
Proceedings of A. Razmadze
Mathematical Institute
Vol. 166 (2014), 49–60

SOME ASPECTS OF A NOVEL MATRIX SPECTRAL
FACTORIZATION ALGORITHM

L. EPHREMIDZE, N. SALIA AND I. SPITKOVSKY

Abstract. A new method of matrix spectral factorization has
been recently published in [5]. In the present paper we consider
some computational aspects of this algorithm.

ÒÄÆÉÖÌÄ. ÌÀÔÒÉÝÉÓ ÓÐÄØÔÒÀËÖÒÉ ×ÀØÔÏÒÉÆÀÝÉÉÓ ÀáÀËÉ
ÌÄÈÏÃÉ ÂÀÌÏØÅÄÚÍÃÀ [5]-ÛÉ. ßÉÍÀÌÃÄÁÀÒÄ ÍÀÛÒÏÌÛÉ ÜÅÄÍ
ÂÀÍÅÉáÉËÀÅÈ ÀÌ ÀËÂÏÒÉÈÌÉÓ ÆÏÂÉÄÒÈ ÂÀÌÏÈÅËÉÈÉ ÔÉÐÉÓ
ÀÓÐÄØÔÓ.

1. Introduction

Let T = {z ∈ C : |z| = 1} be the unit circle, and

S(t) =


s11(t) s12(t) · · · s1m(t)
s21(t) s22(t) · · · s2m(t)

...
...

...
...

sm1(t) sm2(t) · · · smm(t)

 , t ∈ T, (1)

be a matrix function with integrable entries defined on T, sij ∈ L(T). Ma-
trix Spectral Factorization Theorem (see, e.g., [8],[4]) asserts that if (1) is
positive definite a.e. on T and the Paley-Wiener condition

log detS ∈ L(T) (2)

holds, then (1) can be factorized as

S(t) = S+(t)S
∗
+(t), (3)

where S+(z), |z| < 1, is an analytic matrix function with entries from the
Hardy space H2 and boundary values S+(t) and S∗

+(t) is its Hermitian
conjugate. The spectral factor S+ is unique up to a right constant unitary
multiplier under the additional restriction that the analytic function z →
detS+(z), |z| < 1, is outer.
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There are many contexts in which the matrix spectral factorization plays
an important role, for example, Wiener filtering, linear quadratic control
design, H∞ robust control etc. Consequently, a number of different methods
have been developed in order to actually compute S+ for a given matrix
function S (see survey papers [6], [7]). Recently, a new algorithm of matrix
spectral factorization has been developed in [5]. In the present paper we
make some theoretical and practical remarks on computational aspects of
the proposed algorithm.

Let L+ ⊂ L be the class of functions from L = L(T) whose Fourier
coefficients with negative indices are equal to zero, and L− := {f : f ∈ L+}.
The superscript ”+” (resp. ”−”) of a function f+ (resp. f−) emphasizes
that this function belongs to L+ (resp. L−). P+

N :=
{∑N

n=0 cnt
n : cn ∈ C

}
denotes the set of polynomials of order at most N and P−

N :=
{∑N

n=0 cnt
−n :

cn ∈ C
}

. We say that a matrix function belongs to some class if its entries
belong to this class.

The central role in the proposed new method of matrix spectral factor-
ization is played by a constructive proof of the following

Theorem 1. [5] Let F be a (Laurent) polynomial matrix of the form

F (t) =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0

ζ−1 (t) ζ−2 (t) ζ−3 (t) · · · ζ−m−1(t) f+(t)


, (4)

where

ζ−j ∈ P−
N , j = 1, 2, . . . ,m− 1, and f+ ∈ P+

N , f+(0) ̸= 0. (5)

Then there exists a unitary matrix function U of the form

U(t) =

=



u+
11(t) u+

12(t) · · · u+
1,m−1(t) u+

1m(t)

u+
21(t) u+

22(t) · · · u+
2,m−1(t) u+

2m(t)
...

...
...

...
...

u+
m−1,1(t) u+

m−1,2(t) · · · u+
m−1,m−1(t) u+

m−1,m(t)

u+
m1(t) u+

m2(t) · · · u+
m,m−1(t) u+

mm(t)


, t ∈ T, (6)

u+
ij ∈ P+

N (7)

with
detU(t) ≡ 1 (8)
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such that
FU ∈ P+

N . (9)

In the following section, under an additional restriction on f+ that
f+(t) ̸= 0 for |t| < 1, we give a short (non-constructive) proof of this the-
orem based on Polynomial Matrix Spectral factorization Theorem a simple
proof of which can be found in recently published paper [1].

