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The syntactic monoid of a recognizable language and duality

A finite state automaton
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a, bThe states are {1, 2, 3}.
The initial state is 1, the final states are 1 and 2.
The alphabet is A = {a, b} The transitions are

1 · a = 2 2 · a = 3 3 · a = 3

1 · b = 3 2 · b = 1 3 · b = 3
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The syntactic monoid of a recognizable language and duality

Recognizability
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a, b

Transitions extend to words: 1 · aba = 2, 1 · abb = 3.
The language recognized by the automaton is the set of words u

such that 1 · u is a final state. Here:

L(A) = (ab)∗ ∪ (ab)∗a

where ∗ means arbitrary iteration of the product.
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The syntactic monoid of a recognizable language and duality

Algebraic theory of automata

Given a language L, the syntactic monoid of L is given by

M(L) = A∗/ ∼L

where ∼L is the syntactic congruence of L, which is defined by

u ∼L v if and only if ∀x , y ∈ A∗ (xuy ∈ L ⇐⇒ xvy ∈ L)

NB! It is not hard to see that ϕL : A∗ → A∗/ ∼L is the furthest
monoid quotient of A∗ with ϕ−1(ϕ(L)) = L.

Theorem: (Myhill ’53, Rabin-Scott ’59)
The syntactic monoid of a recognizable language is finite and there
is an effective way of computing it.
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The syntactic monoid

Fact: Syntactic monoids provide a powerful tool in automata
theory and yield decidability results for various classes of automata.
They are definable for arbitrary languages but have mainly been
successful for recognizable ones.

(Possibly a hint why it works well in the recognizable case:)

Theorem: [GGP2008] For a recognizable language L, the syntactic
monoid of L is the dual space of a certain Boolean algebra with
additional operations generated by L.
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Quotient operations
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a, bL(A) = (ab)∗ ∪ (ab)∗a

a−1L= {u ∈ A∗ | au ∈ L} = (ba)∗b ∪ (ba)∗

La−1= {u ∈ A∗ | ua ∈ L} = (ab)∗

b−1L= {u ∈ A∗ | bu ∈ L} = ∅



Part I: Duality and recognition

The syntactic monoid of a recognizable language and duality

Capturing the underlying machine

Given a recognizable language L the underlying machine is
captured by the Boolean algebra B(L) of languages generated by

{
x−1Ly−1 | x , y ∈ A∗

}

NB! This generating set is finite since all the languages are
recognized by the same machine with varying sets of initial and
final states.

NB! B(L) is closed under quotients since the quotient operations
commute will all the Boolean operations.
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The syntactic monoid of a recognizable language and duality

The residuation ideal generated by a language

Since B(L) is finite it is also closed under residuation with respect
to arbitrary denominators.

For any K ∈ B(L) and any S ∈ A∗

S\K =
⋂

u∈S

u−1K ∈ B(L)

K/S =
⋂

u∈S

Ku−1 ∈ B(L)

Theorem: [GGP2008] For a recognizable language L, the dual
space of the algebra (B(L),∩,∪, ( )c , 0, 1, \, /) is the syntactic
monoid of L.

– including the multiplication and all!
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The dual of the Boolean algebra B(L)

Recall that B(L) = 〈x−1Ly−1 | x , y ∈ A∗〉.
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A∗/ ∼ B(L)
?�

OO

where u ∼ v ⇐⇒ ∀x , y ∈ A∗ (u ∈ x−1Ly−1 ⇐⇒ v ∈ x−1Ly−1)

⇐⇒ ∀x , y ∈ A∗ (xuy ∈ L ⇐⇒ xvy ∈ L)

That is, ∼ = ∼L and M(L) is indeed the set underlying the dual of
B(L).
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Frobenius’ complex algebras

Let A be an algebra with an n-ary operation f : An → A

The operation lifts to the powerset

f [ ] : P(A)n → P(A)

(S1, . . . ,Sn) 7→ f [S1 × . . .× Sn]

The complex algebra of A is

C(A) = (P(A),∩,∪, ( )c , 0, 1, f [ ])

NB! The operation f [ ] is
⋃

-preserving in each coordinate
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The syntactic monoid of a recognizable language and duality

