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Outline of the talk

1. Overview.

2. Topological duality for distributive meet semi-lattices and implicative meet
semi-lattices.

3. Topological duality for Hilbert algebras.
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Overview

Hilbert algebras

A Hilbert algebra is a (→, 1)-subreduct of a Heyting algebra. Also a
(→, 1)-subreduct of an implicative meet semi-lattice.

The class of Hilbert algebras is definable by the following equations and
quasiequation:

H1. x→ (y → x) = 1
H2. x→ (y → z)→ (x→ y)→ (x→ z)) = 1
H3. x→ y = y → x = 1 implies x = y

It is a variety [Diego].

The relation ≤ defined on a Hilbert algebra A by

a ≤ b ⇔ a→ b = 1

is a partial order with greatest element 1.
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I will present a topological duality for Hilbert algebras developed by Sergio Celani
and myself that is based on ideas used in

G. Bezhanishvili, R. J. Duality for distributive and implicative meet semi-lattices.

Distributive meet semi-lattice:

a ∧ b ≤ c ⇒ (∃a′, b′)(a ≤ a′ & b ≤ b′ & c = a′ ∧ b′)

Equivalently: the lattice of filters is distributive (a key property)

Implicative meet semi-lattice (a.k.a. Browverian semi-lattice):

a ∧ b ≤ c ⇔ a ≤ b→ c

• Implicative meet semi-lattices are distributive as meet semi-lattices.

• They are the (∧,→, 1)-subreducts of Heyting algebras.
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L −→ D(L)

(implicative) distr. meet semi-lattice distr. lattice envelop
(bounded)

↓ ↓

L∗ ←− Pr(D(L))

generalized (Esakia) Priestley space Priestley space
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A −→ L(A)

Hilbert algebra implicative meet semi-lattice envelop

↓ ↓

A∗ ←− L(A)∗

??? generalized Priestley space
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Duality for distributive meet semi-lattices
and

implicative meet semi-lattices
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The distributive envelop of a distributive meet semi-lattice

Let L, K distributive meet semi-lattices. A map h : L→ K is a
sup-homomorphism if

h is a homomorphism, i.e. h(1) = 1, h(a ∧ b) = h(a) ∧ h(b),
h satisfies ⋂

i≤n

↑ci ⊆ ↑c ⇒
⋂
i≤n

↑h(ci) ⊆ ↑h(c) (sup)

Condition (sup) is equivalent to:

c ∈ {c0, . . . , cn}ul ⇒ h(c) ∈ {h(c0), . . . , h(cn)}ul
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The concept of sup-homomorphism is related to the notion of a Frink ideal.

Let P = 〈P,≤〉 be a poset. A Frink ideal is a nonempty set I ⊆ P s.t.

it is a down-set,

if X ⊆ I is finite, then Xul ⊆ I
The second condition is equivalent to:⋂

i≤n

↑ci ⊆ ↑c & {c0, . . . , cn} ⊆ I ⇒ c ∈ I.

Theorem
Let L,K be distributive meet semi-lattices. Let h : L→ K be a homomorphism.
The following are equivalent:

h is a sup-homomoprhism,

h−1[I] is a Frink-ideal of L, for every Frink ideal I of K.
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Let L be a distributive meet semi-lattice.

A distributive lattice expansion of L is a pair 〈e, E〉 where E is a distributive
lattice and e a sup-embedding from L to E.

The distributive envelop of L is the unique (up to isomorphism) distributive lattice
expansion 〈e,D(L)〉 with the following universal property: for every distributive
lattice expansion 〈h,E〉 of L there is a unique lattice embedding k : D(L)→ E
such that k ◦ e = h.

In fact, let

- DMSLatsup be the category of distributive meet semi-lattices with
sup-homomorphisms

- DLat the category of distributive lattices with (1,∨,∧)-homomorphisms.

- U : DLat→ DMSLatsup the forgetful functor that forgets the operation ∨.

