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ON STATISTICAL STRUCTURES IN A POLISH
NON-LOCALLY-COMPACT GROUP ADMITTING AN

INVARIANT METRIC

G. PANTSULAIA AND T. KIRIA

Abstract. By using the notion of a Haar ambivalent set, intro-
duced by Balka, Buczolich and Elekes in 2012, essentially new
classes of statistical structures having objective and strong ob-
jective estimates of an unknown parameter are considered in a
Polish non-locally-compact group admitting an invariant met-
ric, and relations between them are studied. An example of
such a weakly separated statistical structure is constructed for
which a question whether there exists a consistent estimate of
an unknown parameter remains unsolvable within the theory
(ZE) & (DC). These results extend those obtained recently by
Pantsulaia and Kintsurashvili in 2014.

ÒÄÆÉÖÌÄ. 2012 ßÄËÓ ÁÀËÊÀ, ÁÖÊÆÏËÉÜÉÓÀ ÃÀ ÄËÄÊÄÛÉÓ
ÌÉÄÒ ÛÄÌÏÔÀÍÉËÉ äÀÀÒÉÓ ÄÌÁÉÅÀËÄÍÔÉ ÓÉÌÒÀÅËÉÓ ÝÍÄÁÉÓ
ÓÀÛÖÀËÄÁÉÈ ÉÍÅÀÒÉÀÍÔÖËÉ ÌÄÔÒÉÊÉÈ ÀÙàÖÒÅÉË ÀÒÀËÏÊÀ-
ËÖÒÀÃ ÊÏÌÐÀØÔÖÒ ÐÏËÏÍÖÒ ãÂÖ×ÆÄ ÂÀÍáÉËÖËÉÀ ÓÔÀÔÉÓ-
ÔÉÊÖÒÉ ÓÔÒÖØÔÖÒÄÁÉÓ ÀÒÓÄÁÉÈÀÃ ÀáÀËÉ ÊËÀÓÄÁÉ, ÒÏÌÄË-
ÈÀÝ ÂÀÀÜÍÉÀÈ ÖÝÍÏÁÉ ÐÀÒÀÌÄÔÒÉÓ ÏÁÉÄØÔÖÒÉ ÃÀ ÞËÉÄÒÀÃ
ÏÁÉÄØÔÖÒÉ ÞÀËÃÄÁÖËÉ ÛÄ×ÀÓÄÁÄÁÉ ÃÀ ÛÄÓßÀÅËÉËÉÀ ÌÉÌÀÒ-
ÈÄÁÀ ÌÀÈ ÛÏÒÉÓ. ÀÂÄÁÖËÉÀ ÌÀÂÀËÉÈÉ ÉÓÄÈÉ ÓÖÓÔÀÃ ÂÀÍÝÀ-
ËÄÁÀÃÉ ÓÔÀÔÉÓÔÉÊÖÒÉ ÓÔÒÖØÔÖÒÉÓÀ ÒÏÌËÉÓÈÅÉÓÀÝ ÖÝÍÏ-
ÁÉ ÐÀÒÀÌÄÔÒÉÓ ÞÀËÃÄÁÖËÉ ÛÄ×ÀÓÄÁÉÓ ÀÒÓÄÁÏÁÉÓ ÀÌÏÝÀÍÀ
ÀÌÏÖáÓÍÀÃÉÀ (ZF ) & (DC) ÈÄÏÒÉÀÛÉ. ÄÓ ÛÄÃÄÂÄÁÉ ÀÞËÉ-
ÄÒÄÁÄÍ ×ÀÍÝÖËÀÉÀÓ ÃÀ ÊÉÍßÖÒÀÛÅÉËÉÓ ÌÉÄÒ 2014 ßÄËÓ
ÌÉÙÄÁÖË ÛÄÃÄÂÄÁÓ.

