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Introduction

In 1937, M. Stone [Stone] proved that there exists

a bijective correspondence between the class of

all (up to homeomorphism) zero-dimensional lo-

cally compact Hausdorff spaces (briefly, Boolean

spaces) and the class of all (up to isomorphism)

generalized Boolean pseudolattices (briefly, GB-

PLs) (or, equivalently, Boolean rings with or with-

out unit). In the class of compact Boolean spaces

(briefly, Stone spaces) this bijection can be ex-

tended to a duality St : ZHC −→ Bool between



the category ZHC of Stone spaces and continu-

ous maps and the category Bool of Boolean al-

gebras and Boolean homomorphisms. As far as

I know, in the case of Boolean spaces such an

extension to a duality does not exist. In fact,

there are some obstacles for doing this. Indeed,

to every Boolean space X, M. Stone juxtaposes

the generalized Boolean pseudolattice CK(X) of

all compact open subsets of X and reconstructs

from it the space X (up to homeomorphism).

If f : X −→ Y is a continuous map between

two Stone spaces then its dual map ϕ = St(f) :

CO(Y ) −→ CO(X) (where, for every topological

space Z, CO(Z) is the set of all clopen subsets

of Z) is defined by the formula ϕ(G) = f−1(G),

for every G ∈ CO(Y ). If, however, f : X −→ Y

is a continuous map between two Boolean spaces

and at least the space X is not compact then the

preimages f−1(G) of the elements G of CK(Y )

are not obliged to be elements of the set CK(X).

These preimages will belong to CK(X) iff the map

f is perfect; then it is natural to expect that the



category of GBPLs and pseudolattice homomor-

phisms preserving zero elements (or, equivalently,

the category BoolRng of Boolean rings and ring

homomorphisms) will be the dual category of the

category PZHLC of Boolean spaces and perfect

maps. However it is not the case. For exam-

ple, if X and Y are two non-empty Boolean non-

compact spaces and the 0-pseudolattice homo-

morphism ϕ0 : CK(Y ) −→ CK(X) is defined by

ϕ0(G) = 0(= ∅) for every G ∈ CK(Y ), then there

is no one function f : X −→ Y such that ϕ0(G) =

f−1(G), for every G ∈ CK(Y ). Hence, even in the

case of perfect maps, the mentioned homomor-

phisms are too much. In fact, as it is proved by

D. Hofmann [Hof], the category BoolRng is du-

ally equivalent to the category pStone of pointed

Stone spaces and continuous maps preserving the

fixed points. Thus, if one looks for a dual cate-

gory to the category PZHLC, having GBPLs as

objects, then this category has to have as mor-

phisms some subclass of the class of pseudolattice

homomorphisms preserving zero elements. Such



a category is described here and is named GBPL
(see Theorem 18 below where two duality func-
tors Θt

g : PZHLC −→ GBPL and Θa
g : GBPL −→

PZHLC are defined). Further, we want also to
find a dual category to the category ZHLC. It is
clear that in this case the preimages of the com-
pact open sets are clopen sets but they are not
obliged to be compact sets. In [Stone], M. Stone
proves that clopen subsets of a Boolean space X

correspond to simple ideals of the GBPL CK(X)
(i.e. those ideals of CK(X) which have a com-
plement in the frame Idl(CK(X)) of all ideals of
CK(X)). Therefore one has to use the simple
ideals of GBPLs. As it is proved by M. Stone,
the set of all simple ideals of a GBPL forms a
Boolean algebra. Here we describe the objects of
the desired dual category to the category ZHLC
as pairs (B, I), where B is a Boolean algebra and
I is a dense (proper or non proper) ideal of it,
satisfying a condition of completeness type; this
condition is the following: for every simple ideal
J of I, the join

∨
B J exists; it is fulfilled for ev-

ery pair (B, B), where B is a Boolean algebra be-
cause, as it is shown by M. Stone, an ideal of



a Boolean algebra is simple iff it is principal. In

this way we build a category named ZLBA and we

prove that it is dually equivalent to the category

ZHLC (see Theorem 11 where two duality func-

tors Θt
d : ZHLC −→ ZLBA and Θa

d : ZLBA −→
ZHLC are defined). The idea of the construc-

tion of the category ZLBA comes from the ideas

and results obtained in [D-AMH1-10]. However,

the proof that the categories ZHLC and ZLBA

are dually equivalent can be carried out indepen-

dently from the results of [D-AMH1-10]; this is

the more economical way. Namely, we first con-

struct a category LBA containing as a subcate-

gory the category ZLBA and find a contravari-

ant adjunction between the categories LBA and

ZHLC which leads to the mentioned above duality

between the categories ZHLC and ZLBA. We de-

fine also two more categories PZLBA and PLBA

which are dual to the category PZHLC.

