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Prologue: Stone duality for Boolean algebras

Let BA denote the category of Boolean algebras and their

homomorphisms.

Let KHausZ denote the category of compact Hausdor�

zero-dimensional spaces � also known as Stone or Boolean

spaces � and all continous maps between pairs of them.

Theorem (M. Stone, 1937)

The categories BA and KHausZop are equivalent.

Reminder: A topological space X is

compact if every family of open sets covering X contains a

�nite subset that covers X ;

Hausdor� if every two distinct points of X are contained in

disjoint open sets; and

zero-dimensional if it has a basis of open sets that are also

closed (=clopen).
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The adjoint functors: the µ functor

Given a Boolean algebra B , let µ (B) denote the set of

maximal ideals of B .

Let the closed sets of µ (B) be precisely the ones of the

form

V (I ) = {m ∈ µ (B) | m ⊇ I } , (*)

as I ranges over all ideals of B .

Then µ (B) is a compact Hausdor� space, known as the

maximal spectrum of B ; the topology given by (*) is

known as the Zariski or as the hull-kernel topology.

It is zero-dimensional because {V (p) }, as p ranges over the

principal ideals of B , can be shown to be a basis of clopen

sets for µ (B).
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The adjoint functors: the C (X ) functor

Given a Boolean space X , let C (X ) denote the set of all

continuous functions f : X → {0, 1}, where {0, 1} is equipped

with the discrete topology (and so it is, in particular, a

Boolean space).

Since {0, 1} can also be regarded as a Boolean algebra in

the obvious (essentially unique) manner, we can lift the

operations ∧,∨,¬,⊤,⊥ of {0, 1} to C (X ) by pointwise

de�nitions, as follows.

(f ∨ g)(x ) = f (x )∨ g(x ) for all x ∈ X .
(⊤)(x ) = 1 for all x ∈ X .

Etc.

Then C (X ) is a Boolean algebra, and µ (C (X )) ∼= X .

Conversely, if B is any Boolean algebra, B ∼= C (µ (B)).
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Question

If we remove the assumption about zero-dimensionality, we are

left with the category KHaus of compact Hausdor� spaces and

their continuous maps.

How should we generalise Boolean algebras to regain a duality ?

Remarks.

Most work originating in logic is motivated by the specular

question: if you generalise Boolean algebras in a speci�ed

manner, what do you need to do on the topological side to

regain a duality?

Cf. e.g. Stone or Priestley duality for distributive lattices, Esakia

duality for Heyting algebras, Jónnson-Gehrke-Priestley duality

for certain expansions of distributive lattices (double

quasioperator algebras), etc.
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Caution: What is a duality, really?

A (categorical) duality is the same thing as a representation

theorem, except that you want to represent a whole category,

and not just a single mathematical structure.

Stone duality states that the opposite of KHausZ is

representable as BA, up to a categorical equivalence.

While Stone's result is a beautiful and useful representation

theorem, other representation theorems might well be trivial, or

suboptimal � each instance of a proposed duality must be

examined in its own right.

E.g. there always is a maximally uninformative way to

represent the opposite of a category C � namely, as Cop.

Less trivially, it is perfectly common that quite di�erent

representing categories for Cop exist.

We will presently see an instance of the latter statement for

KHaus.
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Gelfand duality: (real) C∗ algebras

Let X be a compact Hausdor� space.

The set

C (X ) = { f : X → ℝ , f continuous }

can be endowed with several di�erent structures, according to

which structure you choose to endow ℝ with.

For instance, under addition and multiplication, ℝ is a

(commutative) ring with unit element 1.

This structure can be lifted to C (X ) by de�ning operations

pointwise:

f + g is given by (f + g)(x ) = f (x ) + g(x ) for all x ∈ X .

fg is given by (fg)(x ) = f (x )g(x ) for all X ∈ X .

1 is given by 1(x ) = 1 for all x ∈ X .

Etc.
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Question: How much of the topology of X is algebraically

encoded by the ring C (X )?

Answer: all of it.

Points of X are in one-one correspondence with the

maximal ideals of the ring C (X ).

A basis of closed sets for the topology of X is given by the

vanishing loci (or zero sets) of ideals of functions:

V (I ) = { x ∈ X | f (x ) = 0 for all f ∈ I } ,

where I is an ideal of C (X ). (V (I ) is also called the hull

of I , whence `hull-kernel topology'.)

