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1. Overview.

2. Topological duality for distributive meet semi-lattices and implicative meet
semi-lattices.

3. Topological duality for Hilbert algebras.
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Overview

Hilbert algebras

A Hilbert algebra is a (—, 1)-subreduct of a Heyting algebra. Also a
(—, 1)-subreduct of an implicative meet semi-lattice.

The class of Hilbert algebras is definable by the following equations and
quasiequation:

Hl. z - (y —z) =1

H2. 2= (y—2) = (r—y) = (r—2) =1
H3. 2 —y=y—ax=1impliesz =y

It is a variety [Diego].

The relation < defined on a Hilbert algebra A by

a<b & a—b=1

is a partial order with greatest element 1.
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| will present a topological duality for Hilbert algebras developed by Sergio Celani
and myself that is based on ideas used in

G. Bezhanishvili, R. J. Duality for distributive and implicative meet semi-lattices.
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| will present a topological duality for Hilbert algebras developed by Sergio Celani
and myself that is based on ideas used in

G. Bezhanishvili, R. J. Duality for distributive and implicative meet semi-lattices.
Distributive meet semi-lattice:

aANb<c = (Fd,V)a<d & bV & c=d AV)

Equivalently: the lattice of filters is distributive (a key property)

Implicative meet semi-lattice (a.k.a. Browverian semi-lattice):

aANb<c¢c & a<b—ec

e Implicative meet semi-lattices are distributive as meet semi-lattices.
e They are the (A, —, 1)-subreducts of Heyting algebras.
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L s D(L)

(implicative) distr. meet semi-lattice distr. lattice envelop
(bounded)
! !
L. — Pr(D(L))
generalized (Esakia) Priestley space Priestley space
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A — L(A)

Hilbert algebra implicative meet semi-lattice envelop
1 1
A, — L(A),
77 generalized Priestley space
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Duality for distributive meet semi-lattices

and
implicative meet semi-lattices
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The distributive envelop of a distributive meet semi-lattice

Let L, K distributive meet semi-lattices. Amap h: L — K is a
sup-homomorphism if

@ h is a homomorphism, i.e. h(1) =1, h(a A b) = h(a) A h(b),
@ h satisfies

(VteiCte = () Th(c:) S Th(c) (sup)

i<n i<n

Condition (sup) is equivalent to:

ce {COa"'acn}ul = h(C) € {h(CO)a"'ah(Cn)}Ul
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The concept of sup-homomorphism is related to the notion of a Frink ideal.

Let P = (P, <) be a poset. A Frink ideal is a nonempty set I C P s.t.
@ it is a down-set,
e if X C I is finite, then X% C T

The second condition is equivalent to:

ﬂTcich & {coy...,cn} CI = cel

i<n

Theorem

Let L, K be distributive meet semi-lattices. Let h : L. — K be a homomorphism.
The following are equivalent:

@ h is a sup-homomoprhism,
e h~![I] is a Frink-ideal of L, for every Frink ideal I of K.
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Let L be a distributive meet semi-lattice.

A distributive lattice expansion of L is a pair (e, E) where E is a distributive
lattice and e a sup-embedding from L to F.

The distributive envelop of L is the unique (up to isomorphism) distributive lattice
expansion (e, D(L)) with the following universal property: for every distributive
lattice expansion (h, E') of L there is a unique lattice embedding &k : D(L) — F
such that koe = h.
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Let L be a distributive meet semi-lattice.

A distributive lattice expansion of L is a pair (e, E) where E is a distributive
lattice and e a sup-embedding from L to F.

The distributive envelop of L is the unique (up to isomorphism) distributive lattice
expansion (e, D(L)) with the following universal property: for every distributive
lattice expansion (h, E') of L there is a unique lattice embedding &k : D(L) — F
such that koe = h.

In fact, let

- DMSLat®"P be the category of distributive meet semi-lattices with
sup-homomorphisms

- DLat the category of distributive lattices with (1,V, A)-homomorphisms.
- U : DLat — DMSLat®"P the forgetful functor that forgets the operation V.

