
Sahlqvist theorem for modal fixed point logics

Nick Bezhanishvili
Department of Computing
Imperial College London

Joint work with

Ian Hodkinson



Overview

In classical modal logic Sahlqvist’s theorem provides an
axiomatically defined class of logics sound and complete wrt to
first-order definable classes of frames.

Sambin and Vaccaro (1989) gave a proof of Sahlqvist
completeness and correspondence theorems using descriptive
frames and topology.

Our goal is to extend the method of Sambin and Vaccaro from
modal logics to modal fixed point logics and see what
consequences this method has for completeness and
correspondence of modal fixed point logics.



Outline

1 An overview of the existing dualities.
2 Generalized semantics for modal fixed point logics.
3 Sahlqvist’s theorem.



Part I: Duality



Language of the modal µ-calculus

countably infinite set of propositional variables,

constants ⊥ and >,

connectives ∧, ∨, ¬,

modal operators ♦ and �,

µxϕ(x, x1, . . . , xn) for all formulas ϕ(x, x1, . . . , xn), where x
occurs under the scope of an even number of negations.



Modal algebras

A modal algebra is a pair B = (B,♦), where B is a Boolean
algebra and ♦ a unary operation on B satisfying for each
a, b ∈ B,

1 ♦0 = 0,
2 ♦(a ∨ b) = ♦a ∨ ♦b.

Theorem. Every modal logic is complete wrt modal algebras.
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Descriptive frames

A descriptive frame is a pair (W,R) such that

1 W is a Stone space (compact, Hausdorff space with a basis
of clopen sets).

2 R is a binary relation on W such that R(w) is closed for each
w ∈ W. Here R(w) = {v ∈ W : wRv}.

3 If U is clopen, then so is 〈R〉U. Here
〈R〉U = {w ∈ W : R(w) ∩ U 6= ∅}.

Theorem. The category of modal algebras and corresponding
homomorphisms is dually equivalent to the category of
descriptive frames and continuous p-morphisms.

Corollary. Every modal logic is complete wrt descriptive frames.
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Modal µ-algebras

Let B = (B,♦) be a modal algebra. A map h from propositional
variables to B is called an algebra assignment. We define a
(possibly partial) semantics for modal µ-formulas by the
following inductive definition.

[⊥]h = 0

[>]h = 1

[x]h = h(x), where x is a propositional variable,

[ϕ ∧ ψ]h = [ϕ]h ∧ [ψ]h,

[ϕ ∨ ψ]h = [ϕ]h ∨ [ψ]h,

[¬ϕ]h = ¬[ϕ]h,

[♦ϕ]h = ♦[ϕ]h,

[�ϕ]h = �[ϕ]h,
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Modal µ-algebras

We denote by ha
x a new algebra assignment such that ha

x(x) = a
and ha

x(y) = h(y) for each propositional variable y 6= x and
a ∈ B.

If ϕ(x, x1, . . . , xn) is positive in x then

[µxϕ(x, x1, . . . , xn)]h =
∧
{a ∈ B : [ϕ(x, x1, . . . , xn)]ha

x
≤ a},

if this meet exists; otherwise, the semantics for
µxϕ(x, x1, . . . , xn) is undefined.

A modal algebra (B,♦) is called a modal µ-algebra if [ϕ]h is de-
fined for any modal µ-formula ϕ and any algebra assignment h.

Notation: To simplify the notations instead of [ϕ(x1, . . . , xn)]h
with h(xi) = ai, 1 ≤ i ≤ n, we will simply write ϕ(a1, . . . , an).
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Semantics of the modal µ-calculus

Let (W,R) be a descriptive frame, F ⊆ P(W) and h an arbitrary
assignment, that is, a map from the propositional variables to
P(W). We define the semantics for modal µ-formulas by the
following inductive definition.

