Part I: Duality and recognition

Dual spaces as completions of Pervin uniformities and their application to recognition of formal languages

Mai Gehrke

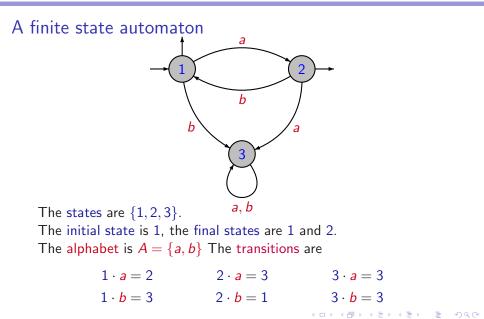
Radboud University Nijmegen

Joint work with Serge Grigorieff and Jean-Eric Pin

Recognizable subsets, profinite completions, and duality

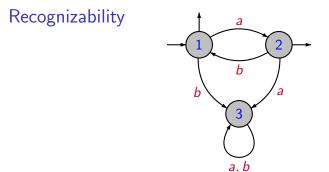
Reiterman's equational theory

Representation theory and Pervin uniform spaces



Part I: Duality and recognition

L The syntactic monoid of a recognizable language and duality



Transitions extend to words: $1 \cdot aba = 2$, $1 \cdot abb = 3$. The language recognized by the automaton is the set of words u such that $1 \cdot u$ is a final state. Here:

 $L(\mathcal{A}) = (ab)^* \cup (ab)^*a$

Algebraic theory of automata

Given a language L, the syntactic monoid of L is given by

 $M(L) = A^* / \sim_L$

where \sim_{L} is the syntactic congruence of L, which is defined by

 $u \sim_L v$ if and only if $\forall x, y \in A^* (xuy \in L \iff xvy \in L)$

NB! It is not hard to see that $\varphi_L : A^* \to A^* / \sim_L$ is the furthest monoid quotient of A^* with $\varphi^{-1}(\varphi(L)) = L$.

<u>Theorem:</u> (Myhill '53, Rabin-Scott '59) The syntactic monoid of a recognizable language is finite and there is an effective way of computing it.

The syntactic monoid

<u>Fact:</u> Syntactic monoids provide a powerful tool in automata theory and yield decidability results for various classes of automata. They are definable for arbitrary languages but have mainly been successful for recognizable ones.

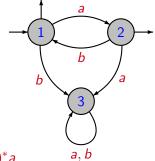
(Possibly a hint why it works well in the recognizable case:)

Theorem: [GGP2008] For a recognizable language L, the syntactic monoid of L is the dual space of a certain Boolean algebra with additional operations generated by L.

Part I: Duality and recognition

L The syntactic monoid of a recognizable language and duality

Quotient operations



 $L(\mathcal{A}) = (ab)^* \cup (ab)^*a$

$$a^{-1}L = \{ u \in A^* \mid au \in L \} = (ba)^* b \cup (ba)^*$$
$$La^{-1} = \{ u \in A^* \mid ua \in L \} = (ab)^*$$
$$b^{-1}L = \{ u \in A^* \mid bu \in L \} = \emptyset$$

Capturing the underlying machine

Given a recognizable language L the underlying machine is captured by the Boolean algebra $\mathcal{B}(L)$ of languages generated by

 $\{ x^{-1}Ly^{-1} \mid x, y \in A^* \}$

NB! This generating set is finite since all the languages are recognized by the same machine with varying sets of initial and final states.

NB! $\mathcal{B}(L)$ is closed under quotients since the quotient operations commute will all the Boolean operations.

The residuation ideal generated by a language

Since $\mathcal{B}(L)$ is finite it is also closed under residuation with respect to arbitrary denominators.

For any $K \in \mathcal{B}(L)$ and any $S \in A^*$

$$S \setminus K = \bigcap_{u \in S} u^{-1} K \in \mathcal{B}(L)$$

 $K/S = \bigcap_{u \in S} K u^{-1} \in \mathcal{B}(L)$

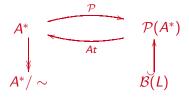
Theorem: [GGP2008] For a recognizable language *L*, the dual space of the algebra $(\mathcal{B}(L), \cap, \cup, ()^c, 0, 1, \backslash, /)$ is the syntactic monoid of *L*.

- including the multiplication and all!

