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MULTIVARIATE HARDY-TYPE INEQUALITIES ON TIME
SCALES VIA SUPERQUADRACITY

O. O. FABELURIN AND J. A. OGUNTUASE

Abstract. A new Jensen inequality for multivariate superqua-
dratic functions is proved. The derived Jensen inequality is
then employed to obtain the general Hardy-type inequality for
superquadratic and subquadratic functions of several variables.

ÒÄÆÉÖÌÄ. ÓÔÀÔÉÀÛÉ ÃÀÃÂÄÍÉËÉÀ ÌÒÀÅÀËÂÀÍÆÏÌÉËÄÁÉÀÍÉ
ÓÖÐÄÒÊÅÀÃÒÀÔÖËÉ ×ÖÍØÝÉÄÁÉÓÀÈÅÉÓ ÉÄÍÓÄÍÉÓ ÔÉÐÉÓ ÀáÀËÉ
ÔÏËÏÁÀ. ÄÓ ÖÔÏËÏÁÀ ÂÀÌÏÚÄÍÄÁÖËÉÀ ÌÒÀÅÀËÉ ÝÅËÀÃÉÓ
ÓÖÐÄÒÊÅÀÃÒÀÔÖËÉ ÃÀ ÓÖÁÊÅÀÃÒÀÔÖËÉ ×ÖÍØÝÉÄÁÉÓÀÈÅÉÓ
äÀÒÃÉÓ ÔÉÐÉÓ ÖÔÏËÏÁÉÓ ÃÀÓÀÌÔÊÉÝÄÁËÀÃ.

1. Introduction

In 1920, Hardy [14] (see also [13]) proved that if p > 1 and {ak}∞k=1 is a
sequence of nonnegative real numbers, then

∞∑
n=1

(
1

n

n∑
k=1

ak

)p

≤
(

p

p− 1

)p n∑
n=1

apn. (1.1)

Furthermore, Hardy [14] announced (without proof) that if p > 1 and the
function f is nonnegative and integrable over the interval (0, x) then

∞∫
0

(
1

x

x∫
0

f(t)dt

)p

dx ≤
(

p

p− 1

)p
∞∫
0

fp(x)dx. (1.2)

Inequality (1.2) was finally proved by Hardy [12] in 1925. Thus, inequality
(1.2)is usually referred to in the literature as the classical Hardy integral in-
equality while inequality (1.1) is its discrete analogue. The constant

(
p

p−1

)p
on the right hand sides of both inequalities (1.1) and (1.2) is the best pos-
sible.
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In the last five decades, the Hardy inequality (1.2) has been extensively
studied and generalized. A lot of information as regards it applications,
alternative proofs, variants, generalizations and refinements abound in the
literature (see the books [13, 19, 20] and the references cited therein).

In particular, Krulić et al. [18] studied a more general class of Hardy-type
inequalities using convexity approach and obtained that(∫

Ω1

u(x)Ψ
q
p (Akf(x))dµ1(x)

) 1
q

≤
(∫

Ω2

v(t)Ψ(f(t))dµ2(t)

) 1
p

(1.3)

holds for all nonnegative convex functions Ψ defined on a convex set I ⊆ ℜ
and for all measurable functions f : Ω2 → ℜ such that f(Ω2) ⊆ I, where

Akf(x) :=
1

K(x)

∫
Ω2

k(x, t)f(t)dµ2(t), x ∈ Ω1

K(x) :=

∫
Ω2

k(x, t)dµ2(t) > 0, x ∈ Ω1

and

v(t) :=

[ ∫
Ω1

u(x)

(
k(x, t)

K(x)

) q
p

dµ1(x)

] p
q

< ∞, t ∈ Ω2.

Observe that by setting Ω1 = Ω2 = ℜ+ = (0,∞), dµ1(x) = dx, dµ1(y) =

dy, u(x) = 1
x , k(x, y) = 1

xχ0<x<y(x, y),Ψ(x) = xp, f(y) = f(y
p

p−1 )y
1

p−1 in
(1.3) yields inequality (1.2).