We now fix the notation.



If C denotes a category, we write X ∈ |C| if

X is an object of C, and f ∈ C(X, Y ) if f is a

morphism of C with domain X and codomain Y .

We will say that a subcategory B of a category

A is a cofull subcategory if |B| = |A|.

The set of all clopen (= closed and open) sub-

sets of a topological space X will be denoted by

CO(X) and the set of all compact open subsets

of X by CK(X).

The closed maps, as well as open maps, be-

tween topological spaces are assumed to be con-

tinuous but are not assumed to be onto.

All lattices are with top (= unit) and bottom

(= zero) elements, denoted respectively by 1 and

0. We do not require the elements 0 and 1 to be

distinct. Since we follow Johnstone’s terminology

from [J], we will use the term pseudolattice for a

poset having all finite non-empty meets and joins;

the pseudolattices with a bottom will be called 0-

pseudolattices.



The operation “complement” in Boolean alge-

bras will be denoted by “*”.

If A is a Boolean algebra then the set of all

ultrafilters of A will be denoted by Ult(A).

We denote by St : ZHC −→ Bool and Sa :

Bool −→ ZHC the Stone duality functors between

the category ZHC of compact zero-dimensional

Hausdorff spaces (= Stone spaces) and continu-

ous maps and the category Bool of Boolean al-

gebras and Boolean homomorphisms. For fixing

the notation, recall that the Stone space Sa(A)

of a Boolean algebra A is the set X = Ult(A) en-

dowed with a topology T having as an open base

the family {λS
A(a) | a ∈ A}, where λS

A(a) = {u ∈
X | a ∈ u} for every a ∈ A; then Sa(A) = (X, T )

is a compact Hausdorff zero-dimensional space,

and the map λS
A : A −→ CO(X), a 7→ λS

A(a), is a

Boolean isomorphism.



Preliminaries

1 Recall that a frame is a complete lattice L

satisfying the infinite distributive law a ∧ ∨
S =∨{a ∧ s | s ∈ S}, for every a ∈ L and every S ⊆ L.

Let A be a distributive 0-pseudolattice and Idl(A)

be the frame of all ideals of A. If J ∈ Idl(A) then

we will write ¬AJ (or simply ¬J) for the pseu-

docomplement of J in Idl(A) (i.e. ¬J =
∨{I ∈

Idl(A) | I ∧ J = {0}}). Note that ¬J = {a ∈
A | (∀b ∈ J)(a∧ b = 0)} (see Stone [ST1]). Recall

that an ideal J of A is called simple (Stone [ST1])

if J ∨ ¬J = A. As it is proved in [ST1], the set

Si(A) of all simple ideals of A is a Boolean algebra

with respect to the lattice operations in Idl(A).

Recall also that the regular elements of the frame

Idl(A) (i.e. those J ∈ Idl(A) for which ¬¬J = J)

are called normal ideals (Stone [ST1]).

2 Let us recall the notion of lower adjoint for

posets. Let ϕ : A −→ B be an order-preserving

map between posets. If ψ : B −→ A is an order-

preserving map satisfying the following condition



(Λ) for all a ∈ A and all b ∈ B, b ≤ ϕ(a) iff ψ(b) ≤ a

(i.e. the pair (ψ, ϕ) forms a Galois connection be-
tween posets B and A) then we will say that ψ is a
lower adjoint of ϕ. It is easy to see that condition
(Λ) is equivalent to the following condition:

(Λ′) ∀a ∈ A and ∀b ∈ B, ψ(ϕ(a)) ≤ a and ϕ(ψ(b)) ≥
b.

