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REMARKS ON BICENTRIC QUADRILATERALS

G. KHIMSHIASHVILI

Abstract. We deal with planar moduli spaces of polygonal link-
ages arising from a poristic family of bicentric polygons. For bi-
centric quadrilaterals, we describe the topological types of mod-
uli spaces in poristic families and find the absolute maximum
and minimum of oriented area in the union of moduli spaces.
Similar results are obtained for poristic quadrilaterals associated
with a pair of confocal ellipses. In conclusion we outline some
research perspectives suggested by our results.

ÒÄÆÉÖÌÄ. ÛÄÓßÀÅËÉËÉÀ ÓÀáÓÒÖËÉ ÁÉÝÄÍÔÒÖËÉ ÌÒÀÅÀËÊÖ-
ÈáÄÃÄÁÉÓ ÊÏÍ×ÉÂÖÒÀÝÉÖËÉ ÓÉÅÒÝÄÄÁÉ. ÁÉÝÄÍÔÒÖËÉ ÏÈá-
ÊÖÈáÄÃÄÁÉÓ ÛÄÌÈáÅÄÅÀÛÉ ÀÙßÄÒÉËÉÀ ÊÏÍ×ÉÂÖÒÀÝÉÖËÉ ÓÉ-
ÅÒÝÄÄÁÉÓ ÔÏÐÏËÏÂÉÖÒÉ ÓÔÒÖØÔÖÒÀ ÃÀ ÂÀÌÏÈÅËÉËÉÀ ÏÒÉ-
ÄÍÔÉÒÄÁÖËÉ ×ÀÒÈÏÁÉÓ ÄØÓÔÒÄÌÖÌÄÁÉ. ÀÍÀËÏÂÉÖÒÉ ÛÄÃÄÂÄ-
ÁÉ ÌÉÙÄÁÖËÉÀ ÊÏÍ×ÏÊÀËÖÒÉ ÄËÉ×ÓÄÁÉÓ ÛÄÌÈáÅÄÅÀÛÉ.
ÀÙßÄÒÉËÉÀ ÀÂÒÄÈÅÄ ÀÌ ÛÄÃÄÂÄÁÉÓ ÆÏÂÉÄÒÈÉ ÛÄÓÀÞËÏ ÂÀÍ-
ÆÏÂÀÃÄÁÀ.

1. Introduction

We present a number of results concerned with the planar moduli spaces
M(Lt) of one-dimensional family of polygonal linkages Lt arising from a
poristic family {Pt, t ∈ S1} of bicentric polygons. In such a situation, the
family of moduli spaces M(Lt) can be considered as a fibration over the
unit circle S1 parameterizing poristic polygons. In this context it is natural
to investigate the topological structure of fibers M(Lt) with a view towards
describing the topology of the total space E of arising fibration.

Another natural setting is concerned with consideration of various func-
tions on E. For example, the oriented area function is defined on each
M(Lt), which yields a function A on the total space of fibration E. The
known results on the extremal values and critical points of oriented area
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function on planar moduli spaces [6], [8] suggest that it might be interest-
ing to obtain similar results for the function A on E.

These observations indicate a certain direction of research concerned with
bicentric polygons. In particular, the following two questions naturally arise
in this context.

(Q1) What is the topology of planar moduli spaces M(Lt) in a given
family of poristic polygons Pt?

(Q2) What are the extremal values of oriented area function as a function
on E?

In the present paper we answer these questions in the case of bicentric
quadrilaterals and present some related results for confocal ellipses.

2. Bicentric Polygons and Poncelet Theorem

To give a precise description of the setting under consideration and our
results we begin with the necessary definitions.

Definition 2.1. A polygon P in the plane is called bicentric if there
exist two circles C1, C2 with C2 strictly inside C1 such that all vertices of P
lie on C1 and each side of P is tangent to C2 at a certain inner point of this
side. The pair of circles (C1, C2) is called the frame of bicentric polygon P .
Their centers O1 and O2 are called the circumcenter and incenter of P ,
respectively.

For example, each triangle △ is bicentric with C1 being the circumscribed
circle (circumcircle) of △ and C2 the inscribed circle (incircle) of △. Each
regular polygon is also bicentric. Notice that this definition does not require
of P to be convex. So any regular star-shaped polygon is also bicentric.