In his PhD thesis, Stefan Hilger [15] (see also [16, 17]) initiated the cal-
culus of time scales in order to create a theory that will unify discrete and
continuous analysis. This new concept has inspired researchers to study
Hardy inequalities on time scales. The first known work in this direction is
probably due to Řehák [24] who obtained Hardy integral inequality on time
scale. Indeed, he showed that

∞∫
a

(
1

σ(x)− a

σ(x)∫
a

f(t)∆t

)p

∆x <

(
p

p− 1

)p
∞∫
a

fp(x)∆x,

where a > 0, p > 1 and f is a nonnegative function.
In 2001, Agarwal et al. [4] obtained the following Jensen’s inequality on

time scales

Φ

(
1

b− a

b∫
a

f(x)∆x

)
≤ 1

b− a

b∫
a

Φ(f(x))∆x.
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Anwar et al. [5] obtained the Jensen inequality for convex functions in
several variables on time scale. Also they deduced the Jensen functionals
and established some of its basic properties for multivariate convex functions
on an arbitrary time scale. Specifically, the following result is established.

Theorem 1.1. Let (Ω1,Σ1, µ∆) and (Ω2,Σ2, λ∆) be two time scale mea-
sure spaces. Suppose that U ⊂ Rn is a closed convex set and Φ ∈ C(U,R)
is convex. Moreover, let k : Ω1 × Ω2 → R be nonnegative such that k(x, .)
is λ∆ − integrable. Then

Φ

(∫
Ω2

k(x, y)f(y)∆y∫
Ω2

k(x, y)∆y

)
≤
∫
Ω2

k(x, y)Φ(f(y))∆y∫
Ω2

k(x, y)∆y
(1.4)

holds for all functions f : Ω2 → U, where fj(y) are µ∆2-integrable for all
j ∈ {1, 2, . . . , n}, and

∫
Ω2

k(x, y)f(y)∆(y) denotes the n-tuple(∫
Ω2

k(x, y)f1(y)∆(y),

∫
Ω2

k(x, y)f2(y)∆(y), . . . ,

∫
Ω2

k(x, y)fn(y)∆(y)

)
.

Donchev et al. [10] employed the above result to derive the follow-
ing Hardy-type inequality involving multivariate convex functions on time
scales:

Theorem 1.2. If K : Ω1 → R is defined by K(x) :=
∫
Ω2

k(x, y)∆y < ∞,
x ∈ Ω1 and ζ : Ω1 → R is such that

w(y) :=

∫
Ω1

(
k(x, y)ζ(x)

K(x)

)
∆x, y ∈ Ω2,

then ∫
Ω1

ζ(x)Φ

(
1

K(x)

∫
Ω2

k(x, y)f(y)∆y

)
∆x ≤

∫
Ω2

w(y)Φ(f(y))∆y (1.5)

holds for all λ∆-integrable functions f : Ω2 → Rn such that f(Ω2) ⊂ U.

Recently, Abramovich et al. [2] introduced the concept of superquadratic
functions in one variable as a generalization of the class of convex functions.
In particular, they define the one variable superquadratic and subquadratic
functions as follows:

Definition 1.3 ([2], Definition 2.1). A function Φ : [0,∞) → ℜ is said
to be superquadratic provided that for all x ≥ 0 there exists a constant
Cx ∈ R such that

Φ(y)− Φ(x)− Cx(y − x)− Φ(|y − x|) ≥ 0

for all y ≥ 0. Φ is subquadratic if −Φ is superquadratic.



32 O. O. FABELURIN AND J. A. OGUNTUASE

Instead of using convex functions if we use superquadratic functions, then
some similar refined Hardy-type inequalities can be derived. The first result
in this direction can be found in [21] (see also [22] for the multidimensional
analogue). Furthermore, Abramovich et al. [3] obtained a generalization of
this concept for superquadratic functions in several variables.