1. Introduction

The notion of a Haar null set introduced by Christensen [2] and reintro-
duced in the context of dynamical systems by Hunt, Sauer and Yorke [4],
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has been used by Pantsulaia and Kintsurashvili [9] to introduce concepts
of the so-called objective and strong objective infinite sample consistent es-
timates of a useful signal in the linear one-dimensional stochastic model.
The purpose of the present paper is to extend these concepts to all Polish
non-locally-compact groups admitting an invariant metric. Notice that a
suitable extension of the property of being of a Haar null set in abelian
Polish groups [2] to all non-abelian Polish groups was given by Topsøe and
Hoffmann-Jørgens [14] and Mycielski [6] such that this class again consti-
tutes an σ-ideal and coincides with Christensen’s class of Haar null sets for
abelian Polish groups.

The rest of the paper is organized as follows.
In Section 2, by virtue of the notion of a Haar ambivalent set introduced

by Balka, Buczolich and Elekes in [1], essentially new classes of statistical
structures having objective and strong objective estimates of an unknown
parameter are introduced in a Polish non-locally-compact group admitting
an invariant metric.

In Section 3, by using celebrated results of Mycielski and Swierczkowski[5],
Solovay [13] and Skorokhod [15], we study relations between these statisti-
cal structures. These results extend those obtained recently by Pantsulaia
and Kintsurashvili in [9], [10], [11]. By using wonderful results of Solecki
[12] and Dougherty [3], in the same group we present some constructions of
statistical structures having objective estimates of an unknown parameter.

2. On a Certain Classification of Statistical Structures on
Polish Non-Locally-Compact Groups Admitting an Invariant

Metric

Let G be a Polish group, by which we mean a separable group with
a complete invariant metric ρ (i.e., ρ(fh1g, fh2g) = ρ(h1, h2) for each
f, g, h1, h2 ∈ G) for which the transformation (from G × G onto G) send-
ing (x, y) into x−1y is continuous. Let B(G) denote the σ-algebra of Borel
subsets of G.

Definition 2.1 ([6]). A Borel set X ⊆ G is called shy, if there exists a
Borel probability measure µ over G such that µ(fXg) = 0 for all f, g ∈ G.
A measure µ is called a testing measure for a set X. A subset of a Borel shy
set is called shy, as well. The complement of a shy set is called a prevalent
set.

Definition 2.2 ([1]). A Borel set is called a Haar ambivalent set if it is
neither shy nor prevalent.

Remark 2.3. Notice that if X ⊆ G is shy, then there exists such a testing
measure µ for a set X with a compact carrier K ⊆ G(i.e. µ(G \K) = 0).
The collection of shy sets constitutes an σ-ideal, and in the case where G is
locally compact, a set is shy iff it has Haar measure zero.
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Definition 2.4. If G is a Polish group and {µθ : θ ∈ Θ} is a family of
Borel probability measures on G, then the family of triplets {(G,B, µθ) :
θ ∈ Θ}, where Θ is a non-empty set equipped with the minimal σ-algebra
L(Θ) of subsets of Θ generated by all singletons of Θ, is called a statistical
structure. A set Θ is called a set of parameters.

Definition 2.5. (O) The statistical structure {(G,B(G), µθ) : θ ∈ Θ}
is called orthogonal if the measures µθ1 and µθ2 are orthogonal for each
different parameters θ1 and θ2.

Definition 2.6. (WS) The statistical structure {(G,B(G), µθ) : θ ∈ Θ}
is called weakly separated if there exists a family of Borel subsets {Xθ : θ ∈
Θ} such that µθ1(Xθ2) = δ(θ1, θ2), where δ denotes Kronecker’s function
defined on the Cartesian square Θ×Θ of the set Θ.

Definition 2.7. (SS) The statistical structure {(G,B(G), µθ) : θ ∈ Θ}
is called strong separated (or strictly separated) if there exists a partition
of the group G into a family of Borel subsets {Xθ : θ ∈ Θ} such that
µθ(Xθ) = 1 for each θ ∈ Θ.

Definition 2.8. (CE) A (B(G), L(Θ))-measurable mapping T : G → Θ
is called a consistent estimate of an unknown parameter θ ∈ Θ for the
statistical structure {(G,B(G), µθ) : θ ∈ Θ} if the condition µθ(T

−1(θ)) = 1
holds true for each θ ∈ Θ.