Many results on bicentric polygons can be found in the literature. The
first detailed paper on properties of bicentric polygons was published by
N.Fuss [?]. For this reason, a pair of circles constituting the frame of a
bicentric k-gon will be called a Fuss pair of circles of order k or simply a
Fuss pair of order k. Up to a motion of the plane, a Fuss pair of circles is
completely determined by a triple of non-negative numbers (R, r, d), where
R > 0 is the radius of circumcircle, r > 0 is the radius of incircle, and d ≥ 0
is the distance between the incenter and circumcenter.

It is well-known that the triple (R, r, d) of a Fuss pair of order k satisfies
an algebraic relation. For k = 3, it is the classical Euler triangle formula
[1]: R2 − d2 = 2Rr.

For k ≥ 4, this relation is called Fuss’s relation and reads as:

1

(R+ d)2
+

1

(R− d)2
=

1

r2
. (1)
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Analogous relations for k > 4 are called generalized Fuss’s relations.
They are explicitly known for many values of k and suggest a number of
interesting and difficult problems.

Another important aspect of bicentric polygons is their relation to the
so-called Poncelet porism (PP) [1]. Recall that Poncelet porism states that
if a pair of ellipses (E1, E2) is such that there exists a k-gon inscribed in E1

and circumscribed about E2, then for each point p of E1, there exists such
a k-gon having p as its vertex (see, e.g., [1]).

Definition 2.2. A pair of ellipses (E1, E2) such that there exists a k-
gon inscribed in E1 and circumscribed about E2 is called a Poncelet pair of
ellipses of order k. The set of all such k-gons is called Poncelet family of
k-gons P(E1, E2) defined by (E1, E2).

Thus a Fuss pair of circles of order k is a particular case of the notion of
Poncelet pair of ellipses. It follows that if P is a bicentric k-gon with the
frame (C1, C2), then there exists a whole one-dimensional family of bicentric
k-gons Pt with the same frame. In fact, each point of C1 is a vertex of such
a bicentric k-gon. This family of polygons will be called the poristic family
P(C1, C2) of a Fuss pair (C1, C2).

Notice that the two problems formulated above for bicentric polygons
also make sense in the context of a general Poncelet family P(E1, E2), where
(E1, E2) is a pair of ellipses. With a view towards further developments,
in Section 4 we establish some auxiliary results in this general context and
then apply them to the special case of confocal ellipses.

Our main results are concerned with the Fuss pairs of circles of order
four and the Poncelet pairs of confocal ellipses of order four. In particular,
we find the absolute maximum and minimum of A on E for Fuss pairs of
order 4 (Theorems 5.3) and for Poncelet pairs of confocal ellipses (Theorem
6.4).

3. Planar Moduli Spaces of Bicentric Quadrilaterals

We begin with definitions and results concerned with polygonal linkages
[5]. Recall that a polygonal linkage L(l) is defined by a collection of positive
numbers l called sidelengths of L(l). In particular, any polygon P defines
a polygonal linkage L(P ) with the sidelengths equal to the lengths of the
sides of P . In the sequel, we will consider a family of linkages Lt = L(Pt)
generated by a poristic family of polygons Pt introduced in the previous
section.

For any polygonal linkage L, its planar moduli space M(L) is defined
as the set of its realizations in R2 taken modulo the group of orientation
preserving isometries of R2 [5]. The moduli spaces M(L) have natural
structures of compact real algebraic varieties. For a generic sidelength vector
l, M(L) is a smooth compact manifold.
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In particular, a quadrilateral (4-bar) linkage Q = Q(l) is defined by a
quadruple of positive numbers l = (a, b, c, d) ∈ R4

+ and its planar moduli
space M(L) is a one-dimensional algebraic manifold, hence a collection of
algebraic arcs. The list of possible topological types of planar moduli spaces
of 4-bar linkages is well known (see, e.g., [5]).

Proposition 3.1. The complete list of homeomorphy types of planar
moduli spaces of a 4-bar linkages is: circle, disjoint union of two circles,
bouquet of two circles, union of two circles with two common points, union
of two circles with three common points.

Moreover, the topological type of moduli space M(Q) can be easily read
off its sidelengths [5]. Moduli space is non-singular if and only if the side-
lengths satisfy the so-called Grashof condition, i.e. for any choice of signs,
the sum a ± b ± c ± d does not vanish. This means that Q does not have
aligned configurations. A non-singular moduli space is homeomorphic to a
circle or disjoint union of two circles.

In our setting we have to deal with singular moduli spaces. To this end,
recall that a kite is defined as a quadrilateral with sidelengths of the form
(a, a, b, b). A kite with a = b is called a rhombus. The following results on
singular moduli spaces are given in [5].