Barić et al. [6] obtained a one variable Jensen’s inequality on an arbitrary
time scales T using superquadracity argument. In particular, the following
result was derived and proved:
Let a, b ∈ T and f : [a, b]Tk → [0,∞) is rd-continuous and Φ : [0,∞) → ℜ
is continuous and superquadratic. Then

Φ

(
1

b− a

b∫
a

f(t)∆t

)
≤

≤ 1

b− a

b∫
a

[
Φ(f(s))− Φ

(∣∣∣∣f(s)− 1

b− a

b∫
a

f(t)∆t

∣∣∣∣)]∆s. (1.6)

In a recent paper, Oguntuase and Persson [23] obtained some new Hardy-
type inequalities on time scales using the concept of superquadratic func-
tions. In particular the following result is obtained:

Theorem 1.4. Let (Ω1,Σ1, µ∆1) and (Ω2,Σ2, µ∆2) be two time scale
measure spaces with positive σ-finite measures and let u : Ω1 → R and
k : Ω1×Ω2 → R be nonnegative functions such that k(x, .) is µ∆2-integrable
for x ∈ Ω1. Furthermore suppose that K : Ω1 → R is defined by

K(x) :=

∫
Ω2

k(x, y)∆µ2(y) > 0, x ∈ Ω1

and
v(y) :=

∫
Ω1

(
k(x, y)u(x)

K(x)

)
∆µ1(x) < ∞, y ∈ Ω2.

If Φ : [a,∞) → R (a ≥ 0) is a nonnegative superquadratic function,then the
inequality∫

Ω1

u(x)Φ(Akf(x))∆µ1(x)+

+

∫
Ω2

∫
Ω1

u(x)
k(x, y)

K(x)
Φ (|f(y)−Akf(x)|)∆µ1(x)∆µ2(y) ≤

≤
∫
Ω2

v(x)Φ(f(x))∆µ2(x), (1.7)
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holds for all nonnegative µ∆2-integrable function f : Ω2 → R, and for
Akf : Ω1 → R defined by,

Akf(x) =
1

K(x)

∫
Ω2

k(x, y)f(y)∆µ2(y), x ∈ Ω1.

If Φ is subquadratic, then the inequality sign in (1.7) is reversed.

Motivated by the above results, our main aim in this paper is to establish
a new Jensen inequality for multivariate superquadratic functions and then
employed it to derive the general Hardy-type inequalities for multivariate
superquadratic functions involving a more general kernel on an arbitrary
time scales.

The paper is organized as follows: In Section 2 we recall some basic
notions, definitions and results on multivariate superquadratic functions on
time scales. In Section 3 we prove our results and give some remarks.

2. Preliminaries, Definitions and Some Basic Results

First, we recall that a time scale (or measure chain) T is an arbitrary
nonempty closed subset of the real line R with the topology of the subspace
R. Examples of time scales are the real numbers R and the discrete time
scale Z. Since time scale T may or may not be connected, we need the
concept of jump operators. Let t ∈ T, we define the forward jump operator
σ : T → T by

σ(t) = inf{s ∈ T : s > t}
and the backward jump operator by

ρ(t) = inf{s ∈ T : s < t}.
If σ(t) > t, we say that t is right-scattered and if ρ(t) < t we say that t
is left-scattered. The points that are right-scattered and left-scattered at
time are called isolated. If σ(t) = t then t is said to be right-dense, and if
ρ(t) = t then t is said to be left-dense. The points that are simultaneously
right-dense and left-dense are called dense. The mapping µ : T → [0,∞)
defined by

µ(t) = σ(t)− t

is called the graininess function. If T has a left-scattered maximum M , then
define Tk = T\ {M}; otherwise Tk = T. Let f : T → R be a function. Then
we define the function fσ : T = R by fσ(t) = f(σ(t)) for all t ∈ T. Also,
for a function f : T → ℜ, the delta derivative is defined by

f∆(t) := lim
s→t,σ(s)̸=t

fσ(s)− f(t)

σ(s)− t
.