Definition 2.9. (OCE) A (B(G), L(Θ))-measurable mapping T : G→ Θ
is called an objective consistent estimate of an unknown parameter θ ∈ Θ
for the statistical structure {(G,B(G), µθ) : θ ∈ Θ} if the following two
conditions hold:

(i) µθ(T
−1(θ)) = 1 for each θ ∈ Θ;

(ii) T−1(θ) is a Haar ambivalent set for each θ ∈ Θ.
If the condition (i) holds but the condition (ii) fails, then T is called

a subjective consistent estimate of an unknown parameter θ ∈ Θ for the
statistical structure {(G,B, µθ) : θ ∈ Θ}.

Definition 2.10. (SOCE) An objective consistent estimate T : G → Θ
of an unknown parameter θ ∈ Θ for the statistical structure {(G,B(G), µθ) :
θ ∈ Θ} is called strong if for each θ1, θ2 ∈ Θ there exists an isometrical Borel
measurable bijection A(θ1,θ2) : G→ G such that the set A(θ1,θ2)(T

−1(θ1))×
∆T−1(θ2) is shy in G.

3. Relations Between Statistical Structures in Polish
Non-Locally-Compact Groups Admitting an Invariant

Metric

Remark 3.1. Let G be a Polish non-locally-compact group admitting an
invariant metric. The relations between statistical structures introduced in
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Section 2 for such a group can be presented by the following diagram:

SOCE → OCE → CE ↔ SS → WS → O

To show that the converse implications sometimes fail, we consider the
following examples.

Example 3.2. ⌉(WS ← O) Let F ⊂ G be a closed subset of the car-
dinality 2ℵ0 . Let ϕ : [0, 1] → F be a Borel isomorphism of [0, 1] onto F .
We set µ(X) = λ(ϕ−1(X ∩ F )) for X ∈ B(G), where λ denotes a linear
Lebesgue measure on [0, 1]. We put Θ = F . Let fix θ0 ∈ Θ and put: µθ = µ
if θ = θ0, and µθ = δθ|B(G), otherwise, where δθ denotes a Dirac measure on
G concentrated at the point θ, and δθ|B(G) denotes the restriction of the δθ
to the class B(G). Then the statistical structure {(G,B, µθ) : θ ∈ Θ} stands
for O which is not WS.

Example 3.3. (SM) ⌉(SS ← WS) Following [7] (see, Theorem 1, p. 335),
in the system of axioms (ZFC) the following three conditions are equivalent:

1) the Continuum Hypothesis (c = 2ℵ0 = ℵ1);
2) for an arbitrary probability space (E;S;µ), the µ-measure of the union

of any family (Ei)i∈I of µ-measure zero subsets such that card(I) < c, is
equal to zero;

3) an arbitrary weakly separated family of probability measures, of car-
dinality continuum, is strictly separated.

The latter relation means that under the Continuum Hypothesis in ZFC
we have SS ← WS. This is just Skorohod well known result(see, [15]).
Moreover, following [7] (see Theorem 2, p. 339), if (F, ρ) is a Radon metric
space and (µi)i∈I is a weakly separated family of Borel probability measures
with card(I) ≤ c, then in the system of axioms (ZFC)&(MA), the family
(µi)i∈I is strictly separated.

Let us consider a counter-example to the implication SS ← WS in the
Solovay model (SM) [13] which is the following system of axioms: (ZF )+
(DC)+ “every subset of the real axis R is Lebesgue measurable”, where
(ZF ) denotes the Zermelo-Fraenkel set theory and (DC) denotes the axiom
of Dependent Choices.

For θ ∈ (0; 1), let bθ be a linear classical Borel measure defined on the set
{θ}× (0; 1). For θ ∈ (1.2), let bθ be a linear classical Borel measure defined
on the set (0; 1)×{θ− 1}. By λθ we denote a Borel probability measure on
(0; 1)× (0; 1) produced by bθ, i.e.,

(∀X)(∀θ1)(∀θ2)(X ∈ B((0; 1)× (0; 1)) & θ1 ∈ (0; 1) & θ2 ∈ (1; 2)→
λθ1(X)=bθ1(({θ1} × (0; 1)) ∩X) & λθ2(X)=bθ2(((0; 1)×{θ1 − 1}) ∩X)).

