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SOME ASPECTS OF A NOVEL MATRIX SPECTRAL
FACTORIZATION ALGORITHM

L. EPHREMIDZE, N. SALIA AND I. SPITKOVSKY

Abstract. A new method of matrix spectral factorization has
been recently published in [5]. In the present paper we consider
some computational aspects of this algorithm.
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1. INTRODUCTION

Let T ={z € C: |z| = 1} be the unit circle, and

Su(t) Slg(t) e Slm(t)
S(t) = 821:@ 522:(75) 82"f<t)  LeT, (1)
o)) sma®) oo Smm(®)

be a matrix function with integrable entries defined on T, s;; € L(T). Ma-
trix Spectral Factorization Theorem (see, e.g., [8],[4]) asserts that if (1) is
positive definite a.e. on T and the Paley-Wiener condition

logdet S € L(T) (2)
holds, then (1) can be factorized as
S(t) = S4(t)S(t), (3)

where Sy (z), |z] < 1, is an analytic matrix function with entries from the
Hardy space Hp and boundary values S (t) and S7%(t) is its Hermitian
conjugate. The spectral factor Sy is unique up to a right constant unitary
multiplier under the additional restriction that the analytic function z —
det Sy (2), |z| < 1, is outer.
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There are many contexts in which the matrix spectral factorization plays
an important role, for example, Wiener filtering, linear quadratic control
design, H* robust control etc. Consequently, a number of different methods
have been developed in order to actually compute S; for a given matrix
function S (see survey papers [6], [7]). Recently, a new algorithm of matrix
spectral factorization has been developed in [5]. In the present paper we
make some theoretical and practical remarks on computational aspects of
the proposed algorithm.

Let LT C L be the class of functions from L = L(T) whose Fourier
coefficients with negative indices are equal to zero, and L™ := {f : f € L*}.
The superscript ”+” (resp. "—") of a function fT (resp. f~) emphasizes
that this function belongs to LT (resp. L™). P := { ZnN:O cnt™ 2 ¢y € C}
denotes the set of polynomials of order at most N and Py := { Zi\;o Cnt™™
cn € (C}. We say that a matrix function belongs to some class if its entries
belong to this class.

The central role in the proposed new method of matrix spectral factor-
ization is played by a constructive proof of the following

Theorem 1. [5] Let F be a (Laurent) polynomial matriz of the form

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
F(t) = : 7 (4)
0 0 0 1 0
G ) G) G me1(t) fT()
where
(F €Py,i=12 —1, and fT € Py, fT(0)#0 5
J N7.7 9 7"'am ,G'I'L f E N7f()7é . ()
Then there exists a unitary matriz function U of the form
U(t) =
u;l (t) “;2 (t) T u;_,m,—l(t) U;m(t)
- : : : ; , teT, (6)
ur—;—l,l(t) ur—;—l,Q(t) um—l,m—l(t) Uy, 1. ()
Uni (8)  Una(t) Unm—1(t)  Umm(?)
uj] € P]t (7)

with



SOME ASPECTS OF A NOVEL ALGORITHM 51

such that
FU € P}. (9)

In the following section, under an additional restriction on f* that
fH(t) # 0 for |t] < 1, we give a short (non-constructive) proof of this the-
orem based on Polynomial Matrix Spectral factorization Theorem a simple
proof of which can be found in recently published paper [1].

A basic observation of the proof of Theorem 1 proposed in [5] is that the

columns Uy, Us, ..., U, of matrix function (6),
Ur(t) = (uf, (), ud (), ... ut )T, k=1,...,m, t€T,

are linearly independent solutions of the following system
Cras, — ffaf e L
(yah — fray e Lt
(10)
1@ = frat e LT L
Gal + G5+t Gumy oy + frah e LT

(X () = (z1(t),22(t), ..., zm(t)), t € T, is unknown vector function here).
Solving the system (10) (i.e. finding the coefficients of $z7 k=12 ...,m,
for given coefficients of ¢, ,k = 1,2,...,m — 1, and fT, which can be re-
duced to solving N x N system of linear algebraic equations), it provides an
algorithm for construction of the unitary matrix function (6). This proce-
dure, which drastically reduces computational burden of the matrix spectral
factorization algorithm, is described in [5] and this is a key component of
the new factorization method.