Proposition 3.2. The planar moduli space of a kite is homeomorphic to
a union of two circles having two different points in common. The planar
moduli space of a rhomboid is homeomorphic to a union of two circles having
three different points in common. For any quadrilateral linkage which is not
a kite but does not satisfy Grashof condition, the planar moduli space is
homeomorphic to a bouquet of two circles.

To answer question (Q1) for quadrilateral linkages we need a few addi-
tional observations, the first of which is a well-known result of elementary
geometry.

Proposition 3.3. The sums of opposite sides of tangential quadrilateral
are equal.

According to the above-said, this means that sidelengths of bicentric
quadrilaterals do not satisfy the Grashof condition, which implies the fol-
lowing conclusion.

Corollary 3.4. The planar moduli spaces of bicentric quadrilaterals con-
tain singular points.

We also use two obvious observations concerned with poristic quadrilat-
erals:

(1) if the circles of a Fuss pair of order four are concentric, then all
poristic quadrilaterals are congruent to a square;
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(2) each poristic family of bicentric quadrilaterals contains a kite.
Combining these results and observations presented above, we immedi-

ately obtain an answer to question (Q1).

Theorem 3.5. For a concentric pair of Fuss circles of order four, all
moduli spaces of poristic quadrilaterals are homeomorphic to a union of two
circles having three different points in common. The planar moduli space of
a bicentric quadrilateral with d ̸= 0 is homeomorphic either to a bouquet of
two circles, or to two circles with two common points.

In fact, it is easy to show that each poristic family of quadrilaterals
contains exactly two kites, so the last topological type mentioned in the
theorem appears twice.

Thus question (Q1) has a quite satisfactory answer for bicentric quadri-
laterals and it is now natural to wonder if similar results are available for
bicentric polygons with more than four sides. However, the situation be-
comes much more complicated already in the case of bicentric pentagons.
In particular, Corollary 3.4 is specific for quadrilaterals and need not hold
for bicentric polygons with the number of sides bigger than four.

To see this, consider a concentric Fuss pair of order five formed by the
incircle and circumcircle of a regular pentagon. In this case, all poristic
pentagons Pt are congruent to a regular pentagon. As is well-known, the
planar moduli space of a regular pentagon is non-singular and diffeomorphic
to a two-sphere with four handles, [5] so an analog of Corollary 3.4 does not,
in general, hold for pentagons.

Further comments on bicentric polygons having more than four sides are
presented in the last section. In the rest of this paper we concentrate on
question (Q2) for bicentric quadrilaterals and then present analogous results
for poristic quadrilaterals arising from Poncelet pair of confocal ellipses of
order four.

4. Auxiliary Results on Poncelet Porism

Question (Q2) requires some analytic considerations, so we present now
some auxiliary formulas which will be used in the sequel. Let (E1, E2) be
a Poncelet pair of ellipses with E2 ⊂ intE1. Without loss of generality, we
can assume that their equations are given in canonical form as

E1 =
{x2

a2
+

y2

b2
= 1

}
, E2 =

{x2

c2
+

y2

d2
= 1

}
, a > c, b > d. (2)

For further use we give an analytical description of one step of Poncelet
process. To this end, we consider a point p(u, v) ∈ E1, denote by T+(p,E2)
the tangent line to E2 through p going in positive (counterclockwise) direc-
tion, and by q(s, t) = T+(p,E2)∩E2 the point of tangency. In other words,
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TqE2 = T+(p,E2). Let r(z, w) denote the second point of intersection of
T+(p,E2) with E1.

Our goal is to express s, t, z, w through u, v. This can be done as follows.
Let (x, y) denote Cartesian coordinates of a variable point in the plane.
Then by elementary analytic geometry, equation of TqE2 is sx

c2 + tv
d2 = 1.

Since q ∈ E2, we have the second equation on (s, t) of the form s2

c2 +
t2

d2 = 1.
Since the first equation is linear in (s, t), we can eliminate one of them

and substitute in the second equation which reduces the problem to solving
a quadratic equation. In this way we obtain

s =
a2b4c2u+

√
a4b8c4u2 − (b4c2u2 + a4d2v2)(a4b4c2 − a4d2c2v2)

b4c2u2 + a4d2v2
, (3)

t =
a4b2d2v +

√
a8b4d4v2 − (a4d2v2 + b4c2u2)(a4b4d2 − b4c2d2u2)

a4d2v2 + b4c2u2
. (4)