If we put θ = (0; 1) ∪ (1; 2), then we get a statistical structure ((0; 1) ×
(0; 1),B((0; 1)× (0; 1)), λθ)θ∈Θ.
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Setting Xθ = {θ} × (0; 1) for θ ∈ (0; 1), and Xθ = (0; 1) × {θ − 1} for
θ ∈ (1.2), we observe that for the family of Borel subsets {Xθ : θ ∈ Θ}
we have λθ1(Xθ2) = δ(θ1, θ2), where δ denotes Kronecker’s function defined
on the Cartesian square Θ × Θ of the set Θ. In other words, (λθ)θ∈Θ is
weakly separated. Now assume that this family is strong separated. Then
there will be a partition {Yθ : θ ∈ Θ} of the (0; 1)× (0; 1) into Borel subsets
(Yθ)θ∈Θ such that λθ(Yθ) = 1 for each θ ∈ Θ. If we consider A = ∪θ∈(0;1)Yθ

and B = ∪θ∈(1;2)Yθ, we observe by Fubini’s theorem that ℓ2(A) = 1 and
ℓ2(B) = 1, where ℓ2 denotes the 2-dimensional Lebesgue measure defined
on (0; 1)× (0; 1). This is the contradiction and we have proved that (λθ)θ∈Θ

is not strictly separated. An existence of a Borel isomorphism g between
(0; 1)× (0; 1) and G allows us to construct a family (µθ)θ∈Θ in G as follows:
µθ(X) = λθ(g

−1(X)) for each X ∈ B(G) and θ ∈ Θ which is WS, but no
SS(equivalently, CE).

By virtue the celebrated result of Mycielski and Swierczkowski (see, [5])
asserted that under the Axiom of Determinacy (AD) every subset of the real
axis R is Lebesgue measurable, the same example can be used as a counter-
example to the implication SS ← WS in the theory (ZF ) + (DC) + (AD).

Since the answer to the question whether (µθ)θ∈Θ has a consistent es-
timate is yes in the theory (ZFC) & (AC), and no in the theory (ZF ) +
(DC)+(AD), we deduce that this question is not solvable within the theory
(ZF ) + (DC).

Example 3.4. ⌉(OCE ← CE) Setting Θ = G and µθ = δθ|B(G) for
θ ∈ Θ, where δθ denotes a Dirac measure in G concentrated at the point θ
and δθ|B(G) denotes its restriction to B(G), we get a statistical structure
(G,B(G), µθ)θ∈Θ. Let L(Θ) denote the minimal σ-algebra of subsets of Θ
generated by all singletons of Θ. Setting T (g) = g for g ∈ G, we get a con-
sistent estimate of an unknown parameter θ for the family (µθ)θ∈Θ. Notice
that there does not exist an objective consistent estimate of a parameter θ
for the family (µθ)θ∈Θ. Indeed, if we assume the contrary and T1 be such an
estimate, then we get that T−1

1 (θ) is a Haar ambivalent set for each θ ∈ Θ.
Since T1 is a consistent estimate of an unknown parameter θ for each θ ∈ Θ,
we get that the condition µθ(T

−1
1 (θ)) = 1 holds true which implies that

θ ∈ T−1
1 (θ) for each θ ∈ Θ. Let us fix any parameter θ0 ∈ Θ. Since T−1

1 (θ0)
is a Haar ambivalent set, there is θ1 ∈ T−1

1 (θ0) which differs from θ0. Then
T−1
1 (θ0) and T−1

1 (θ1) are not disjoint because θ1 ∈ T−1
1 (θ0) ∩ T−1

1 (θ1), and
we get the contradiction.