Residuation

A binary operation · : C × C → C is residuated provided there
are operations

\, / : C × C → C

satisfying

∀ a, b, c ∈ C ( a · b 6 c ⇐⇒ b 6 a\c

⇐⇒ a 6 c/b )
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The syntactic monoid of a recognizable language and duality

Residuation

A binary operation · : C × C → C is residuated provided there
are operations

\, / : C × C → C

satisfying

∀ a, b, c ∈ C ( a · b 6 c ⇐⇒ b 6 a\c

⇐⇒ a 6 c/b )

fa(b) 6 c ⇐⇒ b 6 ga(c)

NB! · is residuated iff it is
∨

-preserving in each coordinate
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The syntactic monoid of a recognizable language and duality

Residuated complex algebra

Given an abstract algebra A, the complex algebra C(A) is
residuated, yielding (in the binary case)

K · L = {uv | u ∈ K , v ∈ L}

K\M = {v | ∀u ∈ K (uv ∈ M)}=
⋂

u∈K
u−1M

M/L = {v | ∀w ∈ L (vw ∈ M)}=
⋂

w∈L
Mw−1

{u}\M = {v | uv ∈ M} = u−1M

M/{w} = {v | vw ∈ M} = Mw−1
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Duals of operations – the finite distributive lattice case

A ∨-preserving operation f : D → D yields a binary relation Rf on
J(D) given by

Rf = {(x , y) | x 6 f (y)}.

It satisfies 6 ◦Rf ◦ 6 = Rf .

We get a duality which, on the object level, is given by:

(D, f ) 7→ (J(D),6,Rf )

(D(X ,6),R−1[ ]) ← [ (X ,6,R)

Here R−1[S ] = {x | ∃y ∈ S xRy}

NB! A UNARY operation corresponds to a BINARY relation
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The dual of residuation operations

The residuation operation \ : B × B → B

sends
∨
7→

∧
in the first coordinate

sends
∧
7→

∧
in the second coordinate

R(X ,Y ,Z ) ⇐⇒ X\(Z c) ⊆ Y c

⇐⇒ Y 6⊆ X\Z c

⇐⇒ XY 6⊆ Z c

X

B(L)

X
c
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The dual of residuation operations

Now XY 6⊆ Z c ⇐⇒ XY ⊆ Z because ∼=∼L is a
congruence relation:

x ∈ X , y ∈ Y with xy ∈ Z =⇒ XY ⊆ Z

That is, (B(L),∩,∪, ( )c , 0, 1, \, /) = M(L) as required.
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The syntactic monoid of a recognizable language and duality

The dual of residuation operations

Now XY 6⊆ Z c ⇐⇒ XY ⊆ Z because ∼=∼L is a
congruence relation:

x ∈ X , y ∈ Y with xy ∈ Z =⇒ XY ⊆ Z

That is, (B(L),∩,∪, ( )c , 0, 1, \, /) = M(L) as required.

NB! A language is recognized by an automaton if and only if it is
recognized by a finite monoid in the sense that

L = ϕ−1(P) where ϕ : A∗ → M ⊇ P

as (M,A, {(m, a,mϕ(a)) | m ∈ M, a ∈ A}, {1},P) is an automaton
recognizing L.
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Recognizable subsets, profinite completions, and duality

The recognizable subsets of an abstract algebra

Rec(A) = {ϕ−1(P) | ϕ : A→ F hom, F finite, P ⊆ F}

◮ ∅ , A ∈ Rec(A)

◮ K ,L ∈ Rec(A) =⇒ K ∩ L ∈ Rec(A)
(recognized by the product of the two homomorphisms)

◮ L ∈ Rec(A) =⇒ Lc ∈ Rec(A)
(recognized by the same hom with complementary subset)

(Rec(A),∩,∪, ( )c, ∅,A) is a Boolean algebra



Part I: Duality and recognition

Recognizable subsets, profinite completions, and duality

Profinite completions and recognizable subsets
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Rec(A) as a subalgebra of C(A)

The residuated complex algebra of (A, f )

C(A) = (P(A), f [ ], {Res(f , i)}ni=1)

NB! Rec(A) ⊆ C(A) MOSTLY NOT closed under the lifted
operation, BUT

Proposition: The Boolean subalgebra Rec(A) is closed under
(S\( ), ( )/S)S∈P(A).