Then U has a left adjoint and D(.) gives the object part.
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• If L is an implicative meet-semilattice, D(L) need not be a Heyting algebra.
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The topological dual of a distributive and of an implicative
meet semi-lattice

Let L be a distributive meet semi-lattice or an implicative meet semi-lattice. We
build a Priestley space by taking

• Points: Optimal filters, Op(L),

- filters F with L− F a Frink-ideal. Equivalently,

- filters F = L ∩ P with P a prime filter of D(L).

Op(L) ∼= Prime(D(L))

• Topology: generated by the subbase

{ϕ(a) : a ∈ L} ∪ {L− ϕ(a) : a ∈ L}

where
ϕ(a) = {F ∈ Op(L) : a ∈ F}

• Special dense set: the prime elements of the lattice of filters of L,

called prime filters of L. Notation: Pr(L)
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The structure 〈Op(L), τ,⊆〉 is a Priestley space.

The dual of L is
L∗ := 〈Op(L), τ,⊆,Pr(L)〉

The clopen up-sets ϕ(a), with a ∈ L, have the following characterization.

Let U ∈ ClUp(L∗). Then

(∃a ∈ L) U = ϕ(a) ⇔ L∗ − U = ↓(Pr(L)− U) ⇔ max(L∗ − U) ⊆ Pr(L)

Let:
- X = 〈X, τX ,≤X〉 a Priestley space.

- X0 a dense subset of X.

A clopen up-set U is X0- admissible (admissible) if max(X − U) ⊆ X0.

We set
X∗ := {U ∈ ClUp(X) : U is X0-admissible}.
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Definition

A quadruple X = 〈X, τX ,≤X , X0〉 is a generalized Priestley space if:

1 〈X, τX ,≤X〉 is a Priestley space.

2 X0 is a dense subset of X.

3 ∀x ∈ X ∃y ∈ X0 x ≤ y.

4 x ∈ X0 iff {U ∈ X∗ : x 6∈ U} is updirected.

5 ∀x, y ∈ X, x ≤ y iff (∀U ∈ X∗)(x ∈ U ⇒ y ∈ U).

Let X be a g-Priestley space. A clopen subset U is Esakia clopen if U is a finite
union of sets Ui − Vi and Ui, Vi are X0-admissible clopen up-sets.

A g-Priestley space is a generalized Esakia space if for every Esakia clopen set U ,
↓U is clopen.

If X = 〈X, τX ,≤X , X0〉 is a generalized Esakia space, it does not necessarily
follow that 〈X, τX ,≤X〉 is an Esakia space.
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Morphisms

Definition
Let X and Y be g-Priestley spaces. A g-Priestely morphism from X to Y is a
relation R ⊆ X × Y such that

1 If xR�y, then there is an Y0-admissible clopen up-set U of Y such that
R[x] ⊆ U and y 6∈ U .

2 If U is an Y0-admissible clopen up-set U of Y , then

2RU = {x ∈ X : R[x] ⊆ U}

is an X0-admissible clopen up-set of X.

• Composition is defined as follows: Let R : X → Y and S : Y → Z

xR ? Sz ⇐⇒ (∀U ∈ Z∗)((S ◦R)[x] ⊆ U ⇒ z ∈ U)

• The identity g-Priestley morphism from X → X is ≤X .
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A g-Priestely morphism R ⊆ X × Y is functional if for every x ∈ X there exists
y ∈ Y such that R[x] = ↑y.

Definition
Let X,Y be g-Esakia spaces. A g-Esakia morphism from X to Y is a relation
R ⊆ X × Y such that

1 R is a g-Priestley morphism,

2 for every x ∈ X and every y ∈ Y0, if xRy, then there exists z ∈ X0 such that
x ≤ z and R[z] = ↑y.

Composition of g-Esakia morphisms is ?.