Then U has a left adjoint and D(.) gives the object part.
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e If L is an implicative meet-semilattice, D(L) need not be a Heyting algebra.
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The topological dual of a distributive and of an implicative
meet semi-lattice

Let L be a distributive meet semi-lattice or an implicative meet semi-lattice. We
build a Priestley space by taking

e Points: Optimal filters, Op(L),
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build a Priestley space by taking

e Points: Optimal filters, Op(L),
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- filters F' = L N P with P a prime filter of D(L).
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Let L be a distributive meet semi-lattice or an implicative meet semi-lattice. We
build a Priestley space by taking

e Points: Optimal filters, Op(L),
- filters F" with L — F' a Frink-ideal. Equivalently,
- filters F' = L N P with P a prime filter of D(L).

Op(L) = Prime(D(L))
e Topology: generated by the subbase

{p(a):a€ L} U{L —¢(a):a € L}
where
pla) ={F€O0p(L):acF}

e Special dense set: the prime elements of the lattice of filters of L,
called prime filters of L.
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The topological dual of a distributive and of an implicative
meet semi-lattice

Let L be a distributive meet semi-lattice or an implicative meet semi-lattice. We
build a Priestley space by taking

e Points: Optimal filters, Op(L),
- filters F" with L — F' a Frink-ideal. Equivalently,
- filters F' = L N P with P a prime filter of D(L).

Op(L) = Prime(D(L))
e Topology: generated by the subbase

{¢(a) :a € LYU{L — ¢(a) : a € L}
where
pla) ={F€O0p(L):acF}
e Special dense set: the prime elements of the lattice of filters of L,
called prime filters of L. Notation: Pr(L)
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The structure (Op(L), 7, C) is a Priestley space.

The dual of L is
L, :={Op(L),7,<,Pr(L))

The clopen up-sets p(a), with a € L, have the following characterization.

Let U € CiUp(L.). Then

(JaeL)U=y(a) & L,—U=|(Pr(L)-U) & max(L, —U) C Pr(L)
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The structure (Op(L), 7, C) is a Priestley space.
The dual of L is
L, :={Op(L),7,<,Pr(L))
The clopen up-sets p(a), with a € L, have the following characterization.

Let U € CiUp(L.). Then

(JaeL)U=y(a) & L,—U=|(Pr(L)-U) & max(L, —U) C Pr(L)

Let:
- X = (X, 7x,<x) a Priestley space.
- X, a dense subset of X.
A clopen up-set U is X- admissible (admissible) if max(X — U) C Xj.

We set
X" :={U € ClUp(X) : U is Xo-admissible}.
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Definition
A quadruple X = (X, 7x, <x, Xo) is a generalized Priestley space if:
Q (X,7x,<x) is a Priestley space.
@ X is a dense subset of X.
Q@ VreXdye Xpz<y.
Q ze X, iff {Ue€X*:x2¢gU} is updirected.
Q@ VryeX, z<y iff (WeX*)zecU=yel).

Let X be a g-Priestley space. A clopen subset U is Esakia clopen if U is a finite
union of sets U; — V; and U;, V; are Xg-admissible clopen up-sets.

A g-Priestley space is a generalized Esakia space if for every Esakia clopen set U,
LU is clopen.

If X = (X,7x,<x,Xo) is a generalized Esakia space, it does not necessarily
follow that (X, 7x,<x) is an Esakia space.
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Morphisms

Definition

Let X and Y be g-Priestley spaces. A g-Priestely morphism from X to Y is a
relation R C X x Y such that

Q If xRy, then there is an Yp-admissible clopen up-set U of Y such that
R[] CU andy ¢ U.

@ If U is an Yp-admissible clopen up-set U of Y, then
OpU ={z€ X : R[z] CU}

is an Xy-admissible clopen up-set of X.
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Morphisms

Definition

Let X and Y be g-Priestley spaces. A g-Priestely morphism from X to Y is a
relation R C X x Y such that

Q If xRy, then there is an Yp-admissible clopen up-set U of Y such that
R[] CU andy ¢ U.