Cf. what we had for Boolean algebras:

V (I ) = {m ∈ µ (C (X )) | m ⊇ I } (*)

So X can be recovered from the abstract ring C (X ).
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Question: Can one characterise the commutative rings of

the form C (X ) for some compact Hausdor� space X ?

Answer: Yes.

This was achieved by Gelfand (1939) and Stone (1940),

independently.

The resulting normed rings are known as (real) C∗

algebras; I will not give details as we will not need them.

The category of C∗ algebras with their natural morphisms

is equivalent to KHausop.

This theorem is known as Gelfand duality for real C∗

algebras.

Note: By the term Gelfand duality one usually refers to

the complex-valued case; indeed, the `∗' in `C∗ algebras'

refers to the the action of complex conjugation on ℂ. The
real-valued case works beautifully too, although it is

somewhat less well known among analysts.
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Kakutani duality: M -spaces

Let X be a compact Hausdor� space.

The set

C (X ) = { f : X → ℝ , f continuous }

can be endowed with several di�erent structures, according to

which structure you choose to endow ℝ with.

For instance, under addition and scalar multiplication, ℝ is a

(real) vector space that comes endowed with the supremum

norm ||x ||∞ = |x |. In fact, with this norm ℝ is a Banach lattice.

This structure can be lifted to C (X ) by de�ning operations

pointwise:

f + g is given by (f + g)(x ) = f (x ) + g(x ) for all x ∈ X .

λf is given by (λf )(x ) = λf (x ) for all X ∈ X and all λ ∈ ℝ.
||f ||∞ = supx∈X ||f (x )|| for all x ∈ X .

Etc.
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Question: How much of the topology of X is algebraically

encoded by the Banach lattice C (X )?

Answer: all of it.

Question: Can one characterise the Banach lattices of the

form C (X ) for some compact Hausdor� space X ?

Answer: Yes. This was done by Kakutani (1940), and also

independently by Krein & Krein (1940). The resulting

class of Banach lattices is known as M-spaces.

Kakutani duality is the theorem that the category of

M -spaces with their natural morphisms is equivalent to

KHausop.

Note: Kakutani obtained a representation theorem for

objects; morphisms were explicitly dualised by

Banaschewski (1976).
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Vector lattices

We now embark on a somewhat more detailed description of yet

another duality theorem for KHaus.

This will be a variant of Kakutani duality, inspired by a

theorem of Yosida (1941), another important functional analyst.

This variant, however, is not trivial: the construction will show

how to relate KHausop to an algebraic category (in fact, a

variety with continuum-many unary operations).

I will indicate in the latter part of the talk that this has

important consequences.

A vector lattice (also known as a Riesz space) is a real vector

space V which is also a lattice, such that:

v ⩽ w ⇒ v + t ⩽ w + t for all v ,w , t ∈ V . (This is known
as translation invariance.)

λv ⩾ 0 whenever λ ∈ ℝ satis�es λ ⩾ 0, and v ⩾ 0.
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An element u ∈ V is a (strong order) unit if u ⩾ 0, and λu is

larger than any given element of V , for an appropriate choice of

λ ∈ ℝ.

Fix vector lattices V and W . A function f : V → W is a

morphism of vector lattices if it preserves the lattice and the

vector space structure.

If V is endowed with a distinguished unit u , I will call it

unital. If W also is unital with unit w , a morphism

f : V → W is unital if it preserves units, i.e. f (u) = w .

Let us write VectLat for the category of vector lattices and

their morphisms, and UVectLat for the category of unital

vector lattices and their unital morphisms.

So UVectLat is a subcategory of VectLat, but it is not full.

(Also, not all vector lattices admit a unit, so the inclusion

functor is not surjective on objects here.)
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The category VectLat is a variety, albeit with continuum-many

operations.

Indeed, translation invariance is equivalent to the distributivity

equations

a + (b ∧ c) = (a + b)∧ (b + c) ,

a + (b ∨ c) = (a + b)∨ (b + c) .

Further, for each real λ ∈ ℝ, let us introduce a unary operation

λ(⋅) to account for the scalar multiplication λv .

The fact that multiplication by positive scalars preserves

positivity is then expressed by the equation

λ(v ∨ w) = λ(v)∨ λ(w) ,

whenever λ ⩾ 0.

So VectLat indeed is a variety.
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By contrast, the category UVectLat is not a variety.