The identity g-Esakia morphism is ≤X .
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Categorical dualities

BDMSLat bounded distributive meet semi-lattices homomorphisms
BDMSLatsup idem sup-homomorphisms
BImMSLat bounded implicative meet semi-lattices homomorphisms

BImMSLatsup idem sup homomorphisms

GPrSp g-Priestley spaces g-Priestley morphisms
GPrSpF g-Priestley spaces functional g-Priestley morphisms
GEsSp g-Esakia spaces g-Esakia morphisms
GPrSpF g-Esakia spaces functional g-Esakia morphisms

BDMSLat ∼= (GPrSp)op

BDMSLatsup ∼= (GPrSpF)op (Hansoul)
BImMSLat ∼= (GEsrSp)op

BImMSLatsup ∼= (GEsrSpF)op
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Duality for Hilbert algebras
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Deductive filters of a Hilbert algebra

Let A be a Hilbert algebra.

A subset F of A is a deductive filter if

1 1 ∈ F ,

2 if a, a→ b ∈ F , then b ∈ F .

- Every deductive filter is an up-set of 〈A,≤〉. The converse is not true.

- Every principal up-set ↑a of 〈A,≤〉 is a deductive filter.

- The deductive filters form a distributive lattice which is complete and the meet
is intersection.

Notation: (an, . . . , a0; b) := an → (an−1 → (. . .→ (a0 → b) . . .)

We denote by 〈X〉 the deductive filter generated by X ⊆ A. Then

a ∈ 〈X〉 iff a = 1 or (∃an, . . . , a0 ∈ X) (an, . . . , a0; 1) = 1

A deductive filter is prime if it is a prime element of the lattice of deductive filters.
Prd(A): set of all prime deductive filters of A.
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Strong Frink ideals of a Hilbert algebra

Let A be a Hilbert algebra.
A nonempty set I ⊆ A is called a strong Frink ideal (F -ideal) if

1 I is a down-set,
2 if X ⊆ I and Y ⊆ A are finite and Xu ⊆ 〈Y 〉, then 〈Y 〉 ∩ I 6= ∅.

Equivalently, if for every a0, . . . , an ∈ I and every b0, . . . , bm ∈ A,

if
⋂
i≤n

↑ai ⊆ 〈b0, . . . , bm〉, then 〈b0, . . . , bm〉 ∩ I 6= ∅. (1)

An F-ideal I is proper if I 6= A.

Definition
A deductive filter F of a A is optimal if A− F is a strong Frink ideal.

Opd(A) denotes the set of all optimal deductive filters of A

Every prime deductive filter is optimal.

A set I is a prime strong Frink ideal iff A− I is an optimal deductive filter.
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Let A, B be Hilbert algebras. A map h : A→ B is a sup-homomorphism if

1 h is a homomorphism, i.e. h(1) = 1, h(a→ b) = h(a)→ h(b)
2 h satisfies⋂

i≤n

↑ci ⊆ 〈b0, . . . , bm〉 ⇒
⋂
i≤n

↑h(ci) ⊆ 〈h(b0), . . . , h(bm)〉 (sup)

Condition (sup) is equivalent to:

c ∈ {c0, . . . , cn}ul ⇒ h(c) ∈ {h(c0), . . . , h(cn)}ul

Theorem
Let h : A→ B a homomorphism of Hilbert algebras.

1 h is a sup-homomorphism,

2 h−1[F ] is an optimal deductive filter of A for every optimal deductive filter F
of B,

3 h−1[I] is a strong Frink ideal of A, for every strong Frink ideal I of B.

Ramon Jansana (University of Barcelona) WTML II 23 / 49



The implicative meet semi-lattice envelop of a Hilbert
algebra

Let A be a Hilbert algebra.
An implicative meet semi-lattice envelop of A is pair 〈L, e〉, where

1 L is an implicative meet semi-lattice and e is a one-to-one homomorphism
from A to L,

2 for every a ∈ L there is a finite X ⊆ A such that a =
∧
e[X].

- If 〈L, e〉 is an implicative semi-lattice envelop of A, then e is a
sup-homomorphism.