A basic observation of the proof of Theorem 1 proposed in [5] is that the
columns U1, U2, . . . , Um of matrix function (6),

Uk(t) = (u+
1k(t), u

+
2k(t), . . . , u

+
mk(t))

T , k = 1, . . . ,m, t ∈ T,

are linearly independent solutions of the following system

ζ−1 x+
m − f+x+

1 ∈ L+

ζ−2 x+
m − f+x+

2 ∈ L+

· · ·
ζ−m−1x

+
m − f+x+

m−1 ∈ L+

ζ−1 x+
1 + ζ−2 x+

2 + . . .+ ζ−m−1x
+
m−1 + f+x+

m ∈ L+

(10)

(X(t) = (x1(t), x2(t), . . . , xm(t)), t ∈ T, is unknown vector function here).
Solving the system (10) (i.e. finding the coefficients of x+

k , k = 1, 2, . . . ,m,
for given coefficients of ζ−k , k = 1, 2, . . . ,m − 1, and f+, which can be re-
duced to solving N×N system of linear algebraic equations), it provides an
algorithm for construction of the unitary matrix function (6). This proce-
dure, which drastically reduces computational burden of the matrix spectral
factorization algorithm, is described in [5] and this is a key component of
the new factorization method.

The importance of system (10) in finding the corresponding unitary ma-
trix (6) is further emphasized by the following

Theorem 2. (see [2, Lemma 5]) Let F be a matrix function (4) satisfying
(5), and let U be the corresponding matrix function (6) satisfying (7), (8)
and such that (9) holds. Then each column of (6) satisfies the system (10).

In section 3 we provide a simple transparent proof of this theorem.
In actual computation of matrix function (6) according to the algorithm

described in [5], we first construct m independent solutions of (10), viz.,
V1, V2, . . . , Vm,

Vk(t) = (v+1k(t), v
+
2k(t), . . . , v

+
mk(t))

T , k = 1, 2, . . . ,m, t ∈ T, (11)
satisfying additional requirement(

c0{ζ−1 v+mk − f+v+1k}, . . . , c0{ζ
−
m−1v

+
mk − f+v+m−1,k},

c0{ζ−1 v+1k + ζ−2 v+2k + . . .+ f+v+mk}
)
= ek = (δ1k, δ2k, · · · , δmk) (12)
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(here, of course, c0{g} denotes the constant term in the Fourier series of g).
It is then proved in [5] that

V ∗(t)V (t) = C, (13)
where V (t) = [V1(t), V2(t), . . . , Vm(t)], t ∈ T, is the m×m matrix function
and C is a (constant, independent of t) nonsingular matrix. Consequently,
the matrix V (1) is nonsingular and the matrix function (6) in Theorem 1 is
computed by the formula

U(t) = V (t)V −1(1), t ∈ T
(see [5, formula (51)]). However, for practical computations of U according
to these steps, it is important not only to show that V (1) is non-singular but
also that it is well conditioned, as we need to compute V −1(1). In section
4 we prove the following

Theorem 3. Let functions ζ−j , j = 1, 2, . . . ,m − 1, and f+ satisfy (5)

and let vector functions V1, V2, . . . , Vm of the form (11) be solutions of the
system (10) satisfying (12). Then the matrix

V = V (1) = [V1(1), V2(1), . . . , Vm(1)]

is well conditioned in a sense that
σmax(V )/σmin(V ) < M,

where M can be explicitly written in terms of ζ−i and f+.
Since in practical applications one deals mostly with real numbers, for

simplicity of presentation, we will assume in the above theorem that the
coefficients of ζ−i and f+ are real.

2. Proof of Theorem 1

For a polynomial matrix

P (t) =
N∑

n=0

Pnt
n,

let

P ∗(t) =
N∑

n=0

P ∗
nt

−n.