To find coordinates of r, one has to solve the system
z2

a2
+

w2

b2
= 1,

sx

c2
+

tv

d2
= 1,

with values of (s, t) given by formulas (3), (4). This system has the same
form as the previous one, so it can be solved for (z, w) in a similar way, and
we finally obtain

z =
a2b4c2u+

√
a4b8c4u2 − (b4c2u2 + a4d2v2)(a4b4c2 − a4d2c2v2)

b4c2u2 + a4d2v2
, (5)

w =
a4b2d2v +

√
a8b4d4v2 − (a4d2v2 + b4c2u2)(a4b4d2 − b4c2d2u2)

a4d2v2 + b4c2u2
, (6)

where s and t are given by (3), (4).
In many cases these formulas become simpler if one chooses the starting

point properly. In particular, this happens if a pair of Poncelet ellipses has
some symmetry. Such a symmetry exists in two special cases: (1) when
(E1, E2) is a Fuss pair of circles, and (2) when (E1, E2) is a Poncelet pair
of confocal ellipses. In both these cases the above formulas will enable us
to derive useful conclusions. For a Fuss pair of circles (C1, C2), the above
formulas yield useful relations between metric elements of bicentric polygons
with frame (C1, C2) one of which is presented below.

Let Q be a point of C1. Then there are two tangent lines l1 and l2 to C2

passing through Q. Let T1 = l1 ∩C2 and T2 = l2 ∩C2 be the corresponding
points of tangency. Obviously, the two segments [Q,T1] and [Q,T2] have
the same length which will be denoted tQ. Let B1 (B2) denote the second
intersection point of l1 (l2) with C2. Denote by t2 the biggest of lengths of
two segments [T1, B1] and [T2, B2] and t3 the other length. In this setting,
formulas (3)–(6) yield the following result which was obtained by a different
method in [10].
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Proposition 4.1. With these assumptions and notation one has:

t2 =
2Rrt+

√
D

r2 + t2
, t3 =

2Rrt−
√
D

r2 + t2
,

where t = tQ, D = 4R2r2t2 − r2(r2 + t2)(2Rr + r2 + t2).

The form of the above expressions suggests that the two lengths t2, t3
are the roots of a certain quadratic equation. It is easy to show that this is
really the case and write down its coefficients. It is also easy to show that
the maximal and minimal value of tQ are

tM =
√
(R+ d)2 − r2, tm =

√
(R− d)2 − r2.

In other words, the range of tA is the segment [tm, tM ].
These formulas were used in [4] to investigate extremal problems for

perimeters of poristic quadrilaterals. We refer to some of the results of [4]
in the next section.

5. Extremal Values of Oriented Area for Bicentric
Quadrilaterals

We proceed with investigation of question (Q2). As a first step, we
consider an extremal problem for the area of bicentric polygons associated
with a given Fuss pair of circles (C1, C2) with metric data (R, r, d). We will
always assume that the coordinate system is such that the center of C1 is at
the origin and the center of C2 lies on the positive semi-axis Ox. In other
words, O1 = (0, 0), O2 = (d, 0). In this case we will speak of a standard
Fuss pair.

Consider a standard Fuss pair of circles of order k. According to Def-
inition 2.1, there exists a k-gon P with vertices on C1 and sides tangent
to the circle C2. By the Poncelet theorem, there exists a one-dimensional
family P(C1, C2) = {Pt} of k-gons with the same property. It is convenient
to parameterize Poncelet polygons by the argument ϕ of the first point on
the outer circle C1. For simplicity we write t instead of ϕ.

For our purposes we need to find the maximum of area A(t) of Pt for
t ∈ [0, 2π]. Since in our situation 2A(t) = rp(t), where p(t) is the perimeter
of Pt, it suffices to find the maximal value of p(t). As it has been shown in
[4], the latter problem can be solved by using the formulas from Section 4
and some standard calculus.

According to [4], Proposition 4.1 combined with the Brahmagupta for-
mula for the area of cyclic polygon yields the following formula for the
perimeter of bicentric quadrilateral which is also given in [10].

Proposition 5.1. If s denotes the length of tangent line to C2 from the
point Q ∈ C1, then the perimeter of poristic quadrilateral having Q as one
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of its vertices is given by

p(s) = 2
(
s+

r2

s
+

4Rrs

s2 + r2

)
.

It remains to find zeros of the derivative dp
ds and compare the values of p

at critical points, which gives the following result [4].