A function f : T → ℜ is called rd-continuous provided it is continuous at all
right-dense points in T and its left-sided limits exists (finite) at all left-dense
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points in T. We refer to the books ([8, 9]) for more details on the calculus
of time scales. Note that we have

σ(t) = t, µ(t) = 0, f∆ = f
′
,

b∫
a

f(t)∆t =

b∫
a

f(t)dt, when T = ℜ,

σ(t) = t+ 1, µ(t) = 1, f∆ = ∆f,

b∫
a

f(t)∆t =
b−1∑
t=a

f(t), when T = Z,

In the sequel, we let n ∈ N, we define n-dimensional time scale by the
Cartesian product of given time scales Ti, i ∈ {1, . . . , n}, as Ωn = {x =
(x1, x2, . . . , xn) : xi ∈ Ti, i ∈ {1, . . . , n}}. Clearly, Ωn equipped with the
usual inner product ⟨·, ·⟩ and the norm || · || defined by

⟨x,y⟩ =
n∑

i=1

xiyi

and

|| x ||=

(
n∑

i=1

x2
i

)1/2

respectively is a complete metric space with distance defined as follows

d(x,y) =|| x − y ||,x,y ∈ Ωn.

Furthermore, for a,b ∈ Ωn, [a, b) means the set [a1, b1) × [a2, b2) × · · · ×
[an, bn) and we write a < b if componentwise ai < bi, i = 1, 2, . . . , n.
Moreover, we define the subsets Kn and K+

n ∈ ℜn as

Kn = [0,∞)n = {x ∈ ℜn : a ≤ x}

and
K+

n = (0,∞)n = {x ∈ ℜn : a < x},

where a ≥ 0.
We refer to [10] for the construction of Lebesgue measure and Lebesgue

∆-integrals on Ωn and also to [8, 9, 11] for theory of measure spaces and
measurable functions on time scales.

Now we recall some essentials about partial derivatives on time scales.
For given time scales Ti, i ∈ {1, 2, . . . , n}, let σi, ρi and ∆i denote the
jump operator, the backward operator, and the delta differential opera-
tor, respectively. Let f be a real-valued function on Ωn. At point x =
{x1, x2, . . . , xn} ∈ Ωn, we say that f has a “∆1 partial derivative” ∆1f(x)
(with respect to x1) if for each ε > 0 there exists a neighborhood Ux1 of x1



MULTIVARIATE HARDY-TYPE INEQUALITIES ON TIME SCALES 35

such that
|f(σ1(x1), x2, . . . , xn)− f(s1, x2, . . . , xn)−
−∆1f(x)(σ1(x1)− s1)| ≤ ε(σ1(x1)− s1)

for all s1 ∈ Ux1
. Generally, we say that f has a ∆j partial derivative ∆jf(x)

(with respect to xj) if for each ε > 0, there exists a neighborhood Uxj of xj

such that
|f(x1, x2, . . . , σj(xj), . . . , xn)− f(x1, x2, . . . , s

j , . . . , xn)−
−∆jf(x)(σj(xj)− sj)| ≤ ε(σj(xj)− sj)

for all sj ∈ Uxj .

Definition 2.1. ([3], Definition 1). A function ϕ : Kn → ℜ is said to
be superquadratic if for every x ∈ Kn there exists a vector c(x) ∈ ℜn such
that

ϕ(y) ≥ ϕ(x) + ⟨c(x),y − x⟩+ ϕ(|y − x|) (2.1)
holds for all y ∈ Kn. ϕ is said to be strictly superquadratic if (2.1) is strict
for all x ̸= y.
Furthermore, we say that ϕ is subquadratic if −ϕ is superquadratic.

For example, the function

ϕ(x) = −||x||p = −
( n∑

i=1

xp
i

)1/p

, x ∈ Kn

is superquadratic for p ≥ 1. We refer to [3] for more examples of su-
perquadratic functions.