Part I: Duality and recognition

L The syntactic monoid of a recognizable language and duality

The dual of the Boolean algebra $\mathcal{B}(L)$ Recall that $\mathcal{B}(L) = \langle x^{-1}Ly^{-1} | x, y \in A^* \rangle$.



where $u \sim v \iff \forall x, y \in A^* (u \in x^{-1}Ly^{-1} \iff v \in x^{-1}Ly^{-1})$ $\iff \forall x, y \in A^* (xuy \in L \iff xvy \in L)$

That is, $\sim = \sim_L$ and M(L) is indeed the set underlying the dual of $\mathcal{B}(L)$.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Frobenius' complex algebras

Let A be an algebra with an *n*-ary operation $f : A^n \to A$ The operation lifts to the powerset

$$\begin{array}{rcl} f \left[\begin{array}{c} \end{array} \right] : & \mathcal{P}(A)^n & \to & \mathcal{P}(A) \\ & (S_1, \dots, S_n) & \mapsto & f[S_1 \times \dots \times S_n] \end{array}$$

The complex algebra of A is

 $\mathbb{C}(A) = (\mathcal{P}(A), \cap, \cup, ()^{c}, 0, 1, f[])$

NB! The operation f[] is \bigcup -preserving in each coordinate

Part I: Duality and recognition

L The syntactic monoid of a recognizable language and duality

Residuation

A binary operation $\cdot \ : \ C \times C \to C$ is residuated provided there are operations

 $\backslash,/: C \times C \to C$

satisfying

 $\begin{array}{ll} \forall \ a,b,c\in C & (\ a\cdot b\leqslant c & \Longleftrightarrow & b\leqslant a\backslash c \\ & \Leftrightarrow & a\leqslant c/b \end{array} \right)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Part I: Duality and recognition

L The syntactic monoid of a recognizable language and duality

Residuation

A binary operation \cdot : $C \times C \rightarrow C$ is residuated provided there are operations

 $\backslash,/: C \times C \to C$

satisfying

 $\begin{array}{lll} \forall \ a,b,c\in C & (\ a\cdot b\leqslant c & \Longleftrightarrow & b\leqslant a\backslash c \\ & \Longleftrightarrow & a\leqslant c/b \end{array}) \\ f_a(b)\leqslant c & \Longleftrightarrow & b\leqslant g_a(c) \end{array}$

NB! \cdot is residuated iff it is V-preserving in each coordinate

Residuated complex algebra

Given an abstract algebra A, the complex algebra $\mathbb{C}(A)$ is residuated, yielding (in the binary case)

$$K \cdot L = \{uv \mid u \in K, v \in L\}$$

$$K \setminus M = \{v \mid \forall u \in K \ (uv \in M)\} = \bigcap_{u \in K} u^{-1}M$$

$$M/L = \{v \mid \forall w \in L \ (vw \in M)\} = \bigcap_{w \in L} Mw^{-1}$$

$$\{u\} \setminus M = \{v \mid uv \in M\} = u^{-1}M$$

$$M/\{w\} = \{v \mid vw \in M\} = Mw^{-1}$$

Duals of operations – the finite distributive lattice case

A \lor -preserving operation $f : D \to D$ yields a binary relation R_f on J(D) given by

 $R_f = \{(x, y) \mid x \leqslant f(y)\}.$

It satisfies $\leq \circ R_f \circ \leq = R_f$.

We get a duality which, on the object level, is given by:

 $(D, f) \mapsto (J(D), \leq, R_f)$ $(\mathcal{D}(X, \leq), R^{-1}[]) \leftrightarrow (X, \leq, R)$ Here $R^{-1}[S] = \{x \mid \exists y \in S \ xRy\}$

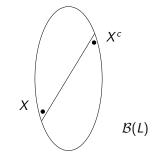
NB! A UNARY operation corresponds to a BINARY relation

The dual of residuation operations

The residuation operation $\setminus : \mathcal{B} \times \mathcal{B} \to \mathcal{B}$

sends $\bigvee \mapsto \bigwedge$ in the first coordinate sends $\bigwedge \mapsto \bigwedge$ in the second coordinate

$$R(X, Y, Z) \iff X \setminus (Z^c) \subseteq Y^c$$
$$\iff Y \not\subseteq X \setminus Z^c$$
$$\iff XY \not\subseteq Z^c$$



▲日▼▲□▼▲□▼▲□▼ □ のので

The dual of residuation operations

Now $XY \not\subseteq Z^c \iff XY \subseteq Z$ because $\sim = \sim_L$ is a congruence relation:

$$x \in X, y \in Y$$
 with $xy \in Z \implies XY \subseteq Z$

That is, $(\mathcal{B}(L), \cap, \cup, ()^c, 0, 1, \backslash, /) = M(L)$ as required.

