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Gödel’s incompleteness theorem

A theory T is gödelian, if
natural numbers, + and · are definable in T ;
T proves some obvious properties of these operations;
the set of axioms of T is computable.

Con(T ) = «T is consistent»

Gödel (1931): If a gödelian theory T is consistent, then Con(T ) is
true but unprovable in T .



Lindenbaum algebras

Lindenbaum algebra of a theory T :
LT = {sentences of T}/ ∼T , where

ϕ ∼T ψ ⇐⇒ T ` (ϕ↔ ψ)

LT is a boolean algebra with operations ∧, ∨, ¬.
1 = the set of provable sentences of T
0 = the set of refutable sentences of T

For consistent gödelian T all such algebras are countable atomless,
hence pairwise isomorphic.

Kripke, Pour-El: even computably isomorphic



Provability algebras

Emerged in 1970s: Macintyre/Simmons, Magari, Smoryński, . . .

Consistency operator 3 : LT → LT

ϕ 7−→ Con(T + ϕ).

(LT ,3) = provability algebra of T
2ϕ = ¬3¬ϕ = «ϕ is provable in T»

Characteristic of (M,3):
ch(M) = min{k : 3k1 = 0};
ch(M) =∞, if no such k exists.

Remark. If N � T , then ch(LT ) =∞.
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Identities of provability algebras

K. Gödel (33), M.H. Löb (55): Algebra (LT ,3) satisfies the
following set of identities GL:

boolean identities
30 = 0
3(ϕ ∨ ψ) = (3ϕ ∨3ψ)

3ϕ = 3(ϕ ∧ ¬3ϕ) (Löb’s identity)

GL-algebras = Magari algebras = diagonalizable algebras
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Provability logic

Let A = (A,3) be a boolean algebra with an operator 3, and ϕ(~x)
a term.

Def. Denote
A � ϕ if A � ∀~x (ϕ(~x) = 1);
The logic of A is Log(A) = {ϕ : A � ϕ}.

R. Solovay (76): If ch(LT ) =∞, then Log(LT ,3) = GL.

GL is nice as a modal logic (decidable, Kripke complete, fmp,
Craig, cut-free calculus, . . . )
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n-consistency

Def. A gödelian theory T is n-consistent, if every provable
Σ0

n-sentence of T is true.

n-Con(T ) = «T is n-consistent»

n-consistency operator 〈n〉 : LT → LT

ϕ 7−→ n-Con(T + ϕ).

[n] = ¬〈n〉¬ (n-provability)



The algebra of n-provability

MT = (LT ; 〈0〉, 〈1〉, . . .).

The following identities GLP hold inMT :
GL, for all 〈n〉;
〈n + 1〉ϕ→ 〈n〉ϕ;
〈n〉ϕ→ [n + 1]〈n〉ϕ.

G. Japaridze (86): If N � T , then Log(MT ) = GLP .

K. Ignatiev (91,93), G. Boolos (93): generalizations, simplifications

GLPn is GLP in the language with n operators. GLP1 = GL.
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The significance of GLP

GLP is
Useful for proof theory:

Ordinal notations and consistency proof for PA;
Independent combinatorial assertion;
Characterization of provably total computable functions of PA.

Fairly complicated and not so nice modal-logically:
no Kripke completeness, no cut-free calculus;
though it is decidable and has Craig interpolation.
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Set-theoretic interpretation
(neighborhood semantics)

Let X be a nonempty set, P(X ) the b.a. of subsets of X .

Consider any operator δ : P(X )→ P(X ) and the structure
(P(X ), δ).

Question: Can (P(X ), δ) be a GL-algebra and, if yes, when?

Def. Write (X , δ) � ϕ if (P(X ), δ) � ϕ. Also let
Log(X , δ) := Log(P(X ), δ).
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Derived set operators

Let X be a topological space, A ⊆ X .
Derived set d(A) of A is the set of limit points of A:

x ∈ d(A) ⇐⇒ ∀Ux open ∃y 6= x y ∈ Ux ∩ A.

Fact. If (X , δ) � GL then X naturally bears a topology τ for which
δ = dτ , that is, δ : A 7−→ dτ (A), for each A ⊆ X .

In fact, we can define: A is τ -closed iff δ(A) ⊆ A.
Equivalently, c(A) = A ∪ δ(A) is the closure of A.
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Scattered spaces

Definition (Cantor): X is scattered if every nonempty A ⊆ X has an
isolated point.

Cantor-Bendixon sequence:

X0 = X , Xα+1 = d(Xα), Xλ =
⋂
α<λ

Xα, if λ is a limit.