Indeed, the Archimedean property of the unit u , namely,

∀v ∈ V ∃λ ∈ ℝ λu ⩾ v

is not even axiomatisable at �rst order, by a standard

compactness argument.

And yet, UVectLat is categorically equivalent to a variety.

The proof of this fact is not trivial. Here are some hints at the

needed construction. (It may be useful to think of (V ,u) as

just (ℝ, 1) in the following.)

Consider the unit interval of V given by

[0,u ] = {v ∈ V | 0 ⩽ v ⩽ u} .

(This is not totally ordered, of course, despite the name

`interval'.)
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The proof of this fact is not trivial. Here are some hints at the

needed construction. (It may be useful to think of (V ,u) as

just (ℝ, 1) in the following.)

Consider the unit interval of V given by

[0,u ] = {v ∈ V | 0 ⩽ v ⩽ u} .

(This is not totally ordered, of course, despite the name

`interval'.)
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One can obtain an �addition� on [0,u ] by truncation:

v ⊕ w = (v + w)∧ u .

Scalar multiplication also induces an operation on [0,u ] by

restricting scalars to the real unit interval [0, 1] ⊆ ℝ:

λ ′(v) = λ(v) for all λ ∈ [0, 1] .

Finally, [0,u ] (unlike V ) can be endowed with an involution:

¬v = u − v .

The structures ([0,u ],⊕,¬, 0, λ ∈ [0, 1]) so obtained I shall call

Riesz MV-algebras. They do form a variety.

Notation: The category of Riesz MV-algebras is denoted

RieszMV. Morphisms are homomorphisms.
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Aside on MV-algebras

Introduced by C.C. Chang in 1959 as the equivalent algebraic

semantics of �ukasiewicz in�nite-valued propositional logic.

They are a non-idempotent generalisation of Boolean algebras.

They form a variety (with �nitely many operations of �nite

arity).

Riesz MV-algebras are, loosely speaking, �MV-algebras with

real coe�cients�.

Riesz MV-algebras also form a variety, as mentioned, albeit

with continuum-many additional unary operations for scalar

multiplication.

In this talk, Riesz MV-algebras are an important technical tool,

but I am not concerned with the theory of MV-algebras per se.
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Equational characterisation of unital vector lattices

Consider the unital vector lattice (V ,u).

Question: How much of the structure of (V ,u) is encoded

by the associated Riesz MV-algebra [0,u ] ?

Answer: all of it. (!)

In fact, The correspondence (V ,u) 7→ [0,u ] can be made

into a functor from unital vector lattices to Riesz

MV-algebras, and the following holds:

Lemma

The unit-interval functor (V ,u) 7→ [0,u ] is part of an

equivalence. That is, RieszMV (Riesz MV-algebras) is

equivalent to UVectLat (unital vector lattices).

Why do we care about this? Where are compact Hausdor�

spaces? Where is Kakutani duality gone?
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Back to Kakutani duality

Consider again the unital vector lattice (V ,u).

For v ∈ V , the absolute value of v is

|v | = v ∨−v

Now call the (unit) norm of v the non-negative number

inf {λ ∈ ℝ | λu ⩾ |v |} .

This gives a map || ⋅ || : V → ℝ⩾0. Is it actually a norm on the

vector space V ?

No: it may happen that ||v || = 0 but v ∕= 0 � i.e. there may exist

non-zero vectors of zero length; this happens if v is an

�in�nitesimal vector�, in an appropriate sense.
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In the absence of in�nitesimals, || ⋅ || indeed is a norm.

Even in this case, though, V may well fail to be complete in

this norm, i.e. to be a Banach space w.r.t. || ⋅ ||.
Call a unital vector lattice (V ,u) norm-complete if (i) its unit

norm is a norm, and (ii) V is complete in that norm.

Write UCoVectLat for the category of unital, norm-complete

vector lattices. Morphisms are just the unital vector lattice

homomorphisms: we do not ask that they preserve || ⋅ ||. (It
turns out that homomorphisms are automatically contractions

w.r.t. || ⋅ ||.)
So: UCoVectLat is a full subcategory of UVectLat.

By the equivalence of unital vector lattices and Riesz

MV-algebras, there is a full subcategory of RieszMV

corresponding to UCoVectLat; let us call it CoRieszMV for

norm-complete Riesz MV-algebras.

Then: CoRieszMV is a full subcategory of RieszMV.
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Almost equational Kakutani duality

1 KHaus, compact Hausdor� spaces and continuous maps.

2 UVectLat, unital vector lattices and unital homomorphisms.

3 UCoVectLat, norm-complete unital vector lattices and unital

homomorphisms.