Note that if ϕ : A −→ B is an (order-preserving)
map between posets, A has all meets and ϕ pre-
serves them then, by the Adjoint Functor Theo-
rem (see, e.g., [J]), ϕ has a lower (or left) adjoint
which will be denoted by ϕΛ.

3 Recall that:

(a) a map is perfect if it is compact (i.e. point
inverses are compact sets) and closed;

(b) a continuous map f : X −→ Y is called quasi-
open ([MP]) if for every non-empty open subset
U of X, int(f(U)) 6= ∅ holds;



(c) a function f : X −→ Y is called skeletal ([MR])

if int(f−1(cl(V ))) ⊆ cl(f−1(V )) for every open

subset V of Y ; it is well-known that a function

f : X −→ Y is skeletal iff int(cl(f(V ))) 6= ∅ for

every non-empty open subset U of X.

The Generalizations of the Stone Du-
ality Theorem

Definition 4 A pair (A, I), where A is a Boolean

algebra and I is an ideal of A (possibly non proper)

which is dense in A (shortly, dense ideal), is called

a local Boolean algebra (abbreviated as LBA). An

LBA (A, I) is called a prime local Boolean algebra

(abbreviated as PLBA) if I = A or I is a prime

ideal of A. Two LBAs (A, I) and (B, J) are said

to be LBA-isomorphic (or, simply, isomorphic) if

there exists a Boolean isomorphism ϕ : A −→ B

such that ϕ(I) = J.

Let LBA be the category whose objects are all

LBAs and whose morphisms are all functions ϕ :



(A, I) −→ (B, J) between the objects of LBA such

that ϕ : A −→ B is a Boolean homomorphism

satisfying the following condition:

(LBA) For every b ∈ J there exists a ∈ I such that

b ≤ ϕ(a);

let the composition between the morphisms of

LBA be the usual composition between functions,

and the LBA-identities be the identity functions.

Remark 5 Note that two LBAs (A, I) and (B, J)

are LBA-isomorphic iff they are LBA-isomorphic.

Recall that a distributive 0-pseudolattice A is

called a generalized Boolean pseudolattice (ab-

breviated as GBPL) if it satisfies the following

condition:

(GBPL) for every a ∈ A and every b, c ∈ A such

that b ≤ a ≤ c there exists x ∈ A with a ∧ x = b



and a ∨ x = c (i.e., x is the relative complement

of a in the interval [b, c]).

We will need a simple lemma.

Lemma 6 Let A be a Boolean algebra, M ⊆ A,

X = Sa(A) and LM = {u ∈ X | u∩M 6= ∅} (some-

times we will write LA
M instead of LM). Then:

(a) LM is an open subset of X and hence the

subspace LM of X is a zero-dimensional locally

compact Hausdorff space; LM 6= ∅ iff M 6⊆ {0};

(b) If M is an ideal of A then λS
A(M) = CK(LM)

and hence λS
A(M)(= {λS

A(a) | a ∈ M}) is a base of

LM ;

(c) If (A, M) is an LBA then

λ(A,M) : A −→ CO(LM), a 7→ LM ∩ λS
A(a),

is a dense Boolean embedding;



Recall that a contravariant adjunction between

two categories A and B consists of two contravari-

ant functors T : A −→ B and S : B −→ A and

two natural transformations η : IdB −→ T ◦ S and

ε : IdA −→ S ◦T such that T (εA) ◦ ηTA = idTA and

S(ηB) ◦ εSB = idSB, for all A ∈ |A| and B ∈ |B|.
The pair (S, T ) is a duality iff η and ε are natural

isomorphisms.

Theorem 7 There exists a contravariant adjun-

ction between the category LBA and the category

ZHLC of locally compact zero-dimensional Haus-

dorff spaces and continuous maps.

Sketch of the proof. We will only describe the

contravariant functors Θa : LBA −→ ZHLC and

Θt : ZHLC −→ LBA which realize the contravari-

ant adjunction.

Let X ∈ |ZHLC|. Define

Θt(X) = (CO(X), CK(X)).



Then Θt(X) is an LBA. Let f ∈ ZHLC(X, Y ).