Proof: For L = ϕ−1(P) we have S\L = ϕ−1(ϕ(S)\L)



Part I: Duality and recognition
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The dual of (Rec(A), /, \)

Theorem: [GGP2008] The dual space of

Rec(A)+residuals of liftings of operations

is the profinite completion Â with its operations.
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Recognizable subsets, profinite completions, and duality

The dual of (Rec(A), /, \)

Theorem: [GGP2008] The dual space of

Rec(A)+residuals of liftings of operations

is the profinite completion Â with its operations.

In particular, the duals of the residual operations are functional and
continuous. In binary case:

R(\,/) = · : Â× Â→ Â

It is an open mapping iff Rec(A) is closed under the lifted
multiplication.
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Recognizable subsets, profinite completions, and duality

Functional duals

Question: For which Boolean residuation ideals of

P(A) + the residuals of the lifted operations

is the dual of the residual operations functional?

Theorem: [GGP2010] For algebras A such as monoids, Boolean
subalgebras B of P(A) closed under ({u}\( ), ( )/{u})u∈A have a
functional dual if and only if B is contained in Rec(A).
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Reiterman’s equational theory

Categorical dualities

subalgebras ←→ quotient structures

quotient algebras ←→ (generated) substructures

products ←→ sums

sums ←→ products
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Reiterman’s equational theory

The mechanism behind Reiterman’s theorem

Let A be an abstract algebra.

L a Boolean subalgebra (sublattice) of Rec(A)
corresponds to

E ⊆ Â× Â a set of (in)equations in profinite terms

L a Boolean subalgebra (sublattice) of P(A)
corresponds to

E ⊆ β(A)× β(A) a set of (in)equations in “β-terms”
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Reiterman’s equational theory

A Galois connection for subsets of an algebra

Let B be a Boolean algebra, X the dual space of B .

The maps P(B) ⇆ P(X × X ) given by

S 7→ �S = {(x , y) ∈ X | ∀b ∈ S (b ∈ y ⇒ b ∈ x)}

and

E 7→ BE = {b ∈ B | ∀(x , y) ∈ E (b ∈ y ⇒ b ∈ x)}

establish a Galois connection whose Galois closed sets are the
compatible quasiorders and the bounded sublattices, respectively.
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Reiterman’s equational theory

A Galois connection for subsets of an algebra

Let B be a Boolean algebra, X the dual space of B .

The maps P(B) ⇆ P(X × X ) given by

S 7→ ≈S = {(x , y) ∈ X | ∀b ∈ S (b ∈ y ⇐⇒ b ∈ x)}

and

E 7→ BE = {b ∈ B | ∀(x , y) ∈ E (b ∈ y ⇐⇒ b ∈ x)}

establish a Galois connection whose Galois closed sets are the
compatible equivalence relations and the Boolean subalgebras,
respectively.
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Reiterman’s equational theory

Varying interpretations of equations

Consider a language L ∈ P(A∗) and µ, ν ∈ β(A∗). Then L satisfies
µ↔ ν provided

L ∈ µ ⇐⇒ L ∈ ν
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Reiterman’s equational theory

Varying interpretations of equations

Consider a language L ∈ P(A∗) and µ, ν ∈ β(A∗). Then L satisfies
µ↔ ν provided

L ∈ µ ⇐⇒ L ∈ ν

If we think of µ ≈ ν as an equation of residuation ideals then the
interpretation is

∀x , y ∈ A∗ ( L ∈ xµy ⇐⇒ L ∈ xνy )

or equivalently

∀x , y ∈ A∗ ( x−1Ly−1 ∈ µ ⇐⇒ x−1Ly−1 ∈ ν )
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Reiterman’s equational theory

Varying interpretations of equations

If we think of µ = ν as an equation of residuation ideals that is
also invariant under substitution then

ϕ : A∗ → A∗

ϕ−1 : P(A∗)→ P(A∗)

S(ϕ−1) : β(A∗)→ β(A∗)

and the interpretation is

∀ϕ ∀x , y ∈ A∗ ( x−1Ly−1 ∈ S(ϕ−1)(µ) ⇐⇒ x−1Ly−1 ∈ S(ϕ−1)(ν) )

e.g., if L is a commutative language it satisfies the substitution
invariant equation ab = ba (i.e., µν = νµ for all µ, ν ∈ β(A∗))
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Reiterman’s equational theory

