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SOME FUNDAMENTAL INEQUALITIES FOR
TRIGONOMETRIC POLYNOMIALS AND IMBEDDINGS
OF GRAND BESOV SPACES

V. KOKILASHVILI AND A. MESKHI

ABstrACT. We establish Bernstein-Zygmund and Nikolsky type
inequalities for trigonometric polynomials in the framework of
grand Lebesgue spaces. It is revealed an influence of second
parameter 6 from the definition of grand Lebesgue spaces on
the derived estimates.

Then we introduce grand Besov spaces and prove imbedding
theorems for different metrics and different dimensions.
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1. INTRODUCTION

In this paper we prove Bernstein and Nikolsky type inequalities for trigono-
metric polynomials in grand Lebesgue spaces. Then on the base of certain
subspace of grand Lebesgue space we introduce the periodic Besov type
space and prove imbedding theorems of different metrics and different di-
mensions.

Let T = (—m,7)% and 1 < p < 00, § > 0. The grand Lebesgue space
LP)9(T?) of 27-periodic functions in each variable separately f : T¢ — R?
is defined as a set of measurable functions for which

) 1/p—e
70 = sup l(e / |f<x>|“d:c> ‘.
’H‘d

<e<p—
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The grand Lebesgue spaces were introduced by T. Iwaniec and C. Sbor-
done [1] for § = 1, and by L. Greco, T. Iwaniec and C. Sbordone [2] for
0 > 0. It is known that these spaces are non-reflexive and non-separable
Banach function spaces. The following continuous imbeddings

LP sy P s [P=¢ 0<e<p—1,

hold.
The closure [LP] of L? by the norm of L)Y does not coincide with the

latter space. For example the function \sinx\fﬁ € [LP] but |sinx|7% ¢
e,

We denote the above-mentioned closure by L?)?. As is known [3] Lo
is a subspace of the space LP)? of functions satisfying the condition

lim / |f(z)]P~dz = 0.
e—0
Td

By Ev,us....0, (f) we denote the best approximation by trigonometric
polynomials of f € LP)?(T4)

EV17V27---7VW,(f) =inf| f — TH;D),EH

where the infimum is taken over all polynomials of degree not greater than
v; with respect to the variable z; (i =1,2,...,n).
For f € LP?(T?), we have

1/111210 E,,l,yz,“.,un (f) = 0
1<i<n

In the sequel we assume that x = (z1,...,24) is an element of T¢.

2. BERNSTEIN AND NIKOLSKY TYPE INEQUALITIES IN (GRAND
LEBESGUE SPACES

In this section first of all we prove the Bernstein and Nikolsky type
inequalities. In the approximation theory the following inequalities for
trigonometric polynomials are well-known:
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and

<

HaTyl,uz,...,ud
Lr(T™)

d b
<2d_m< H Vi)

1=m-+1

To vs,.. , 1<m<d. (3)

Lr(T4)

Va

The first inequality is the Bernstein-Zygmund inequality and two others
were proved by S. M. Nikolsky (see e. g. [4], Chapter IV).

Theorem 2.1 (Bernstein-Zygmund inequality). Let 1 < p < oo and

0 > 0. Then for arbitrary trigonometric polynomial T, ., ..., the following
inequality holds

- .

a — TVl;VZw'
Zq Lp),G(Td)

ld

LPW(W)-
Proof. is a direct consequence of (1). Indeed,
aTVl’VQ:H

Vd
_ . aTVth,
= sup 3
0<e<p—1 T4

8ZZZZ'
Applying (1) we obtaln

8Tl’l V25 5Vd
Bxi

Lp),0

p—¢€ p—c
da:) , = (z1,...,24).