Notice that all Xα are closed and X0 ⊃ X1 ⊃ X2 ⊃ . . .

Fact (Cantor): X is scattered ⇐⇒ ∃α : Xα = ∅.
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Examples

Left topology τ≺ on a strict partial ordering (X ,≺).
A ⊆ X is open iff ∀x , y (y ≺ x ∈ A⇒ y ∈ A).

Fact: (X ,≺) is well-founded iff (X , τ≺) is scattered.

Ordinal Ω with the usual order topology generated by intervals
(α, β), [0, β), (α,Ω) such that α < β.
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Löb’s identity = scatteredness

Simmons 74, Esakia 81

Löb’s identity: 3A = 3(A ∧ ¬3A).

Topological reading:

d(A) = d(A \ d(A)) = d(iso(A)),

where iso(A) = A \ d(A) is the set of isolated points of A.

Fact: The following are equivalent:
X is scattered;
d(A) = d(iso(A)) for any A ⊆ X ;
(X , d) � GL.
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Completeness theorems

Theorem (Esakia 81): There is a scattered X such that
Log(X , d) = GL. In fact, X is the left topology on a countable
well-founded partial ordering.

Theorem (Abashidze/Blass 87/91): Consider Ω ≥ ωω with the
order topology. Then Log(Ω, d) = GL.
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Topological models for GLP

We consider poly-topological spaces (X ; τ0, τ1, . . . ) where modality
〈n〉 corresponds to the derived set operator dn w.r.t. τn.

Definition: X is a GLP-space if
τ0 is scattered;
For each A ⊆ X , dn(A) is τn+1-open;
τn ⊆ τn+1.

Remark: In a GLP-space, all τn are scattered.
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Basic example: Esakia space

Consider a bitopological space (Ω, τ0, τ1), where
Ω is an ordinal;
τ0 is the left topology on Ω;
τ1 is the interval topology on Ω.

Fact (Esakia): (Ω, τ0, τ1) is a model of GLP2, but not an exact
one: linearity axiom holds for 〈0〉.



Next topology and generated GLP-space

Let (X , τ) be a scattered space.

Fact: There is the coarsest topology τ+ on X such that (X ; τ, τ+)
is a GLP2-space.

The next topology τ+ is generated by τ and {d(A) : A ⊆ X} (as a
subbase).

Thus, any (X , τ) generates a GLP-space (X ; τ0, τ1, . . . ) with
τ0 = τ and τn+1 = τ+

n , for each n.
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Completeness for GLP2

GLP2 is complete w.r.t. GLP2-spaces generated from the left
topology on a well-founded partial ordering (with Guram
Bezhanishvili and Thomas Icard).

Theorem: There is a countable GLP2-space X such that
Log(X , d0, d1) = GLP2.

In fact, X has the form (X ; τ≺, τ
+
≺ ) where (X ,≺) is a well-founded

partial ordering.

Aside: This seems to be the first example of a finitely axiomatizable
logic that is topologically complete but not Kripke complete.
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Difficulties

Difficulties for three or more operators.

Fact. If (X , τ) is hausdorff and first-countable (i.e. if each point has
a countable neighborhood base), then (X , τ+) is discrete.

Proof: Each a ∈ X is a unique limit of a countable sequence
A = {an}. Hence, {a} = d(A) is open.



Ordinal GLP-spaces

Let τ0 be the left topology on an ordinal Ω. It generates a
GLP-space (Ω; τ0, τ1, . . . ). What are these topologies?
Let θn denote the first limit point of τn.

name θn dn(A)

τ0 left 1 {α : A ∩ α 6= ∅}
τ1 order ω {α ∈ Lim : A ∩ α is unbounded in α}
τ2 club ω1 {α : cf (α) > ω and A ∩ α is stationary in α}
τ3 Mahlo θ3 . . . . . .

Remarks: 1) Set theorists call d2 Mahlo operation.

2) θ3 is the so-called doubly reflecting cardinal, its existence is not
provable in ZFC (equiconsistent with the existence of weakly
compact cardinals). Studied by Magidor, Shelah and others.



Questions

Corollary: It is consistent with ZFC that (Ω, τ3) is discrete.

Questions:
Is there a GLP-space for which all τn are non-discrete?
Is GLP topologically complete?



Topological completeness

GLP is complete w.r.t. (countable, hausdorff) GLP-spaces.

Theorem (B., Gabelaia 10): There is a countable hausdorff
GLP-space X such that Log(X ) = GLP .

In fact, X is ε0 equipped with topologies refining the order
topology, where ε0 = sup{ω, ωω, ωωω

, . . . }.