@ If U is an Yp-admissible clopen up-set U of Y, then
OpU ={z€ X : R[z] CU}

is an Xy-admissible clopen up-set of X.

e Composition is defined as follows: Let R: X - Y and S:Y — Z
2RxSz <«<— (U e€Z*)((SoR)z]CU=2€U)

e The identity g-Priestley morphism from X — X is <x.
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A g-Priestely morphism R C X X Y is functional if for every z € X there exists
y € Y such that R[z] = Ty.
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A g-Priestely morphism R C X X Y is functional if for every z € X there exists
y € Y such that R[z] = Ty.

Definition
Let X,Y be g-Esakia spaces. A g-Esakia morphism from X to Y is a relation
R C X x Y such that

@ R is a g-Priestley morphism,

@ for every z € X and every y € Yy, if xRy, then there exists z € X such that
z < z and R[z] = 1y.

v

Composition of g-Esakia morphisms is *.

The identity g-Esakia morphism is <x.
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Categorical dualities

BDMSLat bounded distributive meet semi-lattices | homomorphisms
BDMSLats“P idem sup-homomorphisms

BImMSLat bounded implicative meet semi-lattices | homomorphisms
BImMSLats"P idem sup homomorphisms
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Categorical dualities

BDMSLat bounded distributive meet semi-lattices | homomorphisms
BDMSLat®"P idem sup-homomorphisms

BImMSLat bounded implicative meet semi-lattices | homomorphisms
BImMSLat®P idem sup homomorphisms

GPrSp | g-Priestley spaces | g-Priestley morphisms

GPrSpF | g-Priestley spaces | functional g-Priestley morphisms
GEsSp | g-Esakia spaces g-Esakia morphisms

GPrSpF | g-Esakia spaces functional g-Esakia morphisms
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Categorical dualities

BDMSLat bounded distributive meet semi-lattices | homomorphisms
BDMSLat®"P idem sup-homomorphisms

BImMSLat bounded implicative meet semi-lattices | homomorphisms
BImMSLat®P idem sup homomorphisms

GPrSp | g-Priestley spaces | g-Priestley morphisms
GPrSpF | g-Priestley spaces | functional g-Priestley morphisms
GEsSp | g-Esakia spaces g-Esakia morphisms

GPrSpF | g-Esakia spaces functional g-Esakia morphisms
BDMSLat =  (GPrSp)*®
BDMSLat®? = (GPrSpF)°P  (Hansoul)
BImMSLat =  (GEsrSp)°P

BImMSLat®P (GEsrSpF)ep
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Duality for Hilbert algebras
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Deductive filters of a Hilbert algebra

Let A be a Hilbert algebra.
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Deductive filters of a Hilbert algebra

Let A be a Hilbert algebra.

A subset I' of A is a deductive filter if
Q 1e€F,
Q ifa,a—be F,thenbe F.
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Deductive filters of a Hilbert algebra

Let A be a Hilbert algebra.
A subset F' of A is a deductive filter if
Q 1lekF,
Q ifa,a—be F,thenbe F.
- Every deductive filter is an up-set of (A, <). The converse is not true.
- Every principal up-set Ta of (A, <) is a deductive filter.

- The deductive filters form a distributive lattice which is complete and the meet
is intersection.

Notation: (any...,a0;b) :=an — (ap—1— (... = (ag — b)...)

We denote by (X) the deductive filter generated by X C A. Then
a€(X) iff a=1or (3ay,...,a0 € X) (an,...,a0;1) =1

A deductive filter is prime if it is a prime element of the lattice of deductive filters.
Prd(A): set of all prime deductive filters of A.
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Strong Frink ideals of a Hilbert algebra

Let A be a Hilbert algebra.
A nonempty set I C A is called a strong Frink ideal (F-ideal) if
@ I is a down-set,
Q@ if X CTandY C A are finite and X“ C (Y), then (Y) N T # 0.