- Up to isomorphism there is exactly one implicative meet semi-lattice envelop,
denoted L(A), and it is characterized by the universal property:

For every implicative meet semi-lattice L′ and every homomorphism
g : A→ 〈L′,→′, 1〉, there is a unique homomorphism g : L(A)→ L′

such that g = g ◦ e. Moreover, if g is one-to-one, then g is one-to-one;
and if g is onto, then g is onto.
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ImMSLat: the category of implicative meet semi-lattices with their
homomorphisms.

Hil: the category of Hilbert algebras and their homomorphisms

U : ImMSLat→ Hil, the forgetful functor that forgets the meet operation.

U has a left adjoint and is precisely the functor that maps every Hilbert algebra to
its implicative meet semi-lattice envelop.
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Let A be a Hilbert algebra and L(A) its implicative meet semi-lattice envelop.

The relation between the deductive filters of A and the filters of L(A) is as
follows.

A set F ⊆ A is a deductive filter iff F = G ∩A for some filter of L(A).

Let F be a deductive filter of A.

• F is optimal iff F = G ∩A for some optimal filter of L(A).

• F is prime iff F = G ∩A for some prime filter of L(A).

Let I be a strong Frink ideal of A

• I is prime iff F = G ∩A for some prime Frink ideal of L(A).
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Augmented Priestley spaces

Let A be a Hilbert algebra. We add a (new) bottom element 0 and define

a→ 0 = 0 0→ a = 1 0→ 0 = 1

for every a ∈ A.

The new algebra A0 is a Hilbert algebra and L(A0) = L(A)0.

We build a Priestley space as follows:

• Points: Optimal deductive filters:

A∗ := Opd(A) ∪ {A} = Opd(A0)

• Topology: generated by the subbase

{ϕ(a) : a ∈ A} ∪ {A− ϕ(a) : a ∈ A}

where
ϕ(a) = {F ∈ Opd(A0) : a ∈ F}

• Special set of clopen up-sets: {ϕ(a) : a ∈ A}
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Note that:

- A ∈ ϕ(a), for all a ∈ A

- ϕ(0) = ∅

- There is a finite nonempty X ⊆ A such that
⋂

a∈X ϕ(a) = {A} iff L(A) has a
bottom element.
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Theorem

Let A be a Hilbert algebra. Then

1 〈A∗,⊆, τ〉 is a Priestley space

2 for every x, y ∈ A∗,

x ⊆ y iff (∀a ∈ A)(x ∈ ϕ(a)⇒ y ∈ ϕ(a)),

3 every nonempty clopen up-set is a finite union of intersections of a finite
number of elements of {ϕ(a) : a ∈ A}.

4 Prd(A) ∪ {A} is dense in 〈A∗,⊆, τ〉,
5 (∀x ∈ A∗ − {A})(∃y ∈ Prd(A)) x ⊆ y,
6 for every x ∈ A∗,

x ∈ Prd(A) iff {ϕ(a) : x 6∈ ϕ(a), a ∈ A} is nonempty and updirected.
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Let
BA = 〈{ϕ(a) : a ∈ A},⇒, A∗〉.

Theorem

ϕ�A : A ∼= BA,

and so BA is a Hilbert algebra.
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Definition

An augmented Priestley space is a tuple 〈X,≤, τ, S〉 such that

1 〈X,≤, τ〉 is a Priestley space,

2 〈X,≤〉 has a greatest element, t.

3 S is a family of nonempty clopen up-sets.

4 x ≤ y iff (∀U ∈ S)(x ∈ U ⇒ y ∈ U), for every x, y ∈ X.

5 the set

XS = {x ∈ X : {U ∈ S : x 6∈ U} is nonempty and updirected} ∪ {t}

is dense in X,

6 for every nonempty clopen up-set U ⊆ X, max(X − U) ⊆ XS iff U is the
intersection of a nonempty finite subset of S.

7 for every U, V ∈ S, [↓(U − V )]c ∈ S.

Fact: The structure 〈X,≤, τ,XS ∪ {t}〉 is a generalized Priestley space, in fact a
generalized Esakia space.
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Theorem
Let A be a Hilbert algebra. Then

(A)∗ = 〈A∗,⊆, τ, ϕ[A]〉,

where τ is the topology generated by the family of the sets ϕ(a), with a ∈ A, and
their complements, taken as a generating subbase, is an augmented Priestley
space.
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Let X = 〈X,≤, τ, S〉 be an augmented Priestley space.