The importance of system (10) in finding the corresponding unitary ma-
trix (6) is further emphasized by the following

Theorem 2. (see [2, Lemma 5]) Let F' be a matriz function (4) satisfying
(5), and let U be the corresponding matriz function (6) satisfying (7), (8)
and such that (9) holds. Then each column of (6) satisfies the system (10).

In section 3 we provide a simple transparent proof of this theorem.

In actual computation of matrix function (6) according to the algorithm
described in [5], we first construct m independent solutions of (10), viz.,
Vi,Vay oo oy Vi,

Vi) = (v (8), 08, (), ..., vt ()T, k=1,2,...,m, t€T, (11)

m

satisfying additional requirement
— - . e
(CO{C1 U = 700 el Gy vy — f+vm—1,k}v

co{li v + ¢ vg + -+ f+%}) =er = (01> O2ks "+, Omk) (12)
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(here, of course, cp{g} denotes the constant term in the Fourier series of g).
It is then proved in [5] that

VAV () = O, (13)

where V(t) = [V1(t), Va(t), ..., Vin(t)], t € T, is the m x m matrix function
and C is a (constant, independent of ¢) nonsingular matrix. Consequently,
the matrix V(1) is nonsingular and the matrix function (6) in Theorem 1 is
computed by the formula

Ut)y=vt)Vv-1), teT

(see [5, formula (51)]). However, for practical computations of U according
to these steps, it is important not only to show that V(1) is non-singular but
also that it is well conditioned, as we need to compute V~1(1). In section
4 we prove the following

Theorem 3. Let functions ¢;, j =1,2,...,m —1, and It satisfy (5)
and let vector functions Vi,Va, ..., Vy, of the form (11) be solutions of the
system (10) satisfying (12). Then the matriz

V= V(1) = [Vi(1).Va(1), .., Vin(1)]
is well conditioned in a sense that

Omax(V)/omin(V) < M,
where M can be explicitly written in terms of ¢; and f+.

Since in practical applications one deals mostly with real numbers, for
simplicity of presentation, we will assume in the above theorem that the
coefficients of ¢;” and f* are real.

2. PROOF OF THEOREM 1

For a polynomial matrix

N
P(t)=> Put",
n=0
let
N
Pr(t)=>Y Pit "
n=0

Note that P*(t) coincides with the usual Hermitian conjugate whenever
|t| = 1. Polynomial Matrix Spectral Factorization Theorem asserts that if

N
St = > Sat",
n=—N

where S,, € C™*™ (the class of m x m matrices), and S(t) is positive
definite for almost every ¢ € T, then it admits the factorization (3), where
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S+ (t) is invertible inside T. Such factorization is unique up to a constant
unitary matrix with determinant 1 if we specify det Sy as a scalar spectral
factor of det S. Consequently, let Py be a spectral factor of FF'™* with the
determinant
det Py (t) = f1(t) = det F(t). (14)
The relation
F(O)F*(t) = Py ()P (2)
implies that
U(t) = FH ()P (t) (15)
is a unitary matrix function for ¢ € T, while (14) yields detU(t) = 1.
Consequently (8) and (9) hold, and we need to prove that U has the form
(6), (7). Since the inverse of matrix function (4) has the form

1 0 0 0
0 1 0 0
0 0 0 0
Fl= ) (16)
0 0 1 0
SRR CY0 AR SIS AR VO

and P, € Py, it easily follows that the first m — 1 rows of (15) belong to
Py Since U~1(t) = U*(t) for t € T and (8) holds, we have that the cofactor
of wpm;(t) 18 um;(t). On the other hand, this cofactor belongs to L* and

thus w,; = u;j. In addition, by virtue of (9),

C;“;; +ee Cniz—lu?rmfnyj + f+u;j € PIJ\r[v

which implies that uj;lj is of order at most N since (5) holds. Therefore, it

is obtained that U has the form (6), (7).