Equivalently, if for every ag,...,a, € I and every bg,...,b,, € A,
if () Tai € (bo,- .., bm), then (bo, ..., bm) NI #0. (1)
i<n

An F-ideal I is proper if I # A.

Definition
A deductive filter F' of a A is optimal if A — F' is a strong Frink ideal. J

Opd(A) denotes the set of all optimal deductive filters of A
Every prime deductive filter is optimal.

A set [ is a prime strong Frink ideal iff A — I is an optimal deductive filter.
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Let A, B be Hilbert algebras. A map h: A — B is a sup-homomorphism if
@ h is a homomorphism, i.e. h(1) =1, h(a — b) = h(a) — h(b)
Q@ h satisfies

() 1ei € (boseobm) = () Thci) € (h(bo), ..., h(bm))  (sup)

i<n i<n

Condition (sup) is equivalent to:

c€fco e = ) € {hlco),.. hlen)}

Theorem
Let h : A — B a homomorphism of Hilbert algebras.
Q h is a sup-homomorphism,

@ h~1[F] is an optimal deductive filter of A for every optimal deductive filter F
of B,

© h~l[I] is a strong Frink ideal of A, for every strong Frink ideal I of B.
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The implicative meet semi-lattice envelop of a Hilbert
algebra

Let A be a Hilbert algebra.
An implicative meet semi-lattice envelop of A is pair (L, e), where

@ L is an implicative meet semi-lattice and e is a one-to-one homomorphism
from A to L,

@ for every a € L there is a finite X C A such that a = A e[X].

- If (L, e) is an implicative semi-lattice envelop of A, then e is a
sup-homomorphism.

- Up to isomorphism there is exactly one implicative meet semi-lattice envelop,
denoted L(A), and it is characterized by the universal property:

For every implicative meet semi-lattice L' and every homomorphism
g: A — (L',—' 1), there is a unique homomorphism g : L(A) — L'
such that g = g o e. Moreover, if g is one-to-one, then g is one-to-one;
and if g is onto, then g is onto.
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ImMSLat: the category of implicative meet semi-lattices with their
homomorphisms.

Hil: the category of Hilbert algebras and their homomorphisms
U : ImMSLat — Hil, the forgetful functor that forgets the meet operation.

U has a left adjoint and is precisely the functor that maps every Hilbert algebra to
its implicative meet semi-lattice envelop.
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Let A be a Hilbert algebra and L(A) its implicative meet semi-lattice envelop.

The relation between the deductive filters of A and the filters of L(A) is as
follows.

A set F C A is a deductive filter iff £ = G N A for some filter of L(A).
Let F' be a deductive filter of A.

e [ is optimal iff F' = G N A for some optimal filter of L(A).

e Fis prime iff F' = G N A for some prime filter of L(A).

Let I be a strong Frink ideal of A

e [ is prime iff F' = G N A for some prime Frink ideal of L(A).
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Augmented Priestley spaces

Let A be a Hilbert algebra. We add a (new) bottom element 0 and define
a—0=0 0—a=1 0—-0=1

for every a € A.

The new algebra A° is a Hilbert algebra and L(A%) = L(A)°.

We build a Priestley space as follows:

e Points: Optimal deductive filters:

A, :=Opd(A)U {A} = Opd(A?)

e Topology: generated by the subbase
{p(a):a€e A} U{A—p(a) :a € A}

where
¢(a) = {F € Opd(A®) :a € F}
e Special set of clopen up-sets: {¢p(a):a € A}
WTML I 27 /49



Note that:
-Aepa), forallaec A

-¢(0) =10
- There is a finite nonempty X C A such that (. w(a) = {A} iff L(A) has a
bottom element.
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Theorem

Let A be a Hilbert algebra. Then
Q (A,,C,7) is a Priestley space
Q forevery x,y € A,,

zCy iff (Vo€ A)(z € pla) =y < p(a)),

© every nonempty clopen up-set is a finite union of intersections of a finite
number of elements of {p(a) : a € A}.