1

p—e
<v sup ( / Tor vm ()P Eda:) _
Lp).0 O0<e<p—1

= ViHTVl,Vz,-de||LP)v9' O

Theorem 2.2 (Nikolsky type inequality). Let 1 < p < oo and 6 > 0.
Then there is a constant ¢, such that for arbitrary polynomial T, of order
vV =uvq,ls,..., Vg we have

1T (1, s Ty Tty - - Ta) || L)oo (omy <
d 1
P
< Cp’d’m2d_m( H Vj) ||T,,($1, ce ,ZL‘d)HLp),e(Td).
j=m+1

Proof. First observe that the norm || f|| .»).6(pm) is equivalent to

_1
p—e
swp &5 ([ 1@t e )
O0<e<p—1
’H‘m
1

since er—¢ ~ e% as ¢ — 0.
Further we take o, 0 < ¢ < p — 1, which will be chosen later.
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By Hoélder’s inequality we have

I:= HTu(xlw";xmaxm-i-lv'",xd)”LP)vg(Tm) <
o e
< sup ep(/|Tu(x)|p6dx1,...,dajm> +
c<e<p—1 T

1

FE
+ sup ez</|Ty(x)|pEd:cl,...,dxm) <
0<e<o

Tm

1
o
<c< sup eﬁ) .a_ggz(/|Tl,(x)|p"dxl,...,d:vm) +
0<e<p—-1 T

_1
+ sup eg</|Tl,(x)|p_5dx1,...,dacm) <

0<e<o
Tm

p—e
71) sup 6§</ T,,(ac)|p_6dac1---dxm> .
0<e<o T

Then applying inequality (2) we get

Tl

o

B

< exmax (- 1)

1

d
fécz( I ) 1Tl ooy

Jj=m+1
with a constant co independent of T;,.
Here we used the fact that

() ()

j=m+1 j=m+1

for 0 < € < o, where ¢ is sufficiently small.

Therefore
1T (21, s Tons T 15 - -+ 5 Ta) | oo (pmy <
d 1
P
<ca I %) 10orallinoms,
j=m+1
where the constant c¢3 depends only on p, m and d. O

In the sequel we prove Nikolsky type inequality for different metrics. Let
©(x) be a continuous function on [0,p — 1], ©(0) = 0, ¢(z) > 0 for x > 0.
Let LP)%() be a set of measurable functions for which

I fllLerecr = sup <g0(6)/|f(x)|p_€dx> o
1 i

O0<e<p—
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It is clear that when op(z) = 2%, § > 0, then LP)#() = [P)-9,
Introduce the notation:

1 1
-———=A, 1<p<g<c.
P q
Let
1-(z—q)A
— rT—4q
o) = | =g

Using the L'Hopital rule we see that

2
. T —q _ (P
|- (0)

Consequently,

o(z) ~ v as x— 0.
Let

b(x) = p(’), 6>0
Hence

P(x) ~a2'v as -0

The following theorem is true:

Theorem 2.3 (Nikolsky type inequality for different metrics). Let 1 <
p<qg<ooand® >0. Then

d
Il pors oy < e( TT93) " ITullrogen (@)
j=1

with a constant independent of T,,.

3=
Q=

Proof. Let us take some 0, 0 < ¢ < p — 1, which will be chosen later. We
have

1Tl = sup (we) / |Ty<m>|“dx) =
0<e<qg—1
’]I‘d
= max(By, Ba),

where
1

Biim sup wem( / |T,,<x>|q-€dx)“,
Td

0<e<o

0<e<qg—1

Baim s v [In @)
/
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‘We have

By= sup 7 (e

= P g—¢ 75.
s v oypits (/w ) M) (5)

By Holder’s inequality we obtain

</|T o fdx) ) (/|T )|o m) YT <

1

<e, (T/ T,,(:v)|q"da:) .

