantales: complete V-semilattices

noncommutative

associative, completely distributive:

$$c \cdot \bigvee S = \bigvee_{s \in S} c \cdot s$$
$$\bigvee S \cdot c = \bigvee_{s \in S} s \cdot c$$
product unit: $c \cdot e = c = e \cdot c$

 $\mathcal{Q} = (\mathcal{Q}, \bigvee, \cdot, e)$ unital quantale



 $Q = (Q, \bigvee, \cdot, e,^*)$ unital involutive quantale

noncommutative

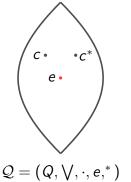
associative, completely distributive:

$$c \cdot \bigvee S = \bigvee_{s \in S} c \cdot s$$

$$\bigvee S \cdot c = \bigvee_{s \in S} s \cdot c$$

product unit: $c \cdot e = c = e \cdot c$

involution: $c^{**} = c$ $(c \cdot q)^* = q^* \cdot c^*$ $(\bigvee S)^* = \bigvee_{s \in S} s^*$



unital involutive quantale

noncommutative

associative, completely distributive:

$$c \cdot \bigvee S = \bigvee_{s \in S} c \cdot s$$

$$\bigvee S \cdot c = \bigvee_{s \in S} s \cdot c$$

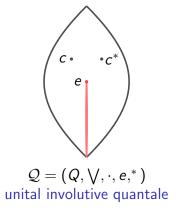
product unit: $c \cdot e = c = e \cdot c$

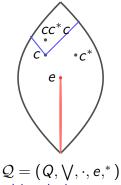
involution: $c^{**} = c$ $(c \cdot q)^* = q^* \cdot c^*$ $(\bigvee S)^* = \bigvee_{s \in S} s^*$

For every groupoid G, $(\mathcal{P}(G_1), \bigcup, \cdot, ^{-1}, E)$ is a unital invol. quantale.

э

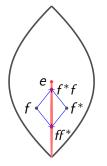
A B + A B +





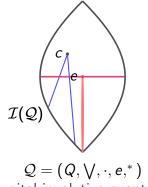
unital involutive quantale

SGF1: *c* < *cc***c*



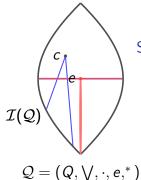
SGF1: $c \le cc^*c$ $\mathcal{I}(\mathcal{Q})$: functional invertible elements $ff^* \le e \quad f^*f \le e$

 $Q = (Q, \bigvee, \cdot, e^*)$ unital involutive quantale



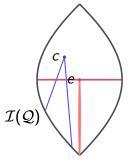
SGF1: $c \leq cc^*c$ SGF2: Q is \bigvee -generated by $\mathcal{I}(Q)$

unital involutive quantale



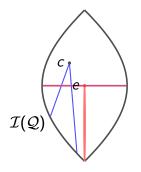
SGF1: $c \leq cc^*c$ SGF2: Q is \bigvee -generated by $\mathcal{I}(Q)$ SGF3: For any $f, g \in \mathcal{I}(Q)$ and $h \in Q_e$,

 $Q = (Q, \bigvee, \cdot, e,^*)$ unital involutive quantale



SGF1: $c \leq cc^*c$ SGF2: Q is \bigvee -generated by $\mathcal{I}(Q)$ SGF3: For any $f, g \in \mathcal{I}(Q)$ and $h \in Q_e$, if $f < h \cdot 1 \lor g$ then $f < h \cdot f \lor g$.

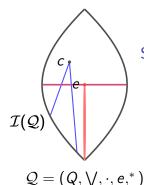
 $Q = (Q, \bigvee, \cdot, e^*)$ unital involutive quantale



SGF1: $c \leq cc^*c$ SGF2: Q is \bigvee -generated by $\mathcal{I}(Q)$ SGF3: For any $f, g \in \mathcal{I}(Q)$ and $h \in Q_e$, if $f \leq h \cdot 1 \lor g$ then $f \leq h \cdot f \lor g$.

For every G and S,

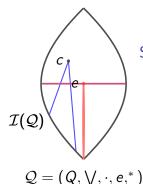
 $Q = (Q, \bigvee, \cdot, e^*)$ unital involutive quantale



SGF1: $c \leq cc^*c$ SGF2: Q is \bigvee -generated by $\mathcal{I}(Q)$ SGF3: For any $f, g \in \mathcal{I}(Q)$ and $h \in Q_e$, if $f \leq h \cdot 1 \lor g$ then $f \leq h \cdot f \lor g$.

> For every G and S, $\mathcal{Q}(G,S) \subseteq \mathcal{P}(G_1)$ \bigcup -generated by S.

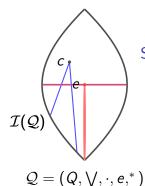
unital involutive quantale



unital involutive quantale

SGF1: $c \leq cc^*c$ SGF2: Q is \bigvee -generated by $\mathcal{I}(Q)$ SGF3: For any $f, g \in \mathcal{I}(Q)$ and $h \in Q_e$, if $f \leq h \cdot 1 \lor g$ then $f \leq h \cdot f \lor g$.