The case of recognizable languages

In this case we may work at the level of Â∗-equations. A
recognizable language L satisfies x = y corresponds to its syntactic
monoid satisfying it.

f : A→ M

ϕ : A∗ → M

ϕ−1 : P(M)→ P(A∗)

S(ϕ−1) : β(A∗)→ M
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Reiterman’s equational theory

The case of recognizable languages

In this case we may work at the level of Â∗-equations. A
recognizable language L satisfies x = y corresponds to its syntactic
monoid satisfying it.

f : A→ M

ϕ : A∗ → M

ϕ−1 : P(M)→ P(A∗)

S(ϕ−1) : β(A∗)→ M

E.g., there is an operation ( )ω on Â∗ which interprets in each
finite monoid as the idempotent in the cyclic monoid generated by
the element. The equation xω = xω+1 describes the star-free
languages.
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Reiterman’s equational theory

A fully modular Eilenberg-Reiterman theorem

Using the fact that sublattices of Rec(A∗) correspond to Stone

quotients of Â∗ we get a vast generalization of the
Eilenberg-Reiterman theory for recognizable languages

Closed under Equations Definition

∪,∩ u → v η̂(v) ∈ η̂(L)⇒ η̂(u) ∈ η̂(L)

quotienting u 6 v for all x , y , xuy → xvy

complement u ↔ v u → v and v → u

quotienting and complement u = v for all x , y , xuy ↔ xvy

Closed under inverses of morphisms Interpretation of variables

all morphisms words

nonerasing morphisms nonempty words

length multiplying morphisms words of equal length

length preserving morphisms letters
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Reiterman’s equational theory

Eilenberg-Reiterman theory for arbitrary languages
The dual space of P(A∗) is the Stone-Čech compactification β(A∗)
of A∗ as a discrete space.

Thus the sublattices of P(A∗) correspond to the Stone quotients
of β(A∗). We get theorem as for recognizable languages:

Closed under Equations Definition

∪,∩ u → v v ∈ L̂⇒ u ∈ L̂

quotienting u 6 v for all x , y , xuy → xvy

complement u ↔ v u → v and v → u

quotienting and complement u = v for all x , y , xuy ↔ xvy

Closed under inverses of morphisms Interpretation of variables

all morphisms words

nonerasing morphisms nonempty words

length multiplying morphisms words of equal length

length preserving morphisms letters
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Concrete representations

An algebra of languages is more than just an abstract algebra. It is
a concrete representation of an abstract algebra:

e : B →֒ P(A)

This information is equivalent to

(A,B) where B = Im(e)

and dually it is equivalent to

A→ XB where a 7→ Fa = {L ∈ B | a ∈ e(L)}

It may very well be that A and B (and thus B) are countable while
XB is much bigger.
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Concrete representations and Pervin uniformities

From a concrete representation (A , B ) we can make blocks

B ∋ L 7→ (L× L) ∪ (Lc × Lc )

and obtain a Pervin uniform space

(A , UB ) where UB = 〈(L× L) ∪ (Lc × Lc) | L ∈ B〉

Proposition: Generating a uniformity does NOT add blocks in the
sense that L ⊆ A is a block of UB iff L ∈ B.
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Pervin uniform spaces and Stone duals

Given a Pervin uniform space (A , UB ) its Hausdorff completion

(A , UB )→ (X , UB )

yields a compact topological space.

Thus uniformity and topology carry the same information and in
fact (X , UB ) is the Stone dual space of B.

That is, in a natural way, we recover

A→ XB where a 7→ Fa = {L ∈ B | a ∈ L}
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Conclusions
◮ Stone duality yields canonical representations/recognizing

objects

◮ The dual of binary residuation on regular languages is
FUNCTIONAL

◮ (Interesting) functional duals is closely linked to (finite)
recognition and is a new phenomenon for duality theory

◮ Equations à la Reiterman may be seen as a special case of the
duality

subalgebras ↔ quotient spaces

◮ The theory of Pervin uniform spaces provides an ideal setting
for the study of concrete representation/recognition and
associated dual spaces
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