3. PROOF OF THEOREM 2

The last condition in (10) is clear because of (9), and we need only to
show that

Guf,—frufelt, 1<i<m-1,1<j<m. (17)
Let
&, :=FU € P. (18)
It follows from (4) and (8) that det @, (t) = fT(¢), t € T, and consequently
fro7! =cof(®)" e LY.

According to (18),
U'F'=o
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Thus
* — —1
U ftrt=fto e L™,
On the other hand,

_U*erFfl _

_ - -t 0 - 0 0
Uy Upgg o Uy 0 —f* - 0 0

+ + +

_ U'12 Um'—1,2 U2 0 0 0 0 c Lt

- ; 0 0 - —ft 0
Uy o Uy, WU, _ _ _

" e G Co e mo1 1

and the functions in (17) appear as entries in the first m — 1 columns of the
above product matrix. Thus (17) holds.

4. PROOF OF THEOREM 3

From the geometric interpretation of determinant, it is easy to derive the
following

Lemma 1. Lety; e R™, i =1,2,...,m. If

i - sl >
1§j§m,aﬁf2,..‘,ameR”y” Z aipil 2 e> 0. (19)
i#]
then
’det[yl,yg,...,ym]’ > ™. (20)
We proceed with the proof of Theorem 3 introducing notation used in [5].
Let f*(t) = ZQ’:O d,t" and ¢; (t) = Zg:o Yint ", 4 =1,2,...,m—1. Since
F1(0) #0, f% can be represented as a power series in the neighborhood of
0:

1 o0
= Z bpz".
e
Let also

C_ N N N
f - k=0 n=0 _ n=0

where [|_ denotes the projection operator, i.e., {fo:d\, ckt"} =

ZZ:—N cpt™. Then

I* =

2
| Griosmits <+ s mie) < Mo 2, (22)
105 T)i1, s Th = g 15 L2(T)»

2
L2(T)

N
Z 77m?f_"
n=0

1
2
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where
N
My = sup bnt"’.
teT| =5
Let
dy dv dy --- dy-1 dn
0 do di -+ dy—2 dy—1
D=|0 0 dy -+ dy_3 dy_2
o o0 o0 --- 0 do
Then
bp b1 by -+ by_1  bn
0 by by -+ by—2 by
D'=10 0 b - by-z byv-z|,
o o o -- 0 bo
Let also
Yio Vi1 Yi2 cc Yi,N—1 7iN
Yir o Yie Y3 7ViN 0
Ci=| v s va - 0 0|, =L2,....om—-1, I',=D.
w 0 0 .- 0 0
Then direct computations show that
Mo M1 M2 - Mik—1 TEN
M1 T2 M3t TEN 0
©;:=D7'T;= | m2 nis Mg - 0 01, (23)
mww 0 0 .- 0 0
1=1,2,...,m—1, (note that ©; is a symmetric matrix) and for any vectors
= (z0,21,...,on)" and y = (y0,%1,-..,yn)T one has y = ©; x if and only
if
N N N
n=0 n=0 _ n=0
Consequently,
H(y(%yla T 7yN)|| S Mi||($07x1, e ,I'N)H, (24)
where

N
Z nznt_n
n=0

M,; = sup
teT
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Now we estimate the maximal singular value oyax (V) of V/(1). Let matrix
function V, described in Introduction, be

i (1) vip(t) v () U (1)
v3, (1) vp(t) v () V3, (1)
V(t)= ' : : , teT,
’U;LA (1) ”2_171 2(t) U;zfl,mfl(t) "";71 m(t)
Ui () vpa(t) Upmm—1(t)  Umm(t)

where
N
v (t) = Z aJt".
n=0

For any matrix A, we have

DY AL =D a4,
J k

g

where A;; are entries of A and o (A) are singular values of A. Thus,

2 (V) <33 Ve
i=1 j=1

By virtue of (13), the singular values of V(¢) do not depend on ¢ € T.
Consequently, o2, (V) < Y212, 377 (v7f(#))? for each ¢ € T. Integrating
over T:

i=1 j=1 i=1 j=1n=0
On the other hand, as it is proved in [5], X = (ag”,af",...,a%")7T is a
solution of the system
AX=0;D7'1, j=12...,m, (26)
where A =02 +03+-.-+02 |, + 1, and 1 = (1,0,...,0)7, and
(af o, ... a0 =0i(af?, i, ..., a) —6,;D7 11 (27)
(see [5, formulas (31) and (30)]), while
0,071 = bo(mios s - - min) L, i=1,2,...,m— 1, (28)

due to (23). Since A is positive definite with eigenvalues greater than or
equal to 1, A™! has all eigenvalues not exceeding than 1, and it follows from
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(26), (28) and (22) that

”(a(v)nj’a;nj’“. mj)” < |b0|||(77j0’77j1"-~777jn)|| <
‘bO‘MO
¢ Ollz2cry
= Vor (T)

7=12,...,m—1, while
[(ag™, ™™, ...,a™)|l < |bol.

By virtue of (27), (24) and (29) or (30), we have

||(Olo,011,.,.,04%)”§
M;|bo| My .
< % 1 ()l z2qoy + Bislbol, 1< ij < m,
and
(g™, af™, ... o) < Milbo|, 1<i<m-—1.

It follows now from (29), (30), (31) and (32) that

m m N m m
DD @)=Y e, af ... af)l? <
i=1 j=1n=0 i=1 j=1
M2m 1 m—1
<B(HE G Ol +1) (14 3 22
j=1 i=1

and (25) implies that
5max(v) S OOa

where Cy is the square root of (33).

Next we give a lower estimate for oy (V). Namely, we prove that

det(V)>c¢™

57

(35)

for a suitably chosen constant c. It will then follow from (34) and (35) that

anflémin(V) > ¢~ ™, and consequently

5max (V)
Imin (V)

For a vector function x(t) = (z1(¢),...,zm(t)) € LZ(T), let

< (Coe)™

1%(t)1] 2 r) (T/zm: dt) _ (/x ||2dt)

=1

(36)
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Direct computations show that the map £ : L5*(T) — R™ defined by

E(xl,xg, SR ,ij) =
_ ;ﬂ( / (G (B am(t) — FHOT0)dt, .
T
[ Grs®an(®) = £ Oa®)
T
J G @00+ G oslt) + 5 0 0) 2
T
is bounded:
LGOI < Calixl L - (37)
Indeed, let
Ci=Vam _sw (IGO0
Then -
27THE(331, T, ... ,xm) I <
<3 [ @ rone)’ e+ (o one+
i=1 7 T i=1

+f+(t)xm(t>) dt < __ 2/(|<;(t>|2lxm(t)l2+|f+(t>|2|xi(t)|2) di+
T

m = — (D)2 e (1) 12 + ()22 2 _
+T/ (_ ORI + 17 O P em() )dt

m—1

=3 [l OF + 205 @)l e+

=1
m—1
- (2 Sl (oF + m|f+<t>|2) ()2 d < C2x, )
T 1=1

and (37) follows.
Since (V;(¢), V;(t)), the scalar products of the columns of V(¢), are inde-
pendent of ¢ due to (13), we have

Z aiVi(t)H = const, (38)
i=1

i.e., the left hand side of (38) is independent of ¢.
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Since L(V}) = ey according to (12), we have

(- - o] -

i#] i#]
= ||(—Ct1, ey —ijfl, 1, —Olj+1, ey —am)|| Z 1
and, due to (37),
‘ Vi(t) = Vi) >t (39)
L>(T)

i#]
However, by virtue of (36) and (

38),
2
\Vt—szt .NW®—Z%Wﬂdﬁ
i#j Ly (T) i#j
2

— Z anz(l)

i#]

(40)

and (39) and (40) imply that

n—ZMWWZ%%X

i#£]
It remains now to apply Lemma 1 to get (35).
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