Remark 3.5. Notice that if (Θ, ρ) is a metric space and if in Definition
2.9 the requirement of a (B(G), L(Θ))-measurability will be replaced with
a (B(G),B(Θ))-measurability, then the implication SS → CE may be false.
Indeed, let G be a Polish group and f : G← Θ(:= G) be a non-measurable
(in the Borel sense) bijection. For each θ ∈ Θ denote by µθ the restriction
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of the Dirac measure δf(θ) to the σ-algebra of Borel subsets of the group G.
It is clear that the statistical structure {(G,B(G), µθ) : θ ∈ Θ} is strictly
separated. Let us show that there does not exist a consistent estimate
for that statistical structure. Indeed, let T : G → Θ be (B(G),B(Θ))-
measurable mapping such that µθ({x : T (x) = θ}) = 1 for each θ ∈ Θ. Since
the measure µθ is concentrated at the point f(θ), we find that f(θ) ∈ {x :
T (x) = θ} for each θ ∈ Θ which implies that T (f(θ)) = θ for each θ ∈ Θ.
The latter relation means that T = f−1. Since f is not (B(G),B(Θ))-
measurable, we claim that f−1 = T is not also (B(G),B(Θ))-measurable,
and we get the contradiction.

There naturally arises a question whether there exists such a statistical
structure {(G,B, µθ) : θ ∈ Θ} in a Polish non-locally-compact group ad-
mitting an invariant metric which has an objective consistent estimate of a
parameter θ. To answer positively to this question, we need the following
two lemmas.

Lemma 3.6 ([12], Theorem, p. 206). Assume G is a Polish, non-locally-
compact group admitting an invariant metric. Then there exists a closed
set F ⊆ G and a continuous function ϕ : F → 2N such that for any x ∈ 2N

and any compact set K ⊆ G there is g ∈ G with gK ⊆ ϕ−1(x).
Lemma 3.7 ([3] Proposition 12, p. 87). Let G be a non-locally-compact

Polish group with an invariant metric. Then any compact subset (and hence
any Kσ subset) of G is shy.

Remark 3.8. In [10](see proof of Theorem 4.1, Step 2) has been con-
structed a partition Φ = {Aθ : θ ∈ [0, 1]} of the RN into Haar ambivalent
sets such that for each θ1, θ2 ∈ [0, 1] there exists an isometric (with respect
to Tychonoff metric which is invariant under translates) Borel measurable
bijection A(θ1,θ2) of RN such that A(θ1,θ2)(Aθ1)∆Aθ2 is shy. In this context
and concerning with Lemma 3.6 it is natural to ask whether an arbitrary
Polish non-locally-compact group with an invariant metric admits a similar
partition in Haar ambivalent sets. Notice that we have no any information
in this direction.

Theorem 3.9. Let G be a Polish non-locally-compact group admitting
an invariant metric. Then there exists a statistical structure {(G,B, µθ) :
θ ∈ Θ} in G which has an objective consistent estimate of a parameter θ
such that:

(i) Θ ⊆ G and card(Θ) = 2ℵ0 ;
(ii) µθ is the restriction of the Dirac measure concentrated at the point θ

to the Borel σ-algebra B(G) for each θ ∈ Θ.
Proof. By virtue of Lemma 3.6, there exists a closed set F ⊆ G and a
continuous function ϕ : F → 2N such that for any x ∈ 2N and any compact
set K ⊆ G there is g ∈ G with gK ⊆ ϕ−1(x).
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For x ∈ 2N \ {(0, 0, . . . )}, we put Xx = ϕ−1(x). We set X(0,0,... ) =

ϕ−1((0, 0, . . . ))∪ (G\F ). Thus we have a partition {Xx : x ∈ 2N} of G into
Borel subsets such that each element of the partition is Borel measurable
and a Haar ambivalent set. Let {θx : x ∈ 2N} be any selector. We put
Θ = {θ : θ = θx for some x ∈ 2N} and denote by µθ the restriction
of the Dirac measure concentrated at the point θ to the σ-algebra B(G).
Thus we have constructed a statistical structure {(G,B, µθ) : θ ∈ Θ} in
G. We put T (g) = θ for each g ∈ Xθ. Now it is obvious that T is the
objective consistent estimate of a parameter θ for the statistical structure
{(G,B, µθ) : θ ∈ Θ} in G such that the conditions (i)-(ii) are fulfilled. �

Theorem 3.10. Let G be a Polish non-locally-compact group admitting
an invariant metric. Let µ be a Borel probability measure whose carrier is a
compact set K0( i.e., µ(G\K0) = 0). Then there exists a statistical structure
{(G,B, µθ) : θ ∈ Θ} in G which has an objective consistent estimate of a
parameter θ such that

(i) Θ ⊆ G and card(Θ) = 2ℵ0 ;
(ii) µθ is a θ-shift of the measure µ (i.e. µθ(X) = µ(θ−1X) for X ∈ B(G)

and θ ∈ Θ).