4 RieszMV, Riesz MV-algebras and homomorphisms.

5 CoRieszMV, norm-complete Riesz MV-algebras and

homomorphisms.

Theorem (I. Leustean & V. Marra, 2009)

The category KHausop is equivalent both to UCoVectLat

and to CoRieszMV.

Let me describe the functors that implement this duality; then

I will explain why I call it `almost equational'.
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The adjoint functors: the C (X ) functor

Given a compact Hausdor� space X , let C (X ) denote the

set of all continuous functions f : X → ℝ, where ℝ is

equipped with its Euclidean topology.

Since ℝ can also be regarded as a unital vector lattice with

unit 1, we can lift the operations +,∧,∨, λ(⋅), 1 and the

norm of ℝ to C (X ) as before.

Now, just as in ℝ every Cauchy sequence converges, C (X )

is complete in its unit norm. In fact its unit norm is just

the norm || ⋅ ||∞ of uniform convergence, and every

uniformly convergent sequence of functions has a

continuous limit.

This makes C (X ) into an object of UCoVectLat.
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As to morphisms, let f : X → Y be a continous map

between compact Hausdor� spaces.

Then there is an induced continuous contravariant function

C (f ) : C (Y ) → C (X ) given by composition with f :

g : Y → ℝ C (f )
=⇒ g ∘ f : X → ℝ .

It turns out that C (f ) : C (Y ) → C (X ) so de�ned is a

morphims of unital vector lattices.

This makes C : KHausop → UCoVectLat into a

functor.
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The adjoint functors: the µ functor

Given a unital norm-complete vector lattice (V ,u), let

µ (V ) denote the set of maximal ideals of V .

Here, ideals are those sublattice-subspaces that are kernels

of homomorphisms, and so are in bijection with

congruences in the usual manner; maximal ideals are, of

course, inclusion-maximal ideals.

Topologise µ (V ) using again the Zariski/hull-kernel

topology: closed sets are precisely those of the form

V (I ) = {m ∈ µ (V ) | m ⊇ I } , (*)

as I ranges over all ideals of V .

But (*) is not a zero-dimensional topology: {V (p) }, as p

ranges over the principal ideals of V , is indeed a basis of

closed sets for µ (V ) � but these need not be open.
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This makes µ (V ) into an object of KHaus.

(Remarks. If V is not unital, µ (V ) may not be compact.

If V does have a unit but it is not complete in its unit

norm, then µ (V ) is a compact Hausdor� space, but V is

not uniquely determined by µ (V ).)

To dualise morphisms: each unital homomorphism

f : V → W acts contravariantly on maximal ideals by

taking inverse images, i.e. induces a function

µ (f ) : µ (W ) → µ (V ) via

m ∈ µ (W )
µ (f )
=⇒ f −1(m) ∈ µ (V ) .

It turns out that µ (f ) : µ (W ) → µ (V ) so de�ned is

continuous.

This makes µ : UCoVectLat→ KHausop into a

functor.



Prologue Gelfand & Kakutani Almost equational Kakutani Some applications Epilogue

This makes µ (V ) into an object of KHaus.

(Remarks. If V is not unital, µ (V ) may not be compact.

If V does have a unit but it is not complete in its unit

norm, then µ (V ) is a compact Hausdor� space, but V is

not uniquely determined by µ (V ).)

To dualise morphisms: each unital homomorphism

f : V → W acts contravariantly on maximal ideals by

taking inverse images, i.e. induces a function

µ (f ) : µ (W ) → µ (V ) via

m ∈ µ (W )
µ (f )
=⇒ f −1(m) ∈ µ (V ) .

It turns out that µ (f ) : µ (W ) → µ (V ) so de�ned is

continuous.

This makes µ : UCoVectLat→ KHausop into a

functor.



Prologue Gelfand & Kakutani Almost equational Kakutani Some applications Epilogue

This makes µ (V ) into an object of KHaus.

(Remarks. If V is not unital, µ (V ) may not be compact.

If V does have a unit but it is not complete in its unit

norm, then µ (V ) is a compact Hausdor� space, but V is

not uniquely determined by µ (V ).)

To dualise morphisms: each unital homomorphism

f : V → W acts contravariantly on maximal ideals by

taking inverse images, i.e. induces a function

µ (f ) : µ (W ) → µ (V ) via

m ∈ µ (W )
µ (f )
=⇒ f −1(m) ∈ µ (V ) .