The dual of residuation operations

Now $XY \not\subseteq Z^c \iff XY \subseteq Z$ because $\sim = \sim_L$ is a congruence relation:

 $x \in X, y \in Y$ with $xy \in Z \implies XY \subseteq Z$

That is, $(\mathcal{B}(L), \cap, \cup, ()^c, 0, 1, \backslash, /) = M(L)$ as required.

NB! A language is recognized by an automaton if and only if it is recognized by a finite monoid in the sense that

 $L = \varphi^{-1}(P)$ where $\varphi : A^* \to M \supseteq P$

as $(M, A, \{(m, a, m\varphi(a)) \mid m \in M, a \in A\}, \{1\}, P)$ is an automaton recognizing *L*.

The recognizable subsets of an abstract algebra

 $\operatorname{Rec}(A) = \{\varphi^{-1}(P) \mid \varphi : A \to F \text{ hom, } F \text{ finite, } P \subseteq F\}$

 $\blacktriangleright \emptyset , A \in \operatorname{Rec}(A)$

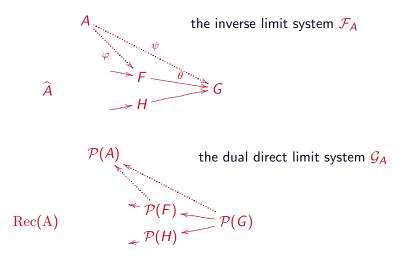
▶ $K, L \in \text{Rec}(A) \implies K \cap L \in \text{Rec}(A)$ (recognized by the product of the two homomorphisms)

 $\blacktriangleright \ L \in \operatorname{Rec}(A) \implies \operatorname{L^c} \in \operatorname{Rec}(A)$

(recognized by the same hom with complementary subset)

 $(\operatorname{Rec}(A),\cap,\cup,(\)^c,\emptyset,A)$ is a Boolean algebra

Profinite completions and recognizable subsets



▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

$\operatorname{Rec}(A)$ as a subalgebra of $\mathbb{C}(A)$

The residuated complex algebra of (A, f)

$$\mathbb{C}(A) = (\mathcal{P}(A), f[], \{\operatorname{Res}(f, i)\}_{i=1}^n)$$

NB! $\operatorname{Rec}(A) \subseteq \mathbb{C}(A)$ MOSTLY NOT closed under the lifted operation, BUT

Proposition: The Boolean subalgebra Rec(A) is closed under $(S \setminus (), () / S)_{S \in \mathcal{P}(A)}$.

Proof: For $L = \varphi^{-1}(P)$ we have $S \setminus L = \varphi^{-1}(\varphi(S) \setminus L)$

The dual of $(Rec(A), /, \backslash)$

Theorem: [GGP2008] The dual space of

Rec(A)+residuals of liftings of operations

is the profinite completion \widehat{A} with its operations.

The dual of $(Rec(A), /, \backslash)$

Theorem: [GGP2008] The dual space of

Rec(A)+residuals of liftings of operations

is the profinite completion \widehat{A} with its operations.

In particular, the duals of the residual operations are functional and continuous. In binary case:

$$R_{(\setminus,/)} = \cdot : \widehat{A} \times \widehat{A} \to \widehat{A}$$

It is an open mapping iff Rec(A) is closed under the lifted multiplication.

Functional duals

Question: For which Boolean residuation ideals of

$\mathcal{P}(A)$ + the residuals of the lifted operations

is the dual of the residual operations functional?

Theorem: [GGP2010] For algebras *A* such as monoids, Boolean subalgebras *B* of $\mathcal{P}(A)$ closed under $(\{u\}\setminus(\),(\)/\{u\})_{u\in A}$ have a functional dual if and only if *B* is contained in Rec(A).

Part I: Duality and recognition

Categorical dualities

subalgebras \longleftrightarrow quotient structures

quotient algebras \longleftrightarrow (generated) substructures

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

products \longleftrightarrow sums

sums \longleftrightarrow products

The mechanism behind Reiterman's theorem

Let A be an abstract algebra.