Moreover, in this paper, for a given function ϕ : X ⊂ Ωn → ℜ, we use
the notation

∆ϕ(x) = (∆1ϕ(x),∆2ϕ(x), . . . ,∆nϕ(x))
to denote ∆ - gradient of ϕ at a point x ∈ X, where ∆jϕ(x) denotes the
∆j-partial derivative of ϕ with respect to j:th variable at a point x.

The following lemma shows that nonnegative superquadratic functions
are indeed convex functions.

Lemma 2.2 ([3], Lemma 1). Let ϕ be a superquadratic function and
c(x) = (c1(x), c2(x), . . . , cnx) be as in Definition 2.1. Then

(1) ϕ(0) ≤ 0 and cj(0) ≤ 0 for all j ∈ {1, 2, . . . , n}.
(2) If ϕ(0) = 0 and ∆ϕ(0) = 0, then cj(x) = ∆jϕ(x) whenever ∆jϕ(x)

exists for some index j ∈ {1, 2, . . . ., n} at x ∈ Kn.
(3) If ϕ ≥ 0, then ϕ is convex and ϕ(0) = 0 and ∆ϕ(0) = 0.

The following Fubini’s theorem on time scale in [7] will be needed in the
proof of our results in Section 3:
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Lemma 2.3. Let (Ω,M, µ∆) and (Λ,L, λ∆), be two finite dimensional
time scale measures spaces. If f : Ω × Λ → ℜ is a µ∆ × λ∆-integrable
functions and define the function ϕ(y) =

∫
Ω
f(x, y)∆x for a.e. y ∈ Λ

and φ(x) =
∫
λ
f(x, y)∆y for a.e. x ∈ Ω, then ϕ is λ∆−integrable on Λ, φ

is µ∆-integrable on Ω and

∫
Ω

∆x

∫
Λ

f(x, y)∆y =

∫
Λ

∆y

∫
Ω

f(x, y)∆x. (2.2)

3. Multivariate Hardy-type Inequalities for Superquadratic
Functions on Time Scales

Let f(y) = (f1(y), f2(y), . . . , fn(y)) be n-tuple of functions such that
fj(y) are µ∆2 -integrable for all j ∈ {1, 2, . . . , n}. Then

∫
Λ

f(y)∆µ2(y)
denotes the n-tuple(∫

Λ

f1(y)∆µ2(y),

∫
Λ

f2(y)∆µ2(y), . . . ,

∫
Λ

fn(y)∆µ2(y)

)
;

That is, ∆− integral acts on each component of f(y). Then, we present our
first result on Jensen inequality for functions of several variables on time
scale as follows:

Theorem 3.1. Let (Ω,Σ1, µ∆1) and (Λ,Σ2, µ∆2) be two time scale mea-
sure spaces with a σ finite measures. Suppose that U ⊂ ℜn is a closed
convex set and Φ ∈ C(U,ℜ) is superquadratic and f(Λ) ⊂ U . Moreover, let
Φ : Kn → ℜ be continuous and superquadratic, k : Ω×Λ → ℜ be nonnegative
such that k(x,.) is µ∆2−integrable. Then the inequality

Φ

(∫
Λ
k(x, y)f(y)∆µ2(y)∫
Λ
k(x, y)∆µ2(y)

)
≤

≤
∫
Λ

k(x, y)∫
Λ
k(x, y)∆µ2(y)

(Φ(f(y))− Φ(|f(y)−Akf(x)|))∆µ2(y) (3.1)

holds for all functions f : Λ → Kn. If Φ is subquadratic, then the inequality
(3.1) is reversed.