Define Θt(f) : Θt(Y ) −→ Θt(X) by the formula

(1) Θt(f)(G) = f−1(G), ∀G ∈ CO(Y ).

For every LBA (A, I), set

Θa(A, I) = LA
I .

Then Lemma 6 implies that L = Θa(A, I) is a

zero-dimensional locally compact Hausdorff space

and λ(A,I)(I) is an open base of L. So, Θa(A, I) ∈
|ZHLC|. Let ϕ ∈ LBA((A, I), (B, J)). We define

the map

Θa(ϕ) : Θa(B, J) −→ Θa(A, I)

by the formula

(2) Θa(ϕ)(u′) = ϕ−1(u′), ∀u′ ∈ Θa(B, J).

We even show that Θt is a full and faithful con-

travariant functor.



Definition 8 An LBA (A, I) is called a ZLB-alge-

bra (briefly, ZLBA) if, for every J ∈ Si(I), the join∨
A J(=

∨
A{a | a ∈ J}) exists.

Let ZLBA be the full subcategory of the cate-

gory LBA having as objects all ZLBAs.

Example 9 Let B be a Boolean algebra. Then

the pair (B, B) is a ZLBA.

Remark 10 Note that if A and B are Boolean al-

gebras then any Boolean homomorphism ϕ : A −→
B is a ZLBA-morphism between the ZLBAs (A, A)

and (B, B). Hence, the full subcategory B of

the category ZLBA whose objects are all ZLBAs

of the form (A, A) is isomorphic (it can be even

said that it coincides) with the category Bool of

Boolean algebras and Boolean homomorphisms.

Theorem 11 The categories ZHLC and ZLBA

are dually equivalent. The corresponding dual-

ity functors are Θa
d : ZLBA −→ ZHLC and Θt

d :

ZHLC −→ ZLBA, which are restrictions of the

contravariant functors Θa and Θt, respectively.



Corollary 12 (Stone Duality Theorem [Stone])

The categories Bool and ZHC are dually equiv-

alent.

Definition 13 Let PZLBA be the cofull subcat-

egory of the category ZLBA whose morphisms

ϕ : (A, I) −→ (B, J) satisfy the following addi-

tional condition:

(PLBA) ϕ(I) ⊆ J.

Theorem 14 The category PZHLC of all locally

compact Hausdorff zero-dimensional spaces and

all perfect maps between them is dually equiva-

lent to the category PZLBA. The correspond-

ing duality functors are Θa
p : ZLBA −→ ZHLC

and Θt
p : ZHLC −→ ZLBA, which are restrictions

of the contravariant functors Θa
d and Θt

d, respec-

tively.

The above theorem can be stated in a better

form. We will do this now.



Definition 15 Let PLBA be the subcategory of

the category LBA whose objects are all PLBAs

and whose morphisms are all LBA-morphisms ϕ :

(A, I) −→ (B, J) between the objects of PLBA

satisfying condition (PLBA).

Theorem 16 The category PLBA is dually equi-

valent to the category PZHLC.

Corollary 17 There exists a bijective correspon-

dence between the classes of all PLBAs (up to

PLBA-isomorphism), all ZLBAs (up to ZLBA-

isomorphism) and all locally compact zero-dimen-

sional Hausdorff spaces (up to homeomorphism).

We can even express Theorem 16 in a more

simple form which is very close to the results ob-

tained by M. Stone in [Stone].

Let GBPL be the category whose objects are

all generalized Boolean pseudolattices and whose

morphisms are all 0-pseudolattice homomorphisms

ϕ : I −→ J between its objects satisfying condition

(LBA) (i.e., ∀b ∈ J ∃a ∈ I such that b ≤ ϕ(a)).



Define a contravariant functor

Θt
g : PZHLC −→ GBPL

setting Θt
g(X) = CK(X), for every X ∈ |PZHLC|,

and if f ∈ PZHLC(X, Y ) then

ϕ = Θt
g(f) : CK(Y ) −→ CK(X)

is defined by the formula ϕ(G) = f−1(G), for every

G ∈ CK(Y ).