 \mathcal{L} a Boolean subalgebra (sublattice) of $\operatorname{Rec}(A)$ corresponds to $E \subseteq \widehat{A} \times \widehat{A}$ a set of (in)equations in profinite terms

 \mathcal{L} a Boolean subalgebra (sublattice) of $\mathcal{P}(A)$ corresponds to $E \subseteq \beta(A) \times \beta(A)$ a set of (in)equations in " β -terms"

and

A Galois connection for subsets of an algebra

Let B be a Boolean algebra, X the dual space of B.

The maps $\mathcal{P}(B) \cong \mathcal{P}(X \times X)$ given by

 $S \mapsto \preceq_S = \{(x,y) \in X \mid \forall b \in S \ (b \in y \Rightarrow b \in x)\}$

 $E \mapsto B_E = \{ b \in B \mid \forall (x, y) \in E \ (b \in y \Rightarrow b \in x) \}$

establish a Galois connection whose Galois closed sets are the compatible quasiorders and the bounded sublattices, respectively.

A Galois connection for subsets of an algebra

Let B be a Boolean algebra, X the dual space of B.

The maps $\mathcal{P}(B) \cong \mathcal{P}(X \times X)$ given by

 $S \mapsto \approx_S = \{(x, y) \in X \mid \forall b \in S \ (b \in y \iff b \in x)\}$

and

$E \mapsto B_E = \{ b \in B \mid \forall (x, y) \in E \quad (b \in y \iff b \in x) \}$

establish a Galois connection whose Galois closed sets are the compatible equivalence relations and the Boolean subalgebras, respectively.

Varying interpretations of equations

Consider a language $L \in \mathcal{P}(A^*)$ and $\mu, \nu \in \beta(A^*)$. Then L satisfies $\mu \leftrightarrow \nu$ provided

 $L \in \mu \quad \Longleftrightarrow \quad L \in \nu$

Varying interpretations of equations

Consider a language $L \in \mathcal{P}(A^*)$ and $\mu, \nu \in \beta(A^*)$. Then L satisfies $\mu \leftrightarrow \nu$ provided

$$L \in \mu \iff L \in \nu$$

If we think of $\mu\approx\nu$ as an equation of residuation ideals then the interpretation is

$$\forall x, y \in A^* \qquad (L \in x \mu y \iff L \in x \nu y)$$

or equivalently

$$\forall x, y \in A^* \qquad (x^{-1}Ly^{-1} \in \mu \iff x^{-1}Ly^{-1} \in \nu)$$

▲日▼▲□▼▲□▼▲□▼ □ のので

Varying interpretations of equations

If we think of $\mu = \nu$ as an equation of residuation ideals that is also invariant under substitution then

$$arphi : A^* o A^*$$
 $arphi^{-1} : \mathcal{P}(A^*) o \mathcal{P}(A^*)$
 $S(arphi^{-1}) : eta(A^*) o eta(A^*)$

and the interpretation is

 $\forall \varphi \, \forall x, y \in A^* \left(\, x^{-1} L y^{-1} \in S(\varphi^{-1})(\mu) \ \iff \ x^{-1} L y^{-1} \in S(\varphi^{-1})(\nu) \, \right)$

e.g., if *L* is a commutative language it satisfies the substitution invariant equation ab = ba (i.e., $\mu\nu = \nu\mu$ for all $\mu, \nu \in \beta(A^*)$)

The case of recognizable languages

In this case we may work at the level of $\widehat{A^*}$ -equations. A recognizable language L satisfies x = y corresponds to its syntactic monoid satisfying it.

 $f: A \to M$ $\varphi: A^* \to M$ $\varphi^{-1}: \mathcal{P}(M) \to \mathcal{P}(A^*)$ $S(\varphi^{-1}): \beta(A^*) \to M$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The case of recognizable languages

In this case we may work at the level of $\widehat{A^*}$ -equations. A recognizable language L satisfies x = y corresponds to its syntactic monoid satisfying it.

$$egin{aligned} f &: A o M \ arphi &: A^* o M \ arphi^{-1} &: \mathcal{P}(M) o \mathcal{P}(A^*) \ \mathcal{S}(arphi^{-1}) &: eta(A^*) o M \end{aligned}$$

E.g., there is an operation ()^{ω} on $\widehat{A^*}$ which interprets in each finite monoid as the idempotent in the cyclic monoid generated by the element. The equation $x^{\omega} = x^{\omega+1}$ describes the star-free languages.