Proof. By virtue of Lemma 3.6, there exists a closed set F ⊆ G and a
continuous function ϕ : F → 2N such that for any x ∈ 2N and any compact
set K ⊆ G there is g ∈ G with gK ⊆ ϕ−1(x).

For x ∈ 2N \ {(0, 0, . . . )}, we put Xx = ϕ−1(x). We set X(0,0,... ) =

ϕ−1((0, 0, . . . ))∪ (G\F ). Thus we have a partition {Xx : x ∈ 2N} of G into
Borel subsets such that each element of the partition is Borel measurable, a
Haar ambivalent set and for any x ∈ 2N and any compact set K ⊆ G there
is g ∈ G with gK ⊆ ϕ−1(x).

If we take under K a set K0, then for any x ∈ 2N there is g(K0, x) ∈ G
with g(K0, x)K0 ⊆ Xx.

We put Θ = {θ : θ = g(K0, x) & x ∈ 2N}. For each θ ∈ Θ and X ∈ B(G),
we put µθ(X) = µ(θ−1X).

For g ∈ Xx we put T (g) = g(K0, x). Let us show that T : G → Θ is an
objective consistent estimate of a parameter θ. Indeed, on the one hand,
for each θ ∈ Θ, we have

µθ(T
−1(θ)) = µg(K0,x)(T

−1(g(K0, x))) = µg(K0,x)(Xx) =

= µ(g(K0, x)
−1Xx) ≥ µ(g(K0, x)

−1g(K0, x)K0) = µ(K0) = 1,

which means that T : G→ Θ is a consistent estimate of a parameter θ.
On the other hand, for each θ = g(K0, x) ∈ Θ, we have that a set

T−1(θ) = T−1(g(K0, x)) = Xx is Borel measurable and a Haar ambivalent
set which together with the latter relation implies that T : G→ Θ is an ob-
jective consistent estimate of a parameter θ. Now it is obvious to check that
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for the statistical structure {(G,B, µθ) : θ ∈ Θ} the conditions (i)-(ii) are
fulfilled. �

The next theorem shows whether one can construct objective consistent
estimates by virtue of some consistent estimates in a Polish non-locally-
compact group admitting an invariant metric.

Theorem 3.11. Let G be a Polish non-locally-compact group admitting
an invariant metric. Let card(Θ) = 2ℵ0 and T : G→ Θ be a consistent esti-
mate of a parameter θ for the family of Borel probability measures (µθ)θ∈Θ

such that there exists θ0 ∈ Θ for which T−1(θ0) is a prevalent set. Then
there exists an objective consistent estimate of a parameter θ for the family
(µθ)θ∈Θ.
Proof. For θ ∈ Θ we put Sθ = T−1(θ). Since Sθ0 is a prevalent set we
deduce that

∪θ∈Θ\{θ0}Sθ = RN \ Sθ0

is shy in G.
We know that the measure µθ0 is concentrated on a union of a countable

family of compact subsets {F (θ0)
k : k ∈ N}. By Lemma 3.7 we know that

∪k∈NF
(θ0)
k is shy in G.

We put S̃θ = Sθ for θ ∈ Θ \ {θ0} and S̃θ0 = ∪k∈NF
(θ0
k . Clearly, S =

∪θ∈ΘS̃θ is also shy in G.
By virtue of Lemma 3.6, there exist a closed set F ⊆ G and a continuous

function ϕ : F → 2N such that for any x ∈ 2N and any compact set K ⊆ G
there is g ∈ G with gK ⊆ ϕ−1(x). Let f : 2N → Θ be any bijection. For
θ ∈ Θ, we put

Bθ = (ϕ−1(f−1(θ)) \ S) ∪ Sθ.

Notice that (Bθ)θ∈Θ is a partition of G into Haar ambivalent sets. We put
T1(g) = θ for g ∈ Bθ(θ ∈ Θ). Since

µθ(T
−1
1 (θ)) = µθ(Bθ) ≥ µθ(Sθ) = 1

for θ ∈ Θ, we claim that T1 is a consistent estimate of a parameter θ for the
family (µθ)θ∈Θ.