Proof. Suppose that k(x, y) and fj(y) are µ∆2 -integrable. Then, for each
fixed x ∈ Ω, the functions

K(x) :=

∫
Λ

k(x, y)∆µ2(y),

Akfj(x) :=
1

K(x)

∫
Λ

k(x, y)fj(y)∆µ2(y) for all j ∈ {1, 2, . . . , n},
(3.2)
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and
Akf(x) := (Akf1(x), Akf2(x), . . . , Akfn(x)) (3.3)

are well defined. By Definition 2.1, there exists an n-tuple constant C =
(C1, C2, . . . , Cn) such that

C (Akf(x)) := (C1(Akf(x)), C2(Akf(x)), . . . , Cn(Akf(x)))
and that

Φ(y) ≥ Φ(Akf(x)) + ⟨C(Akf(x)),y −Akf(x)⟩+Φ(|y −Akf(x)|), (3.4)
since Akf(x) ∈ Kn. Replace y by f(y) in inequality (3.4) and then we have
Φ(f(y))− Φ(|f(y)−Akf(x)|)− Φ(Akf(x)) ≥ ⟨C(Akf(x)), f(y)−Akf(x)⟩ =

=
n∑

j=1

Cj(Akf(x)) (fj(y)−Akfj(x)) . (3.5)

By using the continuity of Φ, we have that Φ◦f is ∆µ2(y)− integrable. Thus,
by multiplying inequality (3.5) by k(x, y) and integrating with respect to
∆µ2(y) over the set Λ yields∫
Λ

k(x, y) (Φ(f(y))−Φ(|f(y)−Akf(x)|))∆µ2(y)−ϕ(Akf(x))
∫
Λ

k(x, y)∆µ2(y)≥

≥
n∑

j=1

Cj(Akf(x))
(∫

Λ

k(x, y)(fj(y)−Akfj(x))∆µ2(y)

)
.

Finally, by using (3.2) and (3.3) we find that∫
Λ

k(x, y) (Φ(f(y))−Φ(|f(y)−Akf(x)|))∆µ2(y)−ϕ(Akf(x))
∫
Λ

k(x, y)∆µ2(y)≥

≥
n∑

j=1

Cj(Akf(x))
(∫

Λ

k(x, y)(fj(y)−Akfj(x))∆µ2(y)

)
=

=
n∑

j=1

Cj(Akf(x))
(∫

Λ

k(x, y)fj(y)∆µ2(y)−Akfj(x)

∫
Λ

k(x, y)∆µ2(y)

)
=

=
n∑

j=1

Cj(Akf(x))
(∫

Λ

k(x, y)fj(y)∆µ2(y)−K(x)Akfj(x)

)
=

=
n∑

j=1

Cj(Akf(x))
(∫

Λ

k(x, y)fj(y)∆µ2(y)−
∫
Λ

k(x, y)fj(y)∆µ2(y)

)
=

=
n∑

j=1

Cj(Akf(x))(0) = 0.
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That is

ϕ(Akf(x)) ≤ 1∫
Λ
k(x, y)∆µ2(y)

×

×
∫
Λ

k(x, y) (Φ(f(y))− Φ(|f(y)−Akf(x)|))∆µ2(y) =

=

∫
Λ

k(x, y)∫
Λ
k(x, y)∆µ2(y)

(Φ(f(y))− Φ(|f(y)−Akf(x)|))∆µ2(y),

which by (3.2)–(3.3), means that (3.1) holds. �

Remark 3.2. In Theorem 3.1, let Φ be nonnegative and convex and re-
place the time scale measure ∆µ2(y) by the Lebesgue scale measure ∆y,
then inequality (3.1) reads

Φ

(∫
Λ
k(x, y)f(y)∆y∫
Λ
k(x, y)∆y

)
≤

≤
∫
Λ

k(x, y)∫
Λ
k(x, y)∆y

(Φ(f(y))− Φ(|f(y)−Akf(x)|))∆y. (3.6)

Clearly inequality (3.6) is a refinement of inequality (1.4).

Remark 3.3. In Theorem 3.1 if we set n = 1, k(x, y) = 1,Λ = [a, b)T then
we obtain

Φ

(
1

b− a

b∫
a

f(y)∆y

)
≤

≤ 1

b− a

b∫
a

(
Φ(f(y))− Φ

(∣∣∣∣f(y)− 1

b− a

b∫
a

f(y)∆y

∣∣∣∣))∆y. (3.7)

Observe that inequality (3.7) coincides with inequality (1.6) obtained by
Barić et al. [6].