Thus by (5)

1

By <c¢q-(q— 1)9%07(9?(%5) sup 1/)!116(6)</|Tu(x)|qeda:) o
’]I‘d

0<e<o

Consequently,
1Tl arwr <

< max (Cq(Q— 1)0%J_Qﬁ,1) sup w*(e)(/|Ty(x)|q_edx>qe. (6)
Td

0<e<o

Now for a given €, 0 < € < g — 1 we choose 1 so that

1 1 1 1

p—n 4q¢—€¢ p q
It is obvious that € — 0 is equivalent to n — 0. If 0 < € < ¢ for some small
o, then 0 < < o0g < p—1 for some small og.

Let us prove that

1

BOI™ ~n as o0, (7)
Since by definition v (z) = ¢(z?), it is enough to show that

lp(e)] 7 ~ 7

Indeed, if this is correct, then we get

(0 = ple”) ~ F ~ (p(0) =05

It remains to show (7). We have
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Then
A(g—e)+1
4 _ | q9—¢ o _
" o [p Alg—e€)+1
A(g—e)+1
_ €—4q o =
ot I

Consequently, by (6), (2) and (7) we obtain

0<e<o

A -
< s 077 (] w) ([im@pras)™ -
j:1 Td

" 0<n<ag
d —
~o(T1%)" " 1mloe
=1

J

P
nﬂmwmg%quwi@(/mmm*m) <
Td

S
Q=

Therefore we have (4). O

3. GRAND BESOV SPACES. IMBEDDING FOR DIFFERENT MATRICES AND
DIFFERENT DIMENSIONS

Let 1 < p < oo and 6 > 0. Suppose that r > 0 and s > 0. The grand
Besov space is defined as

B = {F € AT |1f] o < o)

where
oo

1/s
e = Wlzno + (S 2¥EE Do) 0

k=0

Ex(f)pme = Eox . ok (f) oo

For the Besov spaces see e. g. [5], [6].

The space Bf)s’e is a Banach function space.
In the sequel by T, we denote the best approximation polynomial
for a given f € LP)?:

EV1,<~~7Vd(f)LP)=9 = Hf _Tul,.“,udHLp),e-

1y--Vd

Since
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for arbitrary f € LP)(T%), we have

by the norm of LP)?(T%). It is easy to see that

1f =Ta,..allere = Eo(f)p)e < [ fllLee-
Therefore,
[Tx,...allLee < 2/ fllzee- (9)
The derivative

or -
—, A= Ai
I S
is assumed to be the generalized Sobolev derivative.

Theorem 3.1. Let 1 <p<g<o00,0>0,1<m<d, s>0,s >s.

Let
1 1

J{:1_<_> ————— > 0. (10)

P q

Then for f(z1,...,xq) € B (T?), we have

o o o
= G o B T 8)

)04 ,
belongs to the space BZ?Slp (T™) for arbitrary 2%, ,,..., 2%, where p = sr.

Moreover, the following inequality

Hh”BZ?s’f%('ﬂ‘m) < cllf"Bﬁ)‘;e(']rd) (11)

h(z1, 22, ..., Tm)

holds with a constant ¢ independent of f.

I
8
2o
Il
o

Proof. For the simplicity let us assume that 29, = 29 Lo =
As it was mentioned above

fla) =Y tr(x),
k=0

where to(x) =T, 1(x) and tg(z) = Tox

Then

ok (:]C) — TQk—17.._72k—1 (:]C)

yeeny

a1, am) =Y ———————t1(T15 o, Ty 0, . ., 0). 12
(1) = 3 5t w00 (12)
According to the definition of the grand Besov space it is enough to show
that

) 1/s
11008050 < (Wlzmo + (X2 BeDney) ) 13
k=0
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and
1/s

oo 1/s1 Sl
(’;szl’fE,jl(h)Lq),g;(M> <c(’§2f’wE,§(f)Lp),9(W)> . (14)