[[⊥]]Fh = ∅,
[[>]]Fh = W,

[[x]]Fh = h(x), where x is a propositional variable,

[[ϕ ∧ ψ]]Fh = [[ϕ]]Fh ∩ [[ψ]]Fh ,

[[ϕ ∨ ψ]]Fh = [[ϕ]]Fh ∪ [[ψ]]Fh ,

[[¬ϕ]]Fh = W \ [[ϕ]]Fh ,

[[♦ϕ]]Fh = 〈R〉[[ϕ]]Fh ,

[[�ϕ]]Fh = [R][[ϕ]]Fh ,



Semantics of the modal µ-calculus

We denote by hU
x a new assignment such that hU

x (x) = U and
hU

x (y) = h(y) for each propositional variable y 6= x and
U ∈ P(W).

Let ϕ(x, x1, . . . , xn) be a modal µ-formula. A set U ∈ F is called a
pre-fixed point if [[ϕ(x, x1, . . . , xn)]]FhU

x
⊆ U.

Let ϕ(x, x1, . . . , xn) be positive in x, then

[[µxϕ(x, x1, . . . , xn))]]Fh =
⋂
{U ∈ F : [[ϕ(x, x1, . . . , xn)]]FhU

x
⊆ U}.

We assume that
⋂
∅ = W.
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Descriptive µ-frames

Let (W,R) be a descriptive frame. We call a map h from the
propositional variables to P(W) a set-theoretic assignment.

If h
maps each propositional variable to Cl(W), then h is called a
closed assignment, and if h maps each propositional variable to
Clop(W), then h is called a clopen assignment.

Let h be any assignment. Then [[·]]Fh is called the clopen
semantics if F = Clop(W), [[·]]Fh is called the closed semantics if
F = Cl(W) and [[·]]Fh is called the classical or set-theoretic
semantics if F = P(W).

Definition. A descriptive frame (W,R) is called a descriptive
µ-frame if for each clopen assignment h and for each modal
µ-formula ϕ, the set [[ϕ]]Clop(W)

h is clopen.
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Notations

Notation: To simplify the notations instead of [[ϕ(x1, . . . , xn)]]Fh
with h(xi) = Ui, 1 ≤ i ≤ n, we will simply write ϕ(U1, . . . ,Un)F.
Moreover, we will skip the index F if it is clear from the context.



Modal µ-algebras and descriptive µ-frames

Theorem (Ambler and Co. 1995). The duality between modal
algebras and descriptive frames restricts to a duality between
modal µ-algebras and descriptive µ-frames.

Ambler and Co. also extend this to the duality of the
corresponding categories of modal µ-algebras and descriptive
µ-frames.
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Examples of modal µ-algebras

1 Every finite modal algebra is a modal µ-algebra.
2 Every complete modal algebra is a modal µ-algebra.
3 Every locally finite modal algebra is a modal µ-algebra. An

algebra is locally finite if its every finitely generated
subalgebra is finite.
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Normal modal fixed point logics

The axiomatization of Kozen’s system Kµ consists of the
following axioms and rules

propositional tautologies,
If ` ϕ and ` ϕ→ ψ, then ` ψ (Modus Ponens),
If ` ϕ, then ` ϕ[p/ψ] (Substitution),
If ` ϕ, then ` �ϕ (Necessitation),
` �(p→ q)→ (�p→ �q) (K-axiom),
` ϕ[x/µxϕ]→ µxϕ (Fixed Point axiom),
If ` ϕ[x/ψ]→ ψ, then ` µxϕ→ ψ (Fixed Point rule),

where x is not a bound variable of ϕ and no free variable of ψ is
bound in ϕ.



Normal modal fixed point logics

Let Φ be a set of modal µ-formulas. We write Kµ + Φ for the
smallest set of formulas which contains both Kµ and Φ and is
closed under the Modus Ponens, Substitution, Necessitation and
Fixed Point rules.

We say that Kµ + Φ is the extension of Kµ by
Φ. We also call Kµ + Φ a normal modal fixed point logic.

Let L = Kµ + Φ be a normal modal fixed point logic. A modal
µ-algebra (B,♦) is called an L-algebra if it validates all the
formulas in Φ. A descriptive µ-frame (W,R) is called an L-frame
if (W,R) validates all the formulas in Φ with respect to clopen
assignments.
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Completeness

Theorem (Ambler and Co. 1995, ten Cate and Fontaine 2010).
Let L be a normal modal fixed point logic. Then

1 L is sound and complete with respect to the class of modal
µ-L-algebras.

2 L is sound and complete with respect to the class of
descriptive µ-L-frames.



Part II: Generalized fixed points



Comparing the semantics
We will start by comparing the clopen, closed and set-theoretic
semantics of modal µ-formulas.