It turns out that µ (f ) : µ (W ) → µ (V ) so de�ned is

continuous.

This makes µ : UCoVectLat→ KHausop into a

functor.



Prologue Gelfand & Kakutani Almost equational Kakutani Some applications Epilogue

This makes µ (V ) into an object of KHaus.

(Remarks. If V is not unital, µ (V ) may not be compact.

If V does have a unit but it is not complete in its unit

norm, then µ (V ) is a compact Hausdor� space, but V is

not uniquely determined by µ (V ).)

To dualise morphisms: each unital homomorphism

f : V → W acts contravariantly on maximal ideals by

taking inverse images, i.e. induces a function

µ (f ) : µ (W ) → µ (V ) via

m ∈ µ (W )
µ (f )
=⇒ f −1(m) ∈ µ (V ) .

It turns out that µ (f ) : µ (W ) → µ (V ) so de�ned is

continuous.

This makes µ : UCoVectLat→ KHausop into a

functor.



Prologue Gelfand & Kakutani Almost equational Kakutani Some applications Epilogue

This makes µ (V ) into an object of KHaus.

(Remarks. If V is not unital, µ (V ) may not be compact.

If V does have a unit but it is not complete in its unit

norm, then µ (V ) is a compact Hausdor� space, but V is

not uniquely determined by µ (V ).)

To dualise morphisms: each unital homomorphism

f : V → W acts contravariantly on maximal ideals by

taking inverse images, i.e. induces a function

µ (f ) : µ (W ) → µ (V ) via

m ∈ µ (W )
µ (f )
=⇒ f −1(m) ∈ µ (V ) .

It turns out that µ (f ) : µ (W ) → µ (V ) so de�ned is

continuous.

This makes µ : UCoVectLat→ KHausop into a

functor.



Prologue Gelfand & Kakutani Almost equational Kakutani Some applications Epilogue

Why `almost equational'?

So now we know that KHausop is (to within equivalence)

the category UCoVectLat of unital norm-complete vector

lattice and their unital homomorphism.

We also know that UCoVectLat is equivalent to the

category CoRieszMV of complete Riesz MV-algebras,

which is a full subcategory of the variety RieszMV of

Riesz MV-algebras.

In fact, more is true: CoRieszMV is a re�ective

subcategory of the variety RieszMV of Riesz

MV-algebras.

This means that the inclusion functor

CoRieszMV ↪→ RieszMV has a left adjoint C .
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Omitting details, what C does to a Riesz MV-algebra R is
this.

1 First, C �kills the (ideal of) in�nitesimals� of R, so that in

the resulting quotient algebra R/I the unit norm is an

actual norm.
2 Second, C completes R/I by �closing under convergence in

the unit norm�.

Conclusion: Although UCoVectLat ∼= KHausop is not a

variety, it is almost that � it is the re�ection of a variety.

A �rst consequence is this. RieszMV is a variety, so the

forgetful functor to Set has a left adjoint. Let us call this

adjoint F (for `free').

Composing the appropriate functors, we see that there

exist free objects in the category UCoVectLat of

norm-complete unital vector lattices.

In fact, even more interestingly, there exist �nitely

presentable objects � but I will not discuss them.
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This is an `almost equational' version of Kakutani duality

in that KHausop is proved to be the re�ection of a variety �

namely, RieszMV � to within equivalences.
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Two right adjoints

Let CoAtBA denote the category of complete atomic Boolean

algebras and complete homomorphisms.

There is a functor, say A for `atomic', from compact

Hausdor� spaces to complete atomic Boolean algebras.

Indeed, there is a forgetful functor UCoVectLat→ Set that

takes the norm-complete vector lattice (V ,u) to its unit

interval [0,u ], regarded as a set. (Caution: Not to its

underlying set

.)

We now take opposite categories on both sides.

UCoVectLatop ∼= KHaus, as we know.

Further, it is well known that Setop ∼= CoAtBA.

So we get a functor A : KHaus→ CoAtBA.
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To describe A explicitly, let X be a compact Hausdor� space.

Consider the family C (X ) of continuous functions from X to

the real unit interval [0, 1]. (Caution: Not to ℝ.)
Let A (X ) be the Boolean algebra of subsets of C (X ), which is

an object of CoAtBA

.