> For every G and S, $\mathcal{Q}(G, S) \subseteq \mathcal{P}(G_1)$ \bigcup -generated by S. Prop: $\mathcal{Q}(G, S)$ is SGF.



SGF1: $c \leq cc^*c$ SGF2: Q is \bigvee -generated by $\mathcal{I}(Q)$ SGF3: For any $f, g \in \mathcal{I}(Q)$ and $h \in Q_e$, if $f \leq h \cdot 1 \lor g$ then $f \leq h \cdot f \lor g$.

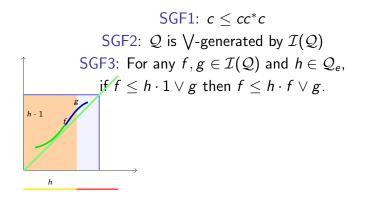
> For every G and S, $\mathcal{Q}(G, S) \subseteq \mathcal{P}(G_1)$ \bigcup -generated by S. Prop: $\mathcal{Q}(G, S)$ is SGF.

<u>Proof</u>: $S = \mathcal{I}(\mathcal{Q}(G, S)).$

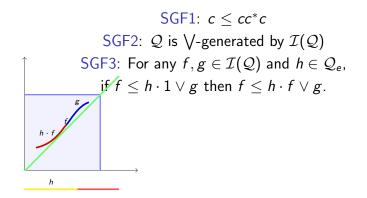
unital involutive guantale

SGF1: $c \leq cc^*c$ SGF2: Q is \bigvee -generated by $\mathcal{I}(Q)$ SGF3: For any $f, g \in \mathcal{I}(Q)$ and $h \in Q_e$, if $f \leq h \cdot 1 \lor g$ then $f \leq h \cdot f \lor g$.

<u>Proof</u>: S = I(Q(G, S)).



<u>Proof</u>: S = I(Q(G, S)).



<u>Proof</u>: S = I(Q(G, S)).

The groupoid $\overline{G(Q)}$

A ►

→ 3 → 4 3

æ

Let Q be an SGF-quantale. For every $f \in \mathcal{I}(Q)$ let $d(f) = ff^*$.

A B + A B +

Let Q be an SGF-quantale. For every $f \in \mathcal{I}(Q)$ let $d(f) = ff^*$. Let \mathcal{P}_e be the set of the *prime* elements of Q_e .

I ≡ ▶ < </p>

э

Let Q be an SGF-quantale. For every $f \in \mathcal{I}(Q)$ let $d(f) = ff^*$. Let \mathcal{P}_e be the set of the *prime* elements of Q_e .

 $\mathcal{I} := \{ (p, f) \in \mathcal{P}_e \times \mathcal{I}(\mathcal{Q}) \mid d(f) \leq p \}.$

伺 ト く ヨ ト く ヨ ト

The groupoid $G(\mathcal{Q})$

Let Q be an SGF-quantale. For every $f \in \mathcal{I}(Q)$ let $d(f) = ff^*$. Let \mathcal{P}_e be the set of the *prime* elements of Q_e .

$$\mathcal{I} := \{(p, f) \in \mathcal{P}_e \times \mathcal{I}(\mathcal{Q}) \mid d(f) \not\leq p\}.$$

The incidence relation \sim on \mathcal{I} :

同 ト イ ヨ ト イ ヨ ト

Let Q be an SGF-quantale. For every $f \in \mathcal{I}(Q)$ let $d(f) = ff^*$. Let \mathcal{P}_e be the set of the *prime* elements of Q_e .

$$\mathcal{I} := \{ (p, f) \in \mathcal{P}_e \times \mathcal{I}(\mathcal{Q}) \mid d(f) \not\leq p \}.$$

The <u>incidence relation</u> \sim on \mathcal{I} : $(p, f) \sim (q, g)$ iff

p = q and $h \not\leq p$ and $hf \leq pf \lor g$ for some $h \leq d(f) \land d(g)$.

伺 ト く ヨ ト く ヨ ト

Let Q be an SGF-quantale. For every $f \in \mathcal{I}(Q)$ let $d(f) = ff^*$. Let \mathcal{P}_e be the set of the *prime* elements of Q_e .

$$\mathcal{I} := \{ (p, f) \in \mathcal{P}_e \times \mathcal{I}(\mathcal{Q}) \mid d(f) \not\leq p \}.$$

The <u>incidence relation</u> \sim on \mathcal{I} : $(p, f) \sim (q, g)$ iff

p = q and $h \not\leq p$ and $hf \leq pf \lor g$ for some $h \leq d(f) \land d(g)$.

For every SGF-quantale Q, G(Q) is defined as follows:

Let Q be an SGF-quantale. For every $f \in \mathcal{I}(Q)$ let $d(f) = ff^*$. Let \mathcal{P}_e be the set of the *prime* elements of Q_e .

$$\mathcal{I} := \{ (p, f) \in \mathcal{P}_e \times \mathcal{I}(\mathcal{Q}) \mid d(f) \not\leq p \}.$$

The incidence relation \sim on \mathcal{I} : $(p, f) \sim (q, g)$ iff

p = q and $h \not\leq p$ and $hf \leq pf \lor g$ for some $h \leq d(f) \land d(g)$.