Let us recall the original Stone’s construction of

the dual space of a GBPL I (see [Stone]). Let I

be a GBPL. Set Θa
s(I) to be the set X of all prime

ideals of I endowed with a topology O having as

an open base the set {γI(b) | b ∈ I} where, for

every b ∈ I, γI(b) = {i ∈ X | b 6∈ i} (see M. Stone

[Stone]).

Now, for every I ∈ |GBPL|, set Θa
g(I) = Θa

s(I).

Further, if ϕ ∈ GBPL(I, J) then set X = Θa
g(I),

Y = Θa
g(J) and define a map f = Θa

g(ϕ) : Y −→ X

by the formula f(j) = ϕ−1(j), for every j ∈ Y .



Then Θa
g : GBPL −→ PZHLC is a contravariant

functor and we obtain the following theorem:

Theorem 18 The category PZHLC is dually equ-
ivalent to the category GBPL and the correspond-
ing duality functors are Θa

g and Θt
g.

Corollary 19 (M. Stone [Stone]) There exists a
bijective correspondence between the class of all
(up to 0-pseudolattice isomorphism) generalized
Boolean pseudolattices and all (up to homeomor-
phism) locally compact zero-dimensional Haus-
dorff spaces.

Note that in [ST1], M. Stone proves that there
exists a bijective correspondence between gener-
alized Boolean pseudolattices and Boolean rings
(with or without unit).

Some Other Stone-type Duality The-
orems

Recall that a homomorphism ϕ between two
Boolean algebras is called complete if it preserves



all joins (and, consequently, all meets) that hap-

pen to exist; this means that if {ai} is a family of

elements in the domain of ϕ with join a, then the

family {ϕ(ai)} has a join and that join is equal to

ϕ(a).

Definition 20 We will denote by SZHLC the cat-

egory of zero-dimensional locally compact Haus-

dorff spaces and skeletal maps.

Let SZLBA be the cofull subcategory of the

category ZLBA whose morphisms are, in addition,

complete homomorphisms.

Theorem 21 The categories SZHLC and SZLBA

are dually equivalent.

Remarks 22 Note that in the definition of the

category SZLBA the requirement that the mor-

phisms ϕ : (A, I) −→ (B, J) are complete can be

replaced by the following condition:

(SkeZLBA) For every b ∈ J \ {0} there exists a ∈
I \ {0} such that (∀c ∈ A)[(b ≤ ϕ(c)) → (a ≤ c)].



Moreover, condition (SkeZLBA) can be replaced

by the following one:

(CEP) For every b ∈ B\{0} there exists a ∈ A\{0}
such that (∀c ∈ A)[(b ≤ ϕ(c)) → (a ≤ c)].

The assertion (c) of the next corollary is a zero-

dimensional analogue of the Fedorchuk Duality

Theorem [F].

Corollary 23 (a) Let f be a PZHLC-morphism.

Then f is a quasi-open map iff Θt(f) is complete.

In particular, if f is a ZHC-morphism then f is a

quasi-open map iff St(f) is complete.

(b) The cofull subcategory QPZLC of the cate-

gory PZHLC (see 14) whose morphisms are, in

addition, quasi-open maps, is dually equivalent to

the cofull subcategory QPZLBA of the category

PZLBA whose morphisms are, in addition, com-

plete homomorphisms;



(c) The category QZHC of compact zero-dimen-

sional Hausdorff spaces and quasi-open maps is

dually equivalent to the category CBool of Boolean

algebras and complete Boolean homomorphisms.

The last corollary together with Fedorchuk Du-

ality Theorem [F] imply the following assertion

in which the equivalence (a) ⇐⇒ (b) is a spe-

cial case of a much more general theorem due to

Monk [Monk].

Corollary 24 Let ϕ ∈ Bool(A, B) and A′, B′ be

minimal completions of A and B respectively. We

can suppose that A ⊆ A′ and B ⊆ B′. Then the

following conditions are equivalent:

(a) ϕ can be extended to a complete homomor-

phism ψ : A′ −→ B′;

(b) ϕ is a complete homomorphism;

(c) ϕ satisfies condition (CEP) (see 22 above).



Now, using Theorem 18, we will present in a
simpler form the result established in Corollary
23(b).