Note that P ∗(t) coincides with the usual Hermitian conjugate whenever
|t| = 1. Polynomial Matrix Spectral Factorization Theorem asserts that if

S(t) =
N∑

n=−N

Snt
n,

where Sn ∈ Cm×m (the class of m × m matrices), and S(t) is positive
definite for almost every t ∈ T, then it admits the factorization (3), where
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S+(t) is invertible inside T. Such factorization is unique up to a constant
unitary matrix with determinant 1 if we specify detS+ as a scalar spectral
factor of detS. Consequently, let P+ be a spectral factor of FF ∗ with the
determinant

detP+(t) = f+(t) = detF (t). (14)
The relation

F (t)F ∗(t) = P+(t)P
∗
+(t)

implies that
U(t) = F−1(t)P+(t) (15)

is a unitary matrix function for t ∈ T, while (14) yields detU(t) = 1.
Consequently (8) and (9) hold, and we need to prove that U has the form
(6), (7). Since the inverse of matrix function (4) has the form

F−1 =



1 0 · · · 0 0
0 1 · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
−ζ−1 /f+ −ζ−2 /f+ · · · −ζ−m−1/f

+ 1/f+


(16)

and P+ ∈ P+
N , it easily follows that the first m − 1 rows of (15) belong to

P+
N . Since U−1(t) = U∗(t) for t ∈ T and (8) holds, we have that the cofactor

of umj(t) is umj(t). On the other hand, this cofactor belongs to L+ and
thus umj = u+

mj . In addition, by virtue of (9),

ζ−1 u+
ij + · · ·+ ζ−m−1u

+
(m−1),j + f+u+

mj ∈ P+
N ,

which implies that u+
mj is of order at most N since (5) holds. Therefore, it

is obtained that U has the form (6), (7).

3. Proof of Theorem 2

The last condition in (10) is clear because of (9), and we need only to
show that

ζ−i u+
mj − f+u+

ij ∈ L+, 1 ≤ i ≤ m− 1, 1 ≤ j ≤ m. (17)
Let

Φ+ := FU ∈ P+
N . (18)

It follows from (4) and (8) that detΦ+(t) = f+(t), t ∈ T, and consequently
f+ · Φ−1

+ = cof(Φ+)
T ∈ L+.

According to (18),
U∗F−1 = Φ−1

+ .
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Thus
U∗f+F−1 = f+Φ−1

+ ∈ L+.

On the other hand,

−U∗f+F−1 =

=


u+
11 · · · u+

m−1,1 u+
m1

u+
12 · · · u+

m−1,2 u+
m2

...
...

...
...

u+
1m · · · u+

m−1,m u+
mm





−f+ 0 · · · 0 0
0 −f+ · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

0 0 · · · −f+ 0
ζ−1 ζ−2 · · · ζ−m−1 −1


∈ L+

and the functions in (17) appear as entries in the first m− 1 columns of the
above product matrix. Thus (17) holds.

4. Proof of Theorem 3

From the geometric interpretation of determinant, it is easy to derive the
following

Lemma 1. Let yi ∈ Rm, i = 1, 2, . . . ,m. If

inf
1≤j≤m,α1,α2,...,αm∈R

∥yj −
∑
i ̸=j

αiyi∥ ≥ c > 0, (19)

then ∣∣det[y1, y2, . . . , ym]
∣∣ ≥ cm. (20)

We proceed with the proof of Theorem 3 introducing notation used in [5].
Let f+(t) =

∑N
n=0 dnt

n and ζ−i (t) =
∑N

n=0 γint
−n, i = 1, 2, . . . ,m−1. Since

f+(0) ̸= 0, 1
f+ can be represented as a power series in the neighborhood of

0:
1

f+(z)
=

∞∑
n=0

bnz
n.

Let also [
ζ−i
f+

]
−
=

[
N∑

k=0

γint
−n ·

N∑
n=0

bnt
n

]
−

=
N∑

n=0

ηint
−n, (21)

where [·]− denotes the projection operator, i.e.,
[∑N

k=−N ckt
n
]
−

=∑0
n=−N cnt

n. Then

∥(ηi0, ηi1, · · · , ηiN )∥2 =
1

2π

∥∥∥∥ N∑
n=0

ηint
−n

∥∥∥∥2
L2(T)

≤ M2
0

2π
∥ζ−i (t)∥2L2(T), (22)
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where

M0 = sup
t∈T

∣∣∣∣ N∑
n=0

bnt
n

∣∣∣∣.
Let

D =


d0 d1 d2 · · · dN−1 dN
0 d0 d1 · · · dN−2 dN−1

0 0 d0 · · · dN−3 dN−2

· · · · · · · ·
0 0 0 · · · 0 d0

 .