Since T−1
1 (θ)) = Bθ is a Haar ambivalent set for each θ ∈ Θ, we complete

the proof of the theorem. �
Example 3.12. Let F be a probability distribution function on R such

that the integral
∫

R xdF (x) exists and is equal to zero. Suppose that p is
a Borel probability measure on R defined by F . For θ ∈ Θ(:= R), let pθ
be θ-shift of the measure p (i.e., pθ(X) = p(X − θ) for X ∈ B(R)). Setting
G = RN , for θ ∈ Θ we put µθ = pNθ , where pNθ denotes the infinite power of
the measure pθ. We set T ((xk)k∈N = lim

n→∞

∑n
k=1 xk

n , if lim
n→∞

∑n
k=1 xk

n exists,
is finite and differs from the zero, and T ((xk)k∈N ) = 0, otherwise. Notice
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that T : RN → Θ is a consistent estimate of a parameter θ for the family
(µθ)θ∈Θ such that T−1(0) is a prevalent set. Indeed, by virtue the Strong
Law of Large Numbers, we know that

µθ

{
(xk)k∈N : lim

n→∞

∑n
k=1 xk

n
= θ

}
= 1

for θ ∈ Θ.
Following [9] (Lemma 4.14, p. 60), a set S, defined by

S =

{
(xk)k∈N : lim

n→∞

∑n
k=1 xk

n
exists and is finite

}
,

is a Borel shy set, which implies that RN \ S is a prevalent set. Since
RN \ S ⊆ T−1(0), we deduce that T−1(0) is a prevalent set. Since for the
statistical structure {(RN ,B(RN ), µθ) : θ ∈ Θ} all conditions of Theorem
3.11 are fulfilled, we claim that there exists an objective consistent estimate
of a parameter θ for the family (µθ)θ∈Θ.

In [9], in the case of the linear one-dimensional stochastic model examples
of objective and strong objective infinite sample consistent (well-founded)
estimates ([9], T ⋆(p. 63), T ◦ (p. 67)) of a useful signal were constructed by
using the axiom of choice and a certain partition of the non-locally compact
abelian Polish group RN constructed in [8]. In [11], it has been proved that
infinite-sample consistent estimates of an unknown parameter effectively
constructed in [16] are objective.

The next example presents a certain effective construction of the statisti-
cal structure in RN which has a strong objective infinite-sample consistent
estimate of an unknown parameter.

Example 3.13 ([10] Theorem 3.1, p. 117). Let F be a strictly increasing
continuous probability distribution function on R, µ be a Borel probability
measure on R defined by F , Fθ(x) = F (x − θ)(x ∈ R) for θ ∈ Θ := [0, 1]
and µθ be a Borel probability measure on R defined by Fθ.

For each real number a ∈ R, we denote by {a} its fractal part in the
decimal system. Suppose that the Borel probability measure λ, defined by
the sequence of transformed signals (ξk)k∈N coincides with

(
µN)

θ0
for some

θ0 ∈ [0, 1]. Let T : RN → [0, 1] be defined by: T ((xk)k∈N) = { lim
n→∞

∑n
k=1 xk

n }

if lim
n→∞

∑n
k=1 xk

n ̸= 1, T ((xk)k∈N) = 1 if lim
n→∞

∑n
k=1 xk

n = 1, and T ((xk)k∈N) =∑
k∈N

χ(0,+∞)(xk)

2k
, otherwise, where χ(0,+∞)(·) denotes an indicator func-

tion of the set (0,+∞) defined on the real axis R. Then T is a strong
objective infinite sample consistent estimate for the statistical structure
(RN,B(RN), µN

θ )θ∈[0,1].

In context with Example 3.13 we state the following
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Problem 3.14. Let G be a Polish non-locally-compact group admitting
an invariant metric. Does there exist a statistical structure {(G,B(G), µθ) :
θ ∈ Θ} with card(Θ) = 2ℵ0 for which there exists a strong objective consis-
tent estimate of a parameter θ?
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