Q Prd(A)U{A} is dense in (A, C,T),
Q@ (Vz e A, — {A})(Jy € Prd(A)) z C v,
Q foreveryx € A,,

x € Prd(A) iff {¢(a):z & ¢(a),a € A} is nonempty and updirected.

V.
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Let
Ba = {{p(a):a € A}, =, A,).

Theorem

plA: A= Ba,

and so Ba is a Hilbert algebra.
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Definition

An augmented Priestley space is a tuple (X, <, 7, S) such that
Q (X, <,7) is a Priestley space,
@ (X, <) has a greatest element, t.
@ S is a family of nonempty clopen up-sets.
Qz<y iff WUeS)(xzeU=yecU), forevery z,y € X.
Q the set

Xs={zxe X :{U€S:x¢gU} is nonempty and updirected} U {¢}

is dense in X,

@ for every nonempty clopen up-set U C X, max(X — U) C Xy iff U is the
intersection of a nonempty finite subset of S.

@ forevery U,V eS, [|[(U-V)ceS.

Fact: The structure (X, <, 7, X5 U {t}) is a generalized Priestley space, in fact a
generalized Esakia space.
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Theorem
Let A be a Hilbert algebra. Then

(A)* = <A*a ga T, QO[AD’
where T is the topology generated by the family of the sets p(a), with a € A, and

their complements, taken as a generating subbase, is an augmented Priestley
space.
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Let X = (X, <, 7,S) be an augmented Priestley space.
For U,V C X let

U=V=]1lU-V)‘={zeX :T2nUCV}

Then the algebra
(X)* = <S7 :>7X>
is a Hilbert algebra.
The closure of S under finite intersections is the set
X*={U :U is a clopen up-set and max(X —U) C Xg}
This set is closed under = and it is the implicative meet semi-lattice envelop of A.
Notice that max| (U — V) = max(U — V).

For every x € X, x € Xg U {t} iff
{UC X :2¢U,U is a clopen up-set and max(X — U) C Xg} is updirected.
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Let X = (X, <, 7,5) be an augmented Priestley space. Let
X (X)),

be the map defined by
e(z)={Ue€S:zeU}.

Note that e(t) = S.
Theorem

If x € X — {t}, then e(z) is an optimal deductive filter of S.
If © € Xg, then e(x) is a prime deductive filter of S.

Theorem
@ ¢: X — ((X)*)« Is an order isomorphism and a homeomorphism
° £[Xg] = Prd(S)
® S(x)+). = 1{e[U] : U € S}.
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Morphism of augmented Priestley spaces

Let RC X xY, for U CY we set
OgU :={z € X : Rlz] CU}
Notice that for every U,V C Y
Or(UNV)=0rUNORV

and
Or(U = V) CORU = OrV.

Let A, B be Hilbert algebras and h : A — B a homomorphism.
We define R, C B, x A, by

xRy iff hlz] Cy

Note that BRy A and R,[B] = {A}

Notation:
- Cp, denotes the inclusion relation restricted to B,
- C4, denotes the inclusion relation restricted to A..
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Theorem

Q Cp, oR, C Ry

Q RpoCa,C Ry

Q ifx € By, y € A, and xRy, then there is a € A such that y & ¢(a) and
Ru[z] € o(a)

Q ¢(h(a)) = Br,»(a)

Q ¢(h(a — b)) = ¢(h(a)) = ¢(h(D)).

Q Ifz € B, y € Prd(A) and xRy, then there is z € Prd(B) such that z C z
and Ry[z] = Ty

Theorem

h is a sup-homomorphism iff Ry,[x] has a least element for every x € B, — { B},
namely h=1[x].
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Definition
Let X and Y be augmented Priestley spaces. A relation R C X x Y is called an
augmented Priestley morphism if
Q if zRy, then there is U € Sy such that y ¢ U and R[z] C U,
Q ifx € X, y € Ys, and zRy then there is z € Xg, such that z < z and
R[z] = 1y.
Q if U € Sy, then OrU € Sx.