Then

D−1 =


b0 b1 b2 · · · bN−1 bN
0 b0 b1 · · · bN−2 bN−1

0 0 b0 · · · bN−3 bN−2

· · · · · · · ·
0 0 0 · · · 0 b0

 ,

Let also

Γi =


γi0 γi1 γi2 · · · γi,N−1 γiN
γi1 γi2 γi3 · · · γiN 0
γi2 γi3 γi4 · · · 0 0
· · · · · · · ·

γiN 0 0 · · · 0 0

 , i=1, 2, . . . ,m− 1, Γm=D.

Then direct computations show that

Θi := D−1 Γi =


ηi0 ηi1 ηi2 · · · ηi,k−1 ηiN
ηi1 ηi2 ηi3 · · · ηiN 0
ηi2 ηi3 ηi4 · · · 0 0
· · · · · · · ·

ηiN 0 0 · · · 0 0

 , (23)

i = 1, 2, . . . ,m−1, (note that Θi is a symmetric matrix) and for any vectors
x = (x0, x1, . . . , xN )T and y = (y0, y1, . . . , yN )T one has y = Θi x if and only
if [

N∑
n=0

ηint
−n

N∑
n=0

xnt
n

]
−

=
N∑

n=0

ynt
−n.

Consequently,

∥(y0, y1, · · · , yN )∥ ≤ Mi∥(x0, x1, · · · , xN )∥, (24)

where

Mi = sup
t∈T

∣∣∣∣ N∑
n=0

ηint
−n

∣∣∣∣.
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Now we estimate the maximal singular value σmax(V ) of V (1). Let matrix
function V , described in Introduction, be

V (t)=



v+11(t) v+12(t) · · · v+1,m−1(t) v+1m(t)

v+21(t) v+22(t) · · · v+2,m−1(t) v+2m(t)
...

...
...

...
...

v+m−1,1(t) v+m−1,2(t) · · · v+m−1,m−1(t) v+m−1,m(t)

v+m1(t) v+m2(t) · · · v+m,m−1(t) v+mm(t)


, t∈T,

where

v+ij(t) =
N∑

n=0

αij
n t

n.

For any matrix A, we have∑
i

∑
j

A2
ij =

∑
k

σ2
k(A),

where Aij are entries of A and σk(A) are singular values of A. Thus,

σ2
max(V ) ≤

m∑
i=1

m∑
j=1

V 2
ij .

By virtue of (13), the singular values of V (t) do not depend on t ∈ T.
Consequently, σ2

max(V ) ≤
∑m

i=1

∑m
j=1(v

+
ij(t))

2 for each t ∈ T. Integrating
over T:

σ2
max(V ) ≤ 1

2π

m∑
i=1

m∑
j=1

∫
T

(v+ij(t))
2 dt =

m∑
i=1

m∑
j=1

N∑
n=0

(αij
n )

2. (25)

On the other hand, as it is proved in [5], X = (αmj
0 , αmj

1 , . . . , αmj
N )T is a

solution of the system

∆X = ΘjD
−1
1, j = 1, 2, . . . ,m, (26)

where ∆ = Θ2
1 +Θ2

2 + · · ·+Θ2
m−1 + Im and 1 = (1, 0, . . . , 0)T , and

(αij
0 , α

ij
1 , . . . , α

ij
N )T = Θi(α

mj
0 , αmj

1 , . . . , αmj
N )T − δijD

−1
1 (27)

(see [5, formulas (31) and (30)]), while

ΘiD
−1
1 = b0(ηi0, ηi1, . . . , ηiN )T , i = 1, 2, . . . ,m− 1, (28)

due to (23). Since ∆ is positive definite with eigenvalues greater than or
equal to 1, ∆−1 has all eigenvalues not exceeding than 1, and it follows from
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(26), (28) and (22) that

∥(αmj
0 , αmj

1 , . . . , αmj
N )∥ ≤ |b0|∥(ηj0, ηj1, . . . , ηjn)∥ ≤

≤ |b0|M0√
2π

∥ζ−j (t)∥L2(T), (29)

j = 1, 2, . . . ,m− 1, while

∥(αmm
0 , αmm

1 , . . . , αmm
N )∥ ≤ |b0|. (30)

By virtue of (27), (24) and (29) or (30), we have

∥(αij
0 , α

ij
1 , . . . , α

ij
N )∥ ≤

≤ Mi|b0|M0√
2π

∥ζ−j (t)∥L2(T) + δij |b0|, 1 ≤ i, j < m, (31)

and
∥(αim

0 , αim
1 , . . . , αim

N )∥ ≤ Mi|b0|, 1 ≤ i ≤ m− 1. (32)