For U, V ⊆ X let

U ⇒ V = [↓(U − V )]c = {x ∈ X : ↑x ∩ U ⊆ V }

Then the algebra
(X)∗ = 〈S,⇒, X〉

is a Hilbert algebra.

The closure of S under finite intersections is the set

X∗ = {U : U is a clopen up-set and max(X − U) ⊆ XS}

This set is closed under ⇒ and it is the implicative meet semi-lattice envelop of A.
Notice that max↓(U − V ) = max(U − V ).
For every x ∈ X, x ∈ XS ∪ {t} iff
{U ⊆ X : x 6∈ U,U is a clopen up-set and max(X − U) ⊆ XS} is updirected.

Ramon Jansana (University of Barcelona) WTML II 33 / 49



Let X = 〈X,≤, τ, S〉 be an augmented Priestley space. Let

ε : X → ((X)∗)∗

be the map defined by
ε(x) = {U ∈ S : x ∈ U}.

Note that ε(t) = S.

Theorem

If x ∈ X − {t}, then ε(x) is an optimal deductive filter of S.
If x ∈ XS , then ε(x) is a prime deductive filter of S.

Theorem

ε : X → ((X)∗)∗ is an order isomorphism and a homeomorphism

ε[XS ] = Prd(S)
S((X)∗)∗ = {ε[U ] : U ∈ S}.
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Morphism of augmented Priestley spaces

Let R ⊆ X × Y , for U ⊆ Y we set

2RU := {x ∈ X : R[x] ⊆ U}.

Notice that for every U, V ⊆ Y

2R(U ∩ V ) = 2RU ∩2RV

and
2R(U ⇒ V ) ⊆ 2RU ⇒ 2RV.

Let A,B be Hilbert algebras and h : A→ B a homomorphism.
We define Rh ⊆ B∗ ×A∗ by

xRhy iff h−1[x] ⊆ y

Note that BRhA and Rh[B] = {A}
Notation:

- ⊆B∗ denotes the inclusion relation restricted to B∗
- ⊆A∗ denotes the inclusion relation restricted to A∗.
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Theorem

1 ⊆B∗ ◦Rh ⊆ Rh

2 Rh◦ ⊆A∗⊆ Rh

3 if x ∈ B∗, y ∈ A∗ and xR�hy, then there is a ∈ A such that y 6∈ ϕ(a) and
Rh[x] ⊆ ϕ(a)

4 ϕ(h(a)) = 2Rh
ϕ(a)

5 ϕ(h(a→ b)) = ϕ(h(a))⇒ ϕ(h(b)).

6 If x ∈ B∗, y ∈ Prd(A) and xRhy, then there is z ∈ Prd(B) such that x ⊆ z
and Rh[z] = ↑y

Theorem

h is a sup-homomorphism iff Rh[x] has a least element for every x ∈ B∗ − {B},
namely h−1[x].
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Definition
Let X and Y be augmented Priestley spaces. A relation R ⊆ X × Y is called an
augmented Priestley morphism if

1 if xR�y, then there is U ∈ SY such that y 6∈ U and R[x] ⊆ U ,

2 if x ∈ X, y ∈ YSY
and xRy then there is z ∈ XSX

such that x ≤ z and
R[z] = ↑y.

3 if U ∈ SY , then 2RU ∈ SX .

An augmented Priestley morphism R is functional if for every x ∈ X, R[x] has a
least element.

Let R ⊆ X × Y be an augmented Priestley morphism. The map hR : SY → SX

defined by
hR(U) = 2RU.

is a homomorphism from 〈SX ,⇒, X〉 to 〈SY ,⇒, Y 〉.
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Let A,B be Hilbert algebras and h a homomorphism from A to B. For every
a ∈ A

ϕ(h(a)) = hRh
(ϕ(a)).