For every SGF-quantale Q, G(Q) is defined as follows:

$$G_0 = \mathcal{P}_e \qquad G_1 = \mathcal{I}/\sim$$

$$d([p, f]) = p, \quad r([p, f]) = f[p], \quad u(p) = [p, e],$$

$$[p, f][q, g] = [p, fg] \quad \text{only if} \quad q = f[p]$$

$$[p, f]^{-1} = [f[p], f^*].$$

Topological groupoid quantales: a non étale setting

Spatial quantales

æ

→ 3 → < 3</p>

直 と く ヨ と く ヨ と

$$\mathcal{I}_{[p,f]} = \{g \in \mathcal{I}(\mathcal{Q}) \mid d(g) \leq p ext{ or } (p,g)
eq (p,f)\}$$

直 と く ヨ と く ヨ と

$$\mathcal{I}_{[p,f]} = \{g \in \mathcal{I}(\mathcal{Q}) \mid d(g) \leq p \text{ or } (p,g) \not\sim (p,f)\}$$

$$I_{[p,f]} = \bigvee \mathcal{I}_{[p,f]}.$$

直 と く ヨ と く ヨ と

$$\mathcal{I}_{[p,f]} = \{g \in \mathcal{I}(\mathcal{Q}) \mid d(g) \leq p ext{ or } (p,g)
eq (p,f)\}$$

$$I_{[p,f]} = \bigvee \mathcal{I}_{[p,f]}.$$

Q is *spatial* if:

伺 ト く ヨ ト く ヨ ト

$${\mathcal I}_{[p,f]} = \{g \in {\mathcal I}({\mathcal Q}) \mid d(g) \leq p ext{ or } (p,g)
eq (p,f) \}$$

$$I_{[p,f]} = \bigvee \mathcal{I}_{[p,f]}.$$

 \mathcal{Q} is *spatial* if:

• for every $(p, f) \in \mathcal{I}$, $I_{[p, f]} \neq 1$.

伺 ト く ヨ ト く ヨ ト

$$\mathcal{I}_{[p,f]} = \{g \in \mathcal{I}(\mathcal{Q}) \mid d(g) \leq p \text{ or } (p,g)
eq (p,f)\}$$

$$I_{[p,f]} = \bigvee \mathcal{I}_{[p,f]}.$$

 \mathcal{Q} is *spatial* if:

for every (p, f) ∈ I, I_[p,f] ≠ 1.
For every a ∈ Q, a = ∧{I_[p,f] | a ≤ I_[p,f]}.

A 3 b

$${\mathcal I}_{[p,f]} = \{g \in {\mathcal I}({\mathcal Q}) \mid d(g) \leq p ext{ or } (p,g)
eq (p,f) \}$$

$$I_{[p,f]} = \bigvee \mathcal{I}_{[p,f]}.$$

 $\mathcal Q$ is *spatial* if:

for every (p, f) ∈ I, I_[p,f] ≠ 1.
For every a ∈ Q, a = ∧{I_[p,f] | a ≤ I_[p,f]}.

Prop: For every (G, S), $\mathcal{Q}(G, S)$ is spatial.

$${\mathcal I}_{[p,f]} = \{g \in {\mathcal I}({\mathcal Q}) \mid d(g) \leq p ext{ or } (p,g)
eq (p,f) \}$$

$$I_{[p,f]} = \bigvee \mathcal{I}_{[p,f]}.$$

 $\mathcal Q$ is *spatial* if:

for every (p, f) ∈ I, I_[p,f] ≠ 1.
For every a ∈ Q, a = ∧{I_[p,f] | a ≤ I_[p,f]}.

Prop: For every (G, S), $\mathcal{Q}(G, S)$ is spatial. Prop: If \mathcal{Q} spatial, then \mathcal{Q}_e spatial frame.

The canonical map

For every \mathcal{Q} , let $lpha : \mathcal{Q} \to \mathcal{P}(\mathcal{I}/\sim)$ $lpha(a) = \{[p, f] \mid a \not\leq l_{[p, f]}\}.$

伺 ト く ヨ ト く ヨ ト

For every Q, let $\alpha : Q \to \mathcal{P}(\mathcal{I}/\sim)$ $\alpha(a) = \{[p, f] \mid a \not\leq I_{[p, f]}\}.$

<u>Theorem</u>: α is a unital involutive quantale embedding.

For every \mathcal{Q} , let $\alpha : \mathcal{Q} \to \mathcal{P}(\mathcal{I}/\sim)$ $\alpha(a) = \{[p, f] \mid a \not\leq I_{[p, f]}\}.$

<u>Theorem</u>: α is a unital involutive quantale embedding.

 $\mathcal{Q}\cong\mathcal{Q}(\mathcal{G}(\mathcal{Q}),\mathcal{I}(\mathcal{Q}))$