Any continuous function f : X → Y (for Y compact Hausdor�)

induces a complete homomorphism of c.a. Boolean algebras

A (f ) : A (X ) → A (Y ) as follows:

A ⊆ C (X )
A (A)
=⇒ A ′ ⊆ C (Y ) ,

where

A ′ = { g ∈ C (Y ) | g ∘ f ∈ A } .
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This functor A : KHaus→ CoAtBA has a right adjoint;

with hindsight, let's call it B for `balls'.

The right adjoint exists simply because its dual, algebraic

forgetful functor UCoVectLat→ Set has a left adjoint

obtained by composing the three left adjoints pictured in red

below:

UVectLatKS

equivalence

��

C

re�ection
""

UCoVectLatKS

equivalence

��

inclusion

bb KHausop+3equiv.ks

Set

F

free
��

RieszMV

forgetful

^^

C

re�ection
""

CoRieszMV

inclusion

bb
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Topological balls are the solution to a universal problem

De�nition

1 A compact Hausdor� space X is freely co-generated by

the complete atomic Boolean algebra A if X ∼= B(A).

2 X is a κ-ball if there is a cardinal κ such that X ∼= [0, 1]κ.

Theorem (V. Marra, 2010)

A compact Hausdor� space X is a κ-ball if and only if it is

freely co-generated by a complete atomic Boolean algebra

with κ atoms.
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Two right adjoints (sketch)

We obtained a functor from KHausop to CoAtBA by

dualising the forgetful functor from UCoVectLat to Set.

But we could also take, for instance, the forgetful functor

from UCoVectLat to DL, where the latter denotes the

category of (always bounded) distributive lattices.

Thus, this forgetful functor sends a unital norm-complete

vector lattice to its unit interval, regarded as a lattice.

Now DLop is of course one of the categories whose

equivalent representations have been most intensively

studied.

There are at least three ways to represent DLop: via

coherent spaces (Stone), via ordered spaces (Priestley), and

� possibly making for an optimal representation � via

bitopological spaces (G. Bezhanishvili, N. Bezhanishvili, D.

Gabelaia, and A. Kurz).



Prologue Gelfand & Kakutani Almost equational Kakutani Some applications Epilogue

Two right adjoints (sketch)

We obtained a functor from KHausop to CoAtBA by

dualising the forgetful functor from UCoVectLat to Set.

But we could also take, for instance, the forgetful functor

from UCoVectLat to DL, where the latter denotes the

category of (always bounded) distributive lattices.

Thus, this forgetful functor sends a unital norm-complete

vector lattice to its unit interval, regarded as a lattice.

Now DLop is of course one of the categories whose

equivalent representations have been most intensively

studied.

There are at least three ways to represent DLop: via

coherent spaces (Stone), via ordered spaces (Priestley), and

� possibly making for an optimal representation � via

bitopological spaces (G. Bezhanishvili, N. Bezhanishvili, D.

Gabelaia, and A. Kurz).



Prologue Gelfand & Kakutani Almost equational Kakutani Some applications Epilogue

Two right adjoints (sketch)

We obtained a functor from KHausop to CoAtBA by

dualising the forgetful functor from UCoVectLat to Set.

But we could also take, for instance, the forgetful functor

from UCoVectLat to DL, where the latter denotes the

category of (always bounded) distributive lattices.

Thus, this forgetful functor sends a unital norm-complete

vector lattice to its unit interval, regarded as a lattice.

Now DLop is of course one of the categories whose

equivalent representations have been most intensively

studied.

There are at least three ways to represent DLop: via

coherent spaces (Stone), via ordered spaces (Priestley), and

� possibly making for an optimal representation � via

bitopological spaces (G. Bezhanishvili, N. Bezhanishvili, D.

Gabelaia, and A. Kurz).



Prologue Gelfand & Kakutani Almost equational Kakutani Some applications Epilogue

Two right adjoints (sketch)

We obtained a functor from KHausop to CoAtBA by

dualising the forgetful functor from UCoVectLat to Set.

But we could also take, for instance, the forgetful functor

from UCoVectLat to DL, where the latter denotes the

category of (always bounded) distributive lattices.

Thus, this forgetful functor sends a unital norm-complete

vector lattice to its unit interval, regarded as a lattice.

Now DLop is of course one of the categories whose

equivalent representations have been most intensively

studied.

There are at least three ways to represent DLop: via

coherent spaces (Stone), via ordered spaces (Priestley), and

� possibly making for an optimal representation � via

bitopological spaces (G. Bezhanishvili, N. Bezhanishvili, D.