Proposition 5.2. The maximal value of perimeter p(s) is equal to

2
(√

R2 − (r − d)2 +
√
R2 − (r + d)2

)
.

We conclude that the maximum value of A(t) is attained on the polygon
P0 and it is equal to r

(√
R2 − (r − d)2 +

√
R2 − (r + d)2

)
. We can now

give an answer to question (Q2) using the results on cyclic configurations of
polygonal linkages obtained in [8]. Recall that a polygon is called cyclic if
it has a circumscribed circle. In particular, any bicentric polygon is cyclic.

As was shown in [8], the maximal value of oriented area on the planar
moduli space of polygonal linkage L is attained on a convex cyclic configura-
tion of L. Since each Pt is bicentric, the maximal value of A on each M(Pt)
is attained on Pt itself. Hence the maximal value of A on E coincides with
the maximum of A(t) for t ∈ [0, 2π]. Combining these observations with
Proposition 5.2, we obtain the desired answer to question (Q2).

Theorem 5.3. For k = 4, the absolute maximum of A on E is attained
at P0 and the absolute minimum is attained at the same quadrilateral P0

taken with reversed orientation. The extremal values are

±r
(√

R2 − (r − d)2 +
√
R2 − (r + d)2

)
.

As an easy consequence, we get the following criterion.

Corollary 5.4. The function A is constant on E if and only if the circles
C1, C2 are concentric.

Analogs of these results for bicentric k-gons with k ≥ 5 are seemingly
much more difficult to obtain and we make no attempt to discuss them
here. However, it appeared possible to obtain analogs of these results for
poristic quadrilaterals associated with a pair of confocal Poncelet ellipses,
which are presented in the next section.

6. Poristic Quadrilaterals for Confocal Poncelet Ellipses

Let (E1, E2) be a pair of confocal ellipses. Without loss of generality, we
can assume that their equations are given in canonical form as

E1 =
{x2

a2
+

y2

b2
= 1

}
, E2 =

{x2

c2
+

y2

d2
= 1

}
,
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where a2 − b2 = c2 − d2 (as is well known, the latter equality expresses the
confocality condition).

Let us now assume that (E1, E2) is a Poncelet pair of order 4. We obtain a
relation between parameters (a, b, c, d) which can be considered as an analog
of Fuss’s relation. We also describe configurations which are extremal for
the area of Poncelet quadrilaterals defined by (E1, E2).

To derive the desired relation between (a, b, c, d), we notice first that,
by the symmetry, the Poncelet quadrilateral with the first vertex (a, 0)
is a rhombus with vertices (a, 0), (0, b), (−a, 0), (0,−b). Hence the line
L1 = {(x, y) : (a− x)b− ay = 0} connecting vertices (a, 0) and (0, b) should
be the tangent to E2 at certain point p1 = (s, t). In other words, the
intersection of L1 and E2 should consist of one point.

The system of two equations defining the coordinates of p1 is:

(a− s)b− at = 0,
s2

c2
+

t2

d2
= 1,

and we need to find the condition that it has exactly one real solution. Using
the linearity of the first equation, we reduce this system to one quadratic
equation with real coefficients and then write down the relation between
(a, b, c, d) which expresses vanishing of the discriminant of the latter equa-
tion. Combining this relation with the confocality condition, we obtain the
sought analog of the Fuss’s fourth relation.

Reduction to quadratic equation is obtained by substituting t =
(a− s)b

a
into equation of E2 which gives the following quadratic equation on s:

(a2d2 + b2c2)s2 − 2ab2c2x+ a2c2(b2 − d2) = 0.

Vanishing of its discriminant gives the following relation between (a, b, u, v):
a2b2c4 − a2c2(a2d2 + b2c2)(b2 − d2) = 0.

Combining this condition with the condition of confocality and excluding
u from the arising system, we get the equation for v of the form (a2+b2)d4−

b4d2 = 0, which gives d2 =
b4

a2 + b2
. From the confocality condition we also

get c2 =
a4

a2 + b2
, which gives the following result.

Proposition 6.1. The semi-axes of a pair of confocal Poncelet ellipses
of order four satisfy the following relations:

c =
a2√

a2 + b2
, d =

b2√
a2 + b2

. (7)

In fact, these equations give also a sufficient condition.

Proposition 6.2. If the relations (7) are satisfied for a pair of confocal
ellipses, then these ellipses form a Poncelet pair of order four.
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Indeed, under these conditions the rectangular with vertices(
u,

√
b2
(
1− u2

a2

))
,

(
− u,

√
b2
(
1− u2

a2

))
,(

− u,−
√
b2
(
1− u2

a2

))
,

(
u,−

√
b2
(
1− u2

a2

))
is tangent to the inner ellipse. Hence it is a Poncelet quadrilateral for
(E1, E2).