Theorem 25 The category QPZLC is dually equ-
ivalent to the cofull subcategory QGBPL of the
category GBPL whose morphisms, in addition,
preserve all meets that happen to exist.

Remark 26 The proof of Theorem 25 shows that
in the definition of the category QPZLBA the re-
quirement that its morphisms ϕ : I −→ J preserve
all meets that happen to exist can be replaced by
the following condition:

(QGBPL) For every b ∈ J \ {0} there exists a ∈
I \ {0} such that (∀c ∈ I)[(b ≤ ϕ(c)) → (a ≤ c)].

Theorem 27 (a) Let f ∈ ZHLC(X, Y ), ϕ = Θt(f),
(A, I) = Θt(X) and (B, J) = Θt(Y ). Then the
map f is open iff there exists a map ψ : I −→ J

which satisfies the following conditions:

(OZL1) For every b ∈ J and every a ∈ I, (a ∧
ϕ(b) = 0) → (ψ(a) ∧ b = 0), and



(OZL2) For every a ∈ I, ϕ(ψ(a)) ≥ a

(such a map ψ will be called a lower pre-adjoint

of ϕ).

(b) The cofull subcategory OZHLC of the cat-

egory ZHLC whose morphisms are open maps is

dually equivalent to the cofull subcategory OZLBA

of the category ZLBA whose morphisms have, in

addition, lower pre-adjoints.

Theorem 28 (a) Let f ∈ PZHLC(X, Y ), (A, I) =

Θt(X), (B, J) = Θt(Y ) and ϕ = Θt(f). Then the

map f is open iff ϕ : B −→ A has a lower adjoint

ψ : A −→ B.

(b) The cofull subcategory OPZHLC of the cat-

egory PZHLC whose morphisms are, in addition,

open maps is dually equivalent to the cofull sub-

category OPZLBA of the category PZLBA whose

morphisms have, in addition, lower adjoints.

Definition 29 Let ϕ ∈ GBPL(J, I). If ψ : I −→ J

is a map which satisfies conditions (OZL1) and



(OZL2) (see 27) then ψ is called a lower pread-
joint of ϕ.

Let OGBPL be the cofull subcategory of the
category GBPL whose morphisms have, in addi-
tion, lower preadjoints.

Corollary 30 The category OGBPL is dually equ-
ivalent to the category OPZHLC.

Characterizations of the embeddings
and of surjective and injective maps
by means of their dual maps

In this section we will investigate the following
problem: characterize the injective and surjective
morphisms of the category ZHLC and its subcat-
egories PZHLC, OZHLC by means of some prop-
erties of their dual morphisms. Such a problem
was considered by M. Stone in [Stone] for sur-
jective continuous maps and for closed embed-
dings (i.e. for injective morphisms of the cate-
gory PZHLC). An analogous problem will be in-
vestigated for the homeomorphic embeddings and
dense embeddings.



We start with a simple observation.

Proposition 31 Let f ∈ ZHLC(X, Y ), (A, I) =

Θt(X), (B, J) = Θt(Y ) and ϕ = Θt(f). Then

ϕ is an injection ⇐⇒ ϕ|J is an injection ⇐⇒
clY (f(X)) = Y .

Proposition 32 Let f ∈ ZHLC(X, Y ), ϕ = Θt(f),

(A, I) = Θt(X), (B, J) = Θt(Y ) and ϕ(B) ⊇ I (or

ϕ(J) ⊇ I). Then f is an injection.

Theorem 33 Let f ∈ ZHLC(X, Y ), ϕ = Θt(f),

(A, I) = Θt(X) and (B, J) = Θt(Y ). Then f is

an injection iff ϕ : (B, J) −→ (A, I) satisfies the

following condition:

(InZLC) For any a, b ∈ I such that a∧ b = 0 there

exists a′, b′ ∈ J with a′ ∧ b′ = 0, ϕ(a′) ≥ a and

ϕ(b′) ≥ b.

Corollary 34 The cofull subcategory InZHLC of

the category ZHLC whose morphisms are, in addi-

tion, injective maps, is dually equivalent to the co-

full subcategory DInZHLC of the category ZLBA

whose morphism satisfy condition (InZLC) as well.