An augmented Priestley morphism R is functional if for every x € X, R[z] has a
least element.

Let R C X X Y be an augmented Priestley morphism. The map hr : Sy — Sx
defined by
hR(U) = agU.

is a homomorphism from (Sx,=, X) to (Sy,=,Y).
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Let A, B be Hilbert algebras and A a homomorphism from A to B. For every
a€A

¢(h(a)) = hr, (¢(a)).
Let R be an augmented Priestley morphism from X to Y. Then for every z € X

and every y € Y
xRy iff e(x)Rpe(y).
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Composition of augmented Priestley morphisms

Let

- X,Y, Z be augmented Priestley spaces,
- R an augmented Priestley morphism from X to Y,
- S an augmented Priestley morphism from Y to Z.

The composition S o R may not be an augmented Priestley morphism.

We define the relation SxR C X x Z as follows
xSxRz iff YU € Sz((SoR)[z] CU = z€U).

Then S*R is an augmented Priestely morphism from X to Z.

If X is an augmented Priestley space, the order <x of X is an augmented
Priestely morphism and it is the identity morphism on X.
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Definition
Let APS be the category of augmented Priestley spaces as objects and augmented
Priestley morphisms as arrows, with composition the operation .

We define the functors
()« s Hil 2 APS: ()"

as follows:

° (A)* = <A*,Q,T,QP[A]>
e (h:A—B).=R,:(B). — (A).

o (X)*ZSX
o (R: X —>Y) =hg

These functors establish a dual equivalence between Hil and APS.
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The natural transformations
The natural transformation from
Idgy - Hil - Hil  to  ((.)«)" : Hil — Hil
is given by the ¢ maps. For every A € Hil,
pa=plA: A= ((A),)"
To define the natural transformation from
Idaps : APS - APS to ((.)%).:APS — APS.

we use for every X € APS the map ex : X — ((X)*).. We need to trun this
map into a isomorphism of APS between X and ((X)*)..

Let X be an augmented Priestely space. Let 2x C X x ((X)*). and

ex C ((X)*)« x X be the relations defined by

xEx e(y) iff e(z) Cely) e(x)exy iff x<xy

Lemma

The relations €x and ex are augmented Priestley morphisms and

Ex*ex = <((x)*), and ex*Ex = <x.
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Let X be an augmented Priestely space. The X-component of the natural
transformation from

Idaps : APS — APS to ((\)").: APS — APS.
is the relation x C X x ((.)*)..

Lemma

For every Hilbert algebra A and every augmented Priestley space X,
0 (A)) =A
@ ((X)). =X

Theorem
Hil is dually equivalent to APS.
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Let Hil3"P the category of Hilbert algebras with sup-homomorphisms.

Let APSY the category of augmented Priestley spaces with morphims the
functional augmented Priestley morphisms.

Theorem

Hils“"P js dually equivalent to APSF. J
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Let A, B be Hilbert algebras. A semi-homomorphism from A to B is a map
h: A — B that

e h(l)=1

e h(a — b) < h(a) — h(b).
The relation Ry, : (A). — (B), satisfies

o if x € By, y € A, and zRpy, then there is a € A such that y & ¢(a) and

Rp[z] € ¢(a)

° ¢(h(a)) = Or,¢(a)

o p(h(a — b)) € @(h(a)) = @(h(b)).
Let X,Y augmented Priestley spaces. A relation R C X X Y is a semi-augmented
Priestley morphism if

e if zRy, then there is U € Sy such that y ¢ U and R[z] C U,
e if U € Sy, then OrU € Sx.
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Let Hil>*™ the category of Hilbert algebras with semi-homomorphisms.
Let APS®®™ the category of augmented Priestley spaces with morphims the
semi-augmented Priestley morphisms.

Theorem
Hil**™ s dually equivalent to APSse™, J
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Thank you !

Ramon Jansana (University of Barcelona)