These two propositions show that equations (7) should be indeed consid-
ered as an analog of Fuss’s relation. In fact, it is possible to rewrite this
result in a form more similar to Fuss’s relation. To this end, notice that
up to a motion of the plane, a pair of confocal ellipses is defined by three
positive numbers 2c (distance between foci), L > 2c (sum of distances to
foci for E1) and l ∈ (2c, L) (sum of distances to foci for E2). Since the sum
of distances to foci is equal to doubled big semi-axis, equations 7 give the
following relation between (c, L, l):

L4 − L2l2 + 2c2l2 = 0

which may be considered as a direct analog of Fuss’s relation.
For such a pair of ellipses, sidelengths of poristic polygons do not satisfy

the relation for circumscribed quadrilateral given in Proposition 3.3. Nev-
ertheless, it turns out that their moduli spaces are always singular and one
has an analog of Theorem 3.5.

To this end, we use the results of [2] about Poncelet quadrilaterals of
confocal ellipses. In particular, it was proved in [2] that in this case all
poristic quadrilaterals are parallelograms (cf. also [9]). This implies that
their sidelengths do not satisfy Grashof condition. Hence their planar mod-
uli spaces are singular and one may again use the description of singular
moduli spaces given in Proposition 3.1. In this way, one obtains a direct
analog of Theorem 3.5.

Theorem 6.3. For a pair of confocal Poncelet ellipses of order four, all
moduli spaces of poristic quadrilaterals are singular. In each such family
we have two homemorphy types of planar moduli space: a bouquet of two
circles and a union of two circles having three different points in common.

We can also answer question (Q2) for poristic quadrilaterals associated
with confocal ellipses. It is known that in this situation perimeter of poristic
quadrilaterals p(t) is constant and equal to 4

√
a2 + b2 [9] (which according to

[1] is four times the radius of the orthoptic circle of E1). Let Pt be a poristic
quadrilateral which is a parallelogram with sides c and d. The maximum
value of oriented area A on the moduli space of L(Pt) is obviously equal
to cd. The sum c + d is constant since it is equal to the semi-perimeter
of Pt. Hence the product cd is maximal when c = d, i.e. when Pt is a



REMARKS ON BICENTRIC QUADRILATERALS 51

rhombus. Notice that the poristic quadrilateral P0 is always a rhombus, so
the maximum of A on E is attained on the cyclic configuration of L(P0)

which is a square with the side equal to
√
a2 + b2. Thus we obtain the

following analog of Theorem 5.3.

Theorem 6.4. For a pair of confocal Poncelet ellipses of order four,
the absolute maximum of A on E is equal to a2 + b2 and is attained at the
cyclic configuration of rhomboid L(P0). The absolute minimum −(a2 + b2)
is attained at the same configuration taken with the opposite orientation.

7. Concluding Remarks

An obvious perspective suggested by our results is to look for their
analogs for poristic polygons with the number of sides bigger than four.
This is an interesting problem already for bicentric pentagons and we add
a few words about this case.

As follows from the remarks at the end of Section 3, for a concentric Fuss
pair of order five the total space E of the fibration considered above is a
compact smooth manifold, diffeomorphic to a direct product of circle S1

and Riemann surface of genus four. By continuity, the homeomorphic type
of E will remain unchanged for any Fuss pair of order five with sufficiently
small d. However, it is unclear if the same topological type of E will be
preserved for all admissible values of d. It is also unclear what topological
types can arise for moduli spaces of poristic pentagons with d ̸= 0.

For pentagons, there is good evidence that the absolute maximum of A
on E is attained at poristic pentagon P0. If E appears to be smooth, the
standard topological reasoning implies that any differentiable function on E
should have sufficiently many critical points and one may wish to find their
amount and types. This issue becomes especially interesting if the function
considered is a Morse function. In view of results of [6], [7], one may hope to
prove that the oriented area function on E is a Morse function and estimate
the number and types of its critical points on E.

The same comments are applicable to any regular polygon with odd num-
ber of sides. In particular, there exists considerable amount of information
about homology groups of moduli spaces of regular polygons which may be
used to investigate the critical points of A on E.

Several aspects of these problems can be successfully investigated using
the results of this paper, but such developments obviously require a separate
publication.
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