Remark: If GLP is complete w.r.t. a GLP-space X , then all
topologies of X have Cantor-Bendixon rank ≥ ε0.
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Some ideas of proof

We are going to define a suitable class of scattered spaces,
called maximal, which are well-behaved w.r.t. the operation
τ 7→ τ+.

We sketch how to build a non-discrete GLP-space using
maximal spaces.
Then we mention necessary modifications and some other
ingredients needed for a completeness proof.



Rank function

Let X be a scattered space.
Let dα(X ) denote the α-th term in the Cantor–Bendixon sequence.
Let the rank function ρ : X → On be defined by

ρ(x) := min{α : x /∈ dα+1(X )}.

ρ(X ) := min{α : dα(X ) = ∅} is the rank of X .

Examples:
ρ<(α) = α, for the left topology;
r(α) = β, if α = γ + ωβ , and r(0) = 0, for the order topology.
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d-maps

Def. A function f : X → Y is a d -map, if
f is open;
f is continuous;
f is pointwise discrete, i.e., f −1(a) is discrete, for each a ∈ Y .

Properties:
f −1(dY (A)) = dX (f −1(A)), for any A ⊆ Y ;
f −1 : (P(Y ), dY )→ (P(X ), dX ) is a homomorphism;
If f is onto, then Log(X ) ⊆ Log(Y ).



d-maps and rank

Fact. Let On be the space of ordinals taken with the left topology.

ρ : X → On is a d -map;
If f : X → On is a d -map, then f = ρ.

Corollary. If f : X → Y is a d -map, then ρX = ρY ◦ f .



Maximal spaces

Def. Let f : X → Y be a d -map.
(X , τ) is maximal w.r.t. f , if τ is a maximal topology on X
such that f is a d -map (equivalently, f is open).
(X , τ) is maximal, if (X , τ) is maximal w.r.t. the rank function
ρτ : X → On, that is,

∀σ (σ % τ ⇒ ∃x ρσ(x) 6= ρτ (x)).

Fact. For every d -map f : X → Y , the topology of X can be
extended to a maximal one w.r.t. f .



Lifting lemma

Recall that τ+ on X is generated by τ and {d(A) : A ⊆ X}.

Let X+ denote the space (X , τ+).

Lemma. Let f : X � Y be an onto d -map. If X is maximal, then
f : X+ � Y + is a d -map.

Comment. In general, ‘next topology’ operation is non-monotonic:
There is a space X such that X+ is discrete while (X ′)+ is not,
where X ′ is some maximal extension of X .
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Rank function for the next topology

Let ρ+ be the rank function of X+.

Corollary. If X is maximal, then ρ+ = r ◦ ρ.

Proof. Let Ω := ρ(X ) be the rank of X . Consider the d -map
ρ : X � Ω where Ω is taken with the left topology.

By Lemma, ρ : X+ � Ω+ is a d -map.
r is the rank function of Ω+ (the order topology on Ω).
Hence, r ◦ ρ is the rank function of X+.

Comment. For an arbitrary scattered X we only have ρ+ ≤ r ◦ ρ.
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ME spaces

Def. A GLP-space (X , τ0, τ1, . . . ) is ME if
τ0 is maximal;
for each n, τn+1 is a maximal extension of τ+

n .
Let ρn be the rank function of τn.

Lemma. ρn+1 = r ◦ ρn.

Proof. τn+1 has the same rank function as τ+
n , being its maximal

extension, hence ρn+1 = ρ+
n . By the Corollary, ρ+

n = r ◦ ρn.
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A non-discrete GLP-space

Take any scattered space (X , τ) whose rank Ω satisfies ωΩ = Ω.
For example, X = ε0 with the order topology.

Construct topologies τ0 ⊆ τ1 ⊆ τ2 ⊆ . . . by:

τ0 = τ ′; τn+1 = (τ+
n )′,

where σ′ means any maximal extension of σ.

Theorem.
1 (X , τ0, τ1, . . . ) is an ME GLP-space.
2 ρn(X ) = rn(ρ0(X )) = rn(Ω) = Ω, for each n.
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Ingredients of the completeness proof

Weakening maximality to limit maximality condition. A larger
class of LME-spaces is defined.
A well-behaved subsystem J of GLP with finite Kripke models,
J-models.
Constructing for each finite J-model M a LME-space X
together with a weak d-map X � M.



Topological constructions

This is based on two topological constructions with LME-spaces:
lifting;
d-product.

d -product generalizes to arbitrary scattered spaces the operation of
ordinal multiplication.



Thank you!