For every descriptive µ-frame (W,R) and any assignment h we
have

[[µxϕ]]P(W)
h ⊆ [[µxϕ]]Cl(W)

h ⊆ [[µxϕ]]Clop(W)
h

Lemma. Let (W,R) be a descriptive µ-frame dual to a locally
finite modal algebra. Then for each formula ϕ and clopen
assignment h, we have

[[ϕ]]Clop(W)
h = [[ϕ]]Cl(W)

h = [[ϕ]]P(W)
h .

Lemma. Let (W,R) be a descriptive µ-frame dual to a complete
modal algebra. Then for each modal µ-formula ϕ and each
clopen assignment h, we have

[[ϕ]]Clop(W)
h = [[ϕ]]Cl(W)

h .
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Part III: Sahlqvist’s theorem



The intersection lemma

Lemma (Esakia-Sambin-Vaccaro). Let (W,R) be a descriptive
frame and F ⊆ W a closed set. Then for each positive modal
formula ϕ we have

ϕ(F) =
⋂
{ϕ(U) : U ∈ Clop(W), F ⊆ U}.

A modal µ-formula is positive if it does not contain a negation.
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µ-operator) by applying the operations ∨ and �.
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Sketch of the proof
Let ϕ = �(�p→ ψ(p)), where ψ is positive.

So ϕ = �(¬�p ∨ ψ).

Suppose w /∈ [[ϕ]]Clop(W)
f for some set-theoretic assignment f .

That is, (W,R, f),w 6|= �(¬�p ∨ ψ). Then there is v such that
wRv and (W,R, f), v 6|= ¬�p ∨ ψ. This means that
(W,R, f), v |= �p and (W,R, f), v 6|= ψ.

We consider a new closed assignment g such that
g(p) = R(v) = F. Then g(p) ⊆ f(p). So (W,R, g), v |= �p and
(W,R, g), v 6|= ψ.

Finally, by the intersection lemma,
ψ(F) =

⋂
{ψ(U) ∈ Clop(W) : U ∈ Clop(W), F ⊆ U}. Therefore,

there is U ∈ Clop(W) such that F ⊆ U and v /∈ ψ(U). Let
h(p) = U. Then h is a clopen assignment, (W,R, h), v |= �p and
(W,R, h), v 6|= ψ. This finishes the proof of the theorem.
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The Sahlqvist correspondence

Every Sahlqvist formula has a frame correspondent.

This is a formula of first-order logic with fixed point operators
with clopen interpretations.

The following are equivalent:

The correspondent is true in a descriptive frame (W,R).
The Sahlqvist formula is valid in (W,R) under clopen
assignments.

The Sahlqvist formula is valid in (W,R) under set-theoretic
assignments.
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The Sahlqvist theorem

Theorem. Every Sahlqvist modal fixed point logic is sound and
complete under clopen assignments wrt a class of descriptive
frames that is definable in the first-order logic with fixed points.



Conclusions and future work

We looked into order-topological semantics of modal fixed
point logics.

Extended the Esakia-Sambin-Vaccaro Lemma and the proof
of Sahlqvist’s theorem to modal fixed point logics.

Next step is to look into particular examples of Sahlqvist
formulas and derive, from our general theory, some
concrete (interesting) completeness results.



Open problem

We say that a modal fixed point formula ϕ is valid in a
descriptive frame (W,R) if [[ϕ]]Clop(W)

h = W, for each set-theoretic
assignment h.

By the proof of the Sahlqvist theorem, every normal modal fixed
point logic axiomatized by the Sahlqvist fixed point formulas is
complete wrt to this semantics.

However, the fixed point rule is not sound wrt to this semantics.

Question: Find an axiomatization of the valid modal fixed point
formulas under this semantics.
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