Next, we present our new multivariate Hardy-type inequality on time
scale as follows:

Theorem 3.4. Let (Ω,Σ1, µ∆1) and (Λ,Σ1, µ∆2) be two time scale mea-
sure spaces with positive σ-finite measures and let ζ : Ω → ℜ and k :
Ω × Λ → ℜ be nonnegative such that k(x,.) is a µ∆2-integrable function.
Furthermore, suppose that K : Ω → ℜ is defined by

K(x) :=

∫
Λ

k(x, y)∆µ2(y) > 0, x ∈ Ω
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and
η(y) :=

∫
Ω

ζ(x)k(x, y)

K(x)
∆µ1(x) < ∞, y ∈ Λ.

If Φ : Kn → ℜ is a continuous and superquadratic function, then the in-
equality ∫

Ω

ζ(x)Φ (Akf(x))∆µ1(x)+

+

∫
Λ

∫
Ω

ζ(x)k(x, y)

K(x)
Φ (|f(y)−Akf(x)|)∆µ1(x)∆µ2(y) ≤

≤
∫
Λ

η(y)Φ(f(y))∆µ2(y) (3.8)

holds for all nonnegative integrable functions f : Λ → ℜ and for Akf : Λ →
ℜ defined by

Akf(x) = 1

K(x)

∫
Λ

k(x, y)f(y)∆µ2(y), x ∈ Ω

If Φ is subquadratic, then the inequality sign in (3.8) is reversed.

Proof. By applying the Jensen’s inequality (3.1) we find that∫
Ω

ζ(x)Φ (Akf(x))∆µ1(x) =

=

∫
Ω

ζ(x)Φ

(
1

K(x)

∫
Λ

k(x, y)f(y)∆µ2(y)

)
∆µ1(x) ≤

≤
∫
Ω

ζ(x)

∫
Λ

k(x, y)

K(x)
Φ(f(y))∆µ2(y)∆µ1(x)−

−
∫
Ω

ζ(x)

∫
Λ

k(x, y)

K(x)
Φ

(∣∣∣∣f(y)− ∫
Λ

k(x, y)f(y)∆µ2(y)

K(x)

∣∣∣∣)∆µ2(y)∆µ1(x).

Hence, by (2.2) we obtain that∫
Ω

ζ(x)Φ (Akf(x))∆µ1(x) ≤

≤
∫
Λ

Φ(f(y))
∫
Ω

ζ(x)k(x, y)

K(x)
∆µ1(x)∆µ2(y)−

−
∫
Λ

∫
Ω

ζ(x)k(x, y)

K(x)
Φ

(∣∣∣∣f(y)− 1

K(x)

∫
Λ

k(x, y)f(y)∆µ2(y)

∣∣∣∣)∆µ1(x)∆µ2(y) =
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=

∫
Λ

η(y)Φ(f(y))∆µ2(y)−

−
∫
Λ

∫
Ω

ζ(x)k(x, y)

K(x)
Φ (|f(y)− (Akf)(x)|)∆µ1(x)∆µ2(y).

The proof of the case in which Φ is subquadratic is similar the only difference
is that the sign of inequalities are reversed and so the proof is complete. �

Remark 3.5. In Theorem 3.4, if we let Φ to be nonnegative and con-
vex and if we replace the time scale measures µ∆2(y) and µ∆1(x) by the
Lebesgue scale measures ∆y and ∆x respectively, then inequality (3.8)
yields∫

Ω

ζ(x)Φ (Akf(x))∆x+

∫
Λ

∫
Ω

ζ(x)k(x, y)

K(x)
Φ (|f(y)−Akf(x)|)∆x)∆y ≤

≤
∫
Λ

η(y)Φ(f(y))∆y. (3.9)

Observe that inequality (3.9) gives a refinement of inequality (1.5) obtained
by Donchev et al. [10].

Remark 3.6. The case n = 1 in Theorem 3.4 coincides with Theorem 1.4
obtained by Oguntuase and Persson in [23].
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