It follows now from (29), (30), (31) and (32) that
m∑
i=1

m∑
j=1

N∑
n=0

(αij
n )

2 =

m∑
i=1

m∑
j=1

∥(αij
0 , α

ij
1 , . . . , α

ij
N )∥2 ≤

≤ b20

(
M2

0

π

m−1∑
j=1

∥ζ−j (t)∥2L2(T) + 1

)(
1 +

m−1∑
i=1

M2
i

)
(33)

and (25) implies that
δmax(V ) ≤ C0, (34)

where C0 is the square root of (33).
Next we give a lower estimate for δmin(V ). Namely, we prove that

det(V ) ≥ c−m (35)

for a suitably chosen constant c. It will then follow from (34) and (35) that
Cm−1

0 δmin(V ) ≥ c−m, and consequently

δmax(V )

δmin(V )
≤ (C0c)

m.

For a vector function x(t) = (x1(t), . . . , xm(t)) ∈ Lm
∞(T), let

∥x(t)∥L2(T) =

(∫
T

m∑
i=1

(xi(t))
2 dt

) 1
2

=

(∫
T

∥x(t)∥2 dt
) 1

2

. (36)
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Direct computations show that the map L : Lm
2 (T) −→ Rm defined by

L(x1, x2, . . . , xm) =

=
1

2π

(∫
T

(
ζ−1 (t)xm(t)− f+(t)x1(t)

)
dt, . . . ,

∫
T

(
ζ−m−1(t)xm(t)− f+(t)xm−1(t)

)
dt,

∫
T

(
ζ−1 (t)x1(t) + · · ·+ ζ−m−1(t)xm−1(t) + f+(t)xm(t)

)
dt

)
is bounded:

∥L(x)∥ ≤ C1∥x∥L2(T) . (37)
Indeed, let

C1 =
√
3m sup

1≤i<m, t∈T
(|ζ−i (t)|, |f+(t)|).

Then
2π∥L

(
x1, x2, . . . , xm

)
∥2 ≤

≤
m−1∑
i=1

∫
T

(
ζ−i (t)xm(t)− f+(t)xi(t)

)2
dt+

∫
T

(m−1∑
i=1

ζ−i (t)xi(t)+

+f+(t)xm(t)

)2

dt ≤
m−1∑
i=1

2

∫
T

(
|ζ−i (t)|2|xm(t)|2 + |f+(t)|2|xi(t)|2

)
dt+

+

∫
T

m

(m−1∑
i=1

|ζ−i (t)|2|xi(t)|2 + |f+(t)|2|xm(t)|2
)
dt =

=
m−1∑
i=1

∫
T

(
m|ζ−i (t)|2 + 2|f+(t)|2

)
|xi(t)|2 dt+

+

∫
T

(
2
m−1∑
i=1

|ζ−i (t)|2 +m|f+(t)|2
)
|xm(t)|2 dt ≤ C2

1∥x∥2L2(T)

and (37) follows.
Since ⟨Vi(t), Vj(t)⟩, the scalar products of the columns of V (t), are inde-

pendent of t due to (13), we have∥∥∥∥ n∑
i=1

αiVi(t)

∥∥∥∥ = const, (38)

i.e., the left hand side of (38) is independent of t.
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Since L(Vk) = ek according to (12), we have∥∥∥∥L(Vj(t)−
∑
i ̸=j

αiVi(t)

)∥∥∥∥ =

∥∥∥∥L(Vj(t))−
∑
i ̸=j

αiL(Vi(t))

∥∥∥∥ =

= ∥(−α1, . . . ,−αj−1, 1,−αj+1, . . . ,−αm)∥ ≥ 1

and, due to (37), ∥∥∥∥Vj(t)−
∑
i ̸=j

αiVi(t)

∥∥∥∥
L2(T)

≥ C−1
1 . (39)

However, by virtue of (36) and (38),∥∥∥∥Vj(t)−
∑
i ̸=j

αiVi(t)

∥∥∥∥2
L2(T)

=

∫
T

∥∥∥∥Vj(t)−
∑
i ̸=j

αiVi(t)

∥∥∥∥2 dt =
= 2π

∥∥∥∥Vj(1)−
∑
i ̸=j

αiVi(1)

∥∥∥∥2 (40)

and (39) and (40) imply that∥∥∥∥Vj(1)−
∑
i̸=j

αiVi(1)

∥∥∥∥ ≥ 1√
2πC1

.

It remains now to apply Lemma 1 to get (35).
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