Let R be an augmented Priestley morphism from X to Y . Then for every x ∈ X
and every y ∈ Y

xRy iff ε(x)RhR
ε(y).
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Composition of augmented Priestley morphisms

Let

- X,Y, Z be augmented Priestley spaces,
- R an augmented Priestley morphism from X to Y ,
- S an augmented Priestley morphism from Y to Z.

The composition S ◦R may not be an augmented Priestley morphism.

We define the relation S∗R ⊆ X × Z as follows

xS∗Rz iff ∀U ∈ SZ((S ◦R)[x] ⊆ U ⇒ z ∈ U).

Then S∗R is an augmented Priestely morphism from X to Z.

If X is an augmented Priestley space, the order ≤X of X is an augmented
Priestely morphism and it is the identity morphism on X.
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Definition
Let APS be the category of augmented Priestley spaces as objects and augmented
Priestley morphisms as arrows, with composition the operation ∗.

We define the functors
(.)∗ : Hil � APS : (.)∗

as follows:

(A)∗ = 〈A∗,⊆, τ, ϕ[A]〉
(h : A→ B)∗ = Rh : (B)∗ → (A)∗

(X)∗ = SX

(R : X → Y )∗ = hR

These functors establish a dual equivalence between Hil and APS.
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The natural transformations

The natural transformation from

IdHil : Hil→ Hil to ((.)∗)∗ : Hil→ Hil

is given by the ϕ maps. For every A ∈ Hil,

ϕA = ϕ�A : A ∼= ((A)∗)∗.

To define the natural transformation from

IdAPS : APS→ APS to ((.)∗)∗ : APS→ APS.

we use for every X ∈ APS the map εX : X → ((X)∗)∗. We need to trun this
map into a isomorphism of APS between X and ((X)∗)∗.
Let X be an augmented Priestely space. Let εX ⊆ X × ((X)∗)∗ and
εX ⊆ ((X)∗)∗ ×X be the relations defined by

x εX ε(y) iff ε(x) ⊆ ε(y) ε(x) εX y iff x ≤X y

Lemma
The relations εX and εX are augmented Priestley morphisms and

εX∗εX = ≤((X)∗)∗ and εX∗εX = ≤X .
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Let X be an augmented Priestely space. The X-component of the natural
transformation from

IdAPS : APS→ APS to ((.)∗)∗ : APS→ APS.

is the relation εX ⊆ X × ((.)∗)∗.

Lemma
For every Hilbert algebra A and every augmented Priestley space X,

1 ((A)∗)∗ ∼= A
2 ((X)∗)∗ ∼= X

Theorem
Hil is dually equivalent to APS.
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Let Hilsup the category of Hilbert algebras with sup-homomorphisms.
Let APSF the category of augmented Priestley spaces with morphims the
functional augmented Priestley morphisms.

Theorem

Hilsup is dually equivalent to APSF.
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Let A, B be Hilbert algebras. A semi-homomorphism from A to B is a map
h : A→ B that

h(1) = 1
h(a→ b) ≤ h(a)→ h(b).

The relation Rh : (A)∗ → (B)∗ satisfies

if x ∈ B∗, y ∈ A∗ and xR�hy, then there is a ∈ A such that y 6∈ ϕ(a) and
Rh[x] ⊆ ϕ(a)
ϕ(h(a)) = 2Rh

ϕ(a)
ϕ(h(a→ b)) ⊆ ϕ(h(a))⇒ ϕ(h(b)).

Let X,Y augmented Priestley spaces. A relation R ⊆ X × Y is a semi-augmented
Priestley morphism if

if xR�y, then there is U ∈ SY such that y 6∈ U and R[x] ⊆ U ,

if U ∈ SY , then 2RU ∈ SX .
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Let Hilsem the category of Hilbert algebras with semi-homomorphisms.
Let APSsem the category of augmented Priestley spaces with morphims the
semi-augmented Priestley morphisms.

Theorem
Hilsem is dually equivalent to APSsem.
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Thank you !
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