In the sequel, we will not formulate corollar-

ies like that because they follow directly from the

respective characterization of injectivity or surjec-

tivity and the corresponding duality theorems.

In the next theorem we will assume that the

ideals and prime ideals could be non-proper.

Theorem 35 Let f ∈ ZHLC(X, Y ), ϕ = Θt(f),

(A, I) = Θt(X) and (B, J) = Θt(Y ). Then the

following conditions are equivalent:

(a) f is a surjection;

(b) ϕ : B −→ A is an injection and for every

bounded ultrafilter v in (B, J) there exists a ∈ I

such that a ∧ ϕ(v) 6= 0 (i.e. a ∧ ϕ(b) 6= 0 for any

b ∈ v);

(c) ϕ : B −→ A is an injection and for every prime

ideal J1 of J, we have that
∨{Iϕ(b) | b ∈ J1} = I

implies J1 = J (where Iϕ(b) = {a ∈ I | a ≤ ϕ(b)});



(d) ϕ : B −→ A is an injection and for every ideal

J1 of J, [(
∨{Iϕ(b) | b ∈ J1} = I) → (J1 = J)].

Remark 36 In [[Stone],Theorem 7] M. Stone pro-

ved a result which is equivalent to our assertion

that (a)⇔(d) in the previous theorem.

Proposition 37 Let (A, I) be a ZLBA, (B, J) be

an LBA and ψ : J −→ A be a 0-pseudolattice

homomorphism satisfying condition (LBA) (i.e.,

∀a ∈ I ∃b ∈ J such that a ≤ ψ(b)). Then ψ can be

extended to a homomorphic map ϕ : B −→ A.

Remark 38 Note that 36 and 37 imply that in

Theorem 35 we can obtain new conditions equiv-

alent to the condition (a) by replacing in (b),

(c) and (d) the phrase “ϕ is an injection” by the

phrase “ϕ|J is an injection”.

Theorem 39 Let f ∈ OZHLC(X, Y ), ϕ = Θt(f),

(A, I) = Θt(X) and (B, J) = Θt(Y ). Then f is an

injection ⇐⇒ ϕ(J) ⊇ I ⇐⇒ ϕ(B) ⊇ I.

Theorem 40 Let f ∈ PZHLC(X, Y ), ϕ = Θt(f),

(A, I) = Θt(X) and (B, J) = Θt(Y ). Then f is a



surjection ⇐⇒ ϕ is an injection ⇐⇒ ϕ|J is an

injection.

Theorem 41 Let f ∈ PZHLC(X, Y ), ϕ = Θt(f),

(A, I) = Θt(X) and (B, J) = Θt(Y ). Then f is an

injection iff ϕ(J) = I.

Obviously, the last two theorems imply the well-

known Stone’s results that a ZHC-morphism f is

an injection (resp., a surjection) iff ϕ = St(f) is a

surjection (resp., an injection).

Now we will be occupied with the homeomor-

phic embeddings. We will call them shortly em-

beddings.

Theorem 42 Let f ∈ ZHLC(X, Y ), ϕ = Θt(f),

(A, I) = Θt(X) and (B, J) = Θt(Y ). Then f is a

dense embedding iff ϕ is an injection and ϕ(J) ⊇ I.

Corollary 43 ([Stone]) Let f ∈ ZHLC(X, Y ), ϕ =

Θt(f), (A, I) = Θt(X) and (B, J) = Θt(Y ). Then

f is a closed embedding iff ϕ(J) = I.



Proposition 44 Let f ∈ ZHLC(X, Y ), ϕ = Θt(f),

(A, I) = Θt(X) and (B, J) = Θt(Y ). Then f is an

embedding iff there exists a ZLBA (A1, I1) and

two ZLBA-morphisms ϕ1 : (A1, I1) −→ (A, I) and

ϕ2 : (B, J) −→ (A1, I1) such that ϕ = ϕ1 ◦ ϕ2, ϕ1

is an injection, ϕ1(I1) ⊇ I and ϕ2(J) = I1.

The construction of the dual objects
of the closed, regular closed and open
subsets

The next theorem is the well-known Stone’s re-

sult [Stone] (written in our terms and notation)

that open sets correspond to the ideals.