Gabelaia, and A. Kurz).



Prologue Gelfand & Kakutani Almost equational Kakutani Some applications Epilogue

Two right adjoints (sketch)

We obtained a functor from KHausop to CoAtBA by

dualising the forgetful functor from UCoVectLat to Set.

But we could also take, for instance, the forgetful functor

from UCoVectLat to DL, where the latter denotes the

category of (always bounded) distributive lattices.

Thus, this forgetful functor sends a unital norm-complete

vector lattice to its unit interval, regarded as a lattice.

Now DLop is of course one of the categories whose

equivalent representations have been most intensively

studied.

There are at least three ways to represent DLop: via

coherent spaces (Stone), via ordered spaces (Priestley), and

� possibly making for an optimal representation � via

bitopological spaces (G. Bezhanishvili, N. Bezhanishvili, D.

Gabelaia, and A. Kurz).



Prologue Gelfand & Kakutani Almost equational Kakutani Some applications Epilogue

To �x ideas, say we represent DLop as the category of

Priestley spaces, which is perhaps the best-known duality.

Proceeding as in the case of the forgetful functor to Set,

we get:

There is a functor, call it P for `Priestley space', from

compact Hausdor� spaces to Priestley spaces.

The functor P has a right adjoint, call it O for `nerve',

from Priestley spaces to compact Hausdor� spaces.

Although in general I do not yet know how to describe

O(S) for arbitrary Priestley spaces S , I can obtain a nice

description for �nite S .

First, recall that a �nite Priestley space is essentially the

same thing as a �nite poset.

So O builds a compact Hausdor� space out of a poset.
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The nerve (or order complex) of a poset

If S is a �nite poset, let ∆ (S) be the collection of chains of S

(=totally ordered subsets). Then ∆ (S) is an (abstract)

simplicial complex on the vertex set S , called the nerve of S .

(To say that ∆ (S) is a simplicial complex with vertex set S

means that it is a family of subsets of S closed under taking

subsets, and containing all singleton subsets of S .)
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(Compact) polyhedra

A polyhedron is a subspace of ℝn that can be triangulated, i.e.

written as the underlying space of a (geometric) simplicial

complex. (Thus, following the traditional terminology of

PL-topology, a polyhedron is not convex.)
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Polyhedra are the solution to a universal problem

It turns out that O(S), the compact Hausdor� space freely

co-generated by the �nite Priestley space P , is the polyhedron

triangulated by the nerve ∆(S). This leads to:

Theorem (V. Marra, 2010)

A compact Hausdor� space X is (homeomorphic to) a

polyhedron � i.e. it is simplicially triangulable, in standard

topological terminology � if and only if it is freely

co-generated by a �nite Priestley space S, i.e. X ∼= O(S).

It would be interesting to generalise the nerve construction

∆(S) to arbitrary Priestley spaces S so as to get an explicit

description of the functor O in all cases.
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Epilogue: The main obstruction

The duality theory I sketched here is an attempt to make

KHausop as close as possible to a variety of algebras, so as to

exploit constructs that are granted to exist in varieties, but not

necessarily in more general categories.

A more intimate knowledge of the duality leads to a more

extensive interplay between algebra and topology than what

was indicated here.

Much more can be done, and deeper results can be obtained by

extending the theory to such well-established notions as

absolute retracts, piecewise linear structures on manifolds, �Cech

co-homology, etc.

However, several problems remain in this theory. They are, to

say the least, rather stubborn.

In closing, I want to hint to at least one of them � one that I

regard as a central obstacle to further developments.
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Given a compact Hausdor� space X , we have seen as part of

the duality that X can be recovered from the unital

norm-complete vector lattice C (X ) by using its maximal ideals.

But C (X ) also has plenty of prime ideals p � those such that

the quotient C (X )/p is totally ordered.

The primes form a space (with the appropriate topology)

written Spec (C (X )).

Because every maximal is prime, there is a canonical embedding

X ↪→ Spec (C (X )) . (y)

The prime spectrum is a sort of non-Hausdor� hull of X

that encodes highly non-trivial information about X .

Sadly, we understand far too little about Spec (C (X )) and its

relationship with X to substantiate the preceding claim.

Understanding the properties of the embedding (y), I suggest, is

the key to unlocking the deeper secrets of KHaus.
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Thanks

Thank you for your attention.
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