A fully modular Eilenberg-Reiterman theorem

Using the fact that sublattices of $\text{Rec}(A^*)$ correspond to Stone quotients of $\widehat{A^*}$ we get a vast generalization of the Eilenberg-Reiterman theory for recognizable languages

Closed under	Equations	Definition
∪,∩	$u \rightarrow v$	$\hat{\eta}(\mathbf{v}) \in \hat{\eta}(L) \Rightarrow \hat{\eta}(u) \in \hat{\eta}(L)$
quotienting	$u \leqslant v$	for all $x, y, xuy \rightarrow xvy$
complement	$u \leftrightarrow v$	u ightarrow v and $v ightarrow u$
quotienting and complement	u = v	for all x, y , $xuy \leftrightarrow xvy$
Closed under inverses of morphisms		Interpretation of variables
all morphisms		words
nonerasing morphisms		nonempty words
length multiplying morphisms		words of equal length
length preserving morphisms		letters

Eilenberg-Reiterman theory for arbitrary languages The dual space of $\mathcal{P}(A^*)$ is the Stone-Čech compactification $\beta(A^*)$ of A^* as a discrete space.

Thus the sublattices of $\mathcal{P}(A^*)$ correspond to the Stone quotients of $\beta(A^*)$. We get theorem as for recognizable languages:

Closed under	Equations	Definition
∪,∩	$u \rightarrow v$	$v \in \widehat{L} \Rightarrow u \in \widehat{L}$
quotienting	$u \leqslant v$	for all $x, y, xuy \rightarrow xvy$
complement	$u \leftrightarrow v$	u ightarrow v and $v ightarrow u$
quotienting and complement	u = v	for all x, y , $xuy \leftrightarrow xvy$
Closed under inverses of morphisms		Interpretation of variables
all morphisms		words
nonerasing morphisms		nonempty words
length multiplying morphisms		words of equal length
length preserving morphisms		letters

Concrete representations

An algebra of languages is more than just an abstract algebra. It is a concrete representation of an abstract algebra:

 $e: B \hookrightarrow \mathcal{P}(A)$

This information is equivalent to

 (A, \mathcal{B}) where $\mathcal{B} = Im(e)$

and dually it is equivalent to

 $A \rightarrow X_B$ where $a \mapsto \mathcal{F}_a = \{L \in B \mid a \in e(L)\}$

It may very well be that A and B (and thus B) are countable while X_B is much bigger.

Concrete representations and Pervin uniformities

From a concrete representation (A, B) we can make blocks

 $\mathcal{B} \ni L \quad \mapsto \quad (L \times L) \cup (L^c \times L^c)$

and obtain a Pervin uniform space

$$(A, \mathcal{U}_{\mathcal{B}})$$
 where $\mathcal{U}_{\mathcal{B}} = \langle (L \times L) \cup (L^{c} \times L^{c}) \mid L \in \mathcal{B} \rangle$

Proposition: Generating a uniformity does NOT add blocks in the sense that $L \subseteq A$ is a block of $\mathcal{U}_{\mathcal{B}}$ iff $L \in \mathcal{B}$.

Pervin uniform spaces and Stone duals

Given a Pervin uniform space (A , $\mathcal{U}_{\mathcal{B}}$) its Hausdorff completion

 $(A, \mathcal{U}_{\mathcal{B}}) \rightarrow (X, \mathcal{U}_{\mathcal{B}})$

yields a compact topological space.

Thus uniformity and topology carry the same information and in fact $(X, U_{\mathcal{B}})$ is the Stone dual space of \mathcal{B} .

That is, in a natural way, we recover

 $A \to X_{\mathcal{B}}$ where $a \mapsto \mathcal{F}_a = \{L \in \mathcal{B} \mid a \in L\}$

Conclusions

- Stone duality yields canonical representations/recognizing objects
- The dual of binary residuation on regular languages is FUNCTIONAL
- (Interesting) functional duals is closely linked to (finite) recognition and is a new phenomenon for duality theory
- Equations à la Reiterman may be seen as a special case of the duality

 $subalgebras \quad \leftrightarrow \quad quotient \ spaces$

The theory of Pervin uniform spaces provides an ideal setting for the study of concrete representation/recognition and associated dual spaces