Theorem 45 ([Stone]) Let I be a GBPL and

(X,O) = Θa
s(I). Then there exists a frame iso-

morphism

ιs : (Idl(I),≤) −→ (O,⊆), J 7→
⋃
{γI(a) | a ∈ J}.

If U ∈ O then J = ι−1
s (U)) = {b ∈ I | γI(b) ⊆ U}, J

is isomorphic to the ideal JU = {F ∈ CK(X) | F ⊆



U} of CK(X) (= Θt
g(X)) and JU = CK(U), i.e.

JU = Θt
g(U).

Corollary 46 Let (A, I) be a ZLBA and (X,O) =

Θa(A, I)(= Θa
g(I)). Then there exists a frame

isomorphism

ι : (Idl(I),≤) −→ (O,⊆), J 7→
⋃
{λ(A,I)(a) | a ∈ J}.

If U ∈ O then J = ι−1(U) = {b ∈ I | λ(A,I)(b) ⊆ U},
J is isomorphic to the ideal JU = {F ∈ CK(X) | F ⊆
U} of CK(X) (= Θt

g(X)) and JU = CK(U), i.e.

JU = Θt
g(U).

Corollary 47 ([[Stone],Theorem 5]) Let I be a

GBPL, (X,O) = Θa
s(I), J be an ideal of I and

U = ιs(J). Then:

(a) U is a clopen set ⇐⇒ J is a simple ideal of

I;

(b) U is a regular open set iff J is a normal ideal

of I;



(c) U is a compact open set iff J is a principal
ideal of I.

If (A, I) is an LBA and a ∈ A then the ideal
Ia = {b ∈ I | b ≤ a} of I will be called an A-
principal ideal of I.

Corollary 48 Let (A, I) be a ZLBA, (X,O) =
Θa(A, I) (= Θa

g(I)), J be an ideal of I and U =
ι(J). Then:

(a) U is a clopen set ⇐⇒ J is a simple ideal of
I ⇐⇒ J is an A-principal ideal;

(b) U is a regular open set iff J is a normal ideal
of I;

(c) U is a compact open set iff J is a principal
ideal of I.

The above results show that if X ∈ |ZHLC| and
U is an open subset of X then ι−1(U) (or, equiv-
alently, ι−1

s (U)) is GBPL-isomorphic to Θt
g(U).



Now, for every X ∈ |ZHLC|, we will find the

connections between the dual objects Θt
g(F ) of

the closed or regular closed subsets F of X and

the dual object Θt
g(X) of X. The obtained result

for regular closed subsets of X seems to be new

even in the compact case.

Theorem 49 Let I, J ∈ |GBPL|, X = Θa
g(I) and

F = Θa
g(J). Then:

(a)([[Stone],Theorem 4(4)]) F is homeomorphic

to a closed subset of X iff there exists a 0-pseudo-

lattice epimorphism ϕ : I −→ J (i.e. iff J is a

quotient of I);

(b) F is homeomorphic to a regular closed subset

of X if and only if there exists a 0-pseudolattice

epimorphism ϕ : I −→ J which preserves all meets

that happen to exist in I.

We will finish with mentioning some assertions

about isolated points. All these statements have

easy proofs.



Proposition 50 Let (A, I) be a ZLBA, a ∈ A and

X = Θa(A, I). Then a is an atom of A iff λ(A,I)(a)

is an isolated point of the space X. Also, for every

isolated point x of X there exists an a ∈ I such

that a is an atom of I (equivalently, of A) and

{x} = λ(A,I)(a).

Proposition 51 Let (A, I) be a ZLBA and X =

Θa(A, I)(= Θa
g(I)). Then X is a discrete space

⇐⇒ the elements of I are either atoms of I or

finite sums of atoms of I.

Proposition 52 (M. Stone [Stone]) Let (A, I) be

a ZLBA and X = Θa(A, I)(= Θa
g(I)). Then X is

an extremally disconnected space iff A is a com-

plete Boolean algebra.

Proposition 53 Let (A, I) be a ZLBA and X =

Θa(A, I)(= Θa
g(I)). Then the set of all isolated

points of X is dense in X iff A is an atomic

Boolean algebra iff I is an atomic 0-pseudolattice.
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