Applying the Nikolsky and Bernstein type inequalities for k£ = 1,2,... we
obtain

a/\
—tr(®1,. .., T, 0,...,0 <
H axi\l N axgd ( ) Lq%e%(T’”)
8>\
SCka(%ié) ‘Htk(xla--wxmaow"ao) <
8(E11 "'a.’L'dd LP),6(Tm)
11 a)‘
< Gma) plmmnll Ty (2,0, 0) <
63:11 ...(‘)xdd L).0(T4)
d
mk(1_1 —m)L ;
< c2mk(5-%) . gd-m)g H 2k/\l||tk||LP>’9(1rd) =
k=1
= 2"ty || o (ray < 22X B 1 (f) oy (15)

By Hoélder’s inequality

o 0o /1/8’ foe) 1/8
S e < (L2r) (L e R Ge) <

A A g
Oxyt - 0z L% (m)

k=0 k=0 k=0
0 1/s
< c(Z?’“’“Ez<f>W) , (16)
k=0
where 5" = 5.
On the other hand, by Bernstein and Nikolsky type inequalities, and (9)
8)\
—  to(x1se T, 0,0 <
Hawi\l 8332“1 0( ! ) Lq)’%q('[fm)
< c||t0(a:1, R ) 07 [N ,O)HLp),e(Tm) = C||T1 _____ 1(£E1, ce ,{Ed)HLp),e(Td) <
< CHfHLP)vS(Td)- (17)
Therefore by (15) and (17) we conclude that
a)\
Bl oot < | —to(z1y. e, T, 0y, 0
| HL "r () H@azi‘l -y o(m ) L% (Tm)
+Z 7tk(xlv"'7xm70,~"a0) <
k=1

< e(Mlznon + 2 B oes ) <

k=1
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o 1/s
< c(|f||me<w> ; (ZT’“E;;(f)W(W)) )

k=1
Thus (13) is proved. Then we have

0o s/s1 e

e} e’}

<Z2T%Sk( Z 3)‘tﬂ(x1,...,:z:m,0,...,0) >S

- A A (4 '
=0 arei Oxit...0z" L% (1)

Let 0 < § < s¢. Then using (15) and Holder’s inequality we get the following
chain of inequalities:

( Y 2FRER (h) s (Tm)> <cy ok (Z 2=, ( f)Lp),s(Td)> =
k=0 k=0 p=k
— ey ot ( 3 g, 2w<16>E#<f>Lm,9(Td)>
k=0 pn==k

S CZ QT%Sk . 2_Tk(%_5)s ( Z QTM(l_é)SEZ(f)Lp),G(’[[‘d)> =

k=0 n=~k

IA

o
k=0 k=0

s N
=c Z 2TM(176)5EZ(f)Lp),9(']rd) Z 27‘%316277‘16(%75)3 <
p=0 =0

00 0
< CZ 2Tﬂ(175)52rﬂ65EZ(f)Lp),9(']l‘d) = CZ QTMSEZ(f)Lp),G(Td).
pn=0 pn=0

Thus (14) and, consequently, the theorem is proved. |
In one dimensional case N. K. Bari established Bernstein-Zygmund and

Nikolsky type inequalities for arbitrary intervals [a,b] C (—m, 7). In the
sequel we present the similar results for the spaces LP?, 1 < p < 00, 6 > 0.

Theorem 3.2. Letl < p < co and @ > 0. Then for arbitrary trigonomet-
ric polynomial T, (x) and arbitrary interval (a,b) C (—m, ), the inequality
T3 o (o) < @, 0)n® || Tall Lo (o) (18)

holds.

Theorem 3.3. Let 1 < p < oo and § > 0. Then for arbitrary [a,b] C
(=m,7m), (d',V) C (a,b) and arbitrary trigonometric polynomial T,, we have

HTrlz”LP)ﬂ(a’,b’) < C(a7 b, a/’ b/)nHTnHLP)v@(a,b)' (19)
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Theorem 3.4. Let 1 < p < g < oo and 8 > 0. Then for arbitrary
interval (a,b) C (—m,7) and arbitrary polynomial T,, we have the inequality

1_1
||TnHLq)’9%(a b) < C(a7b7 a/7bl7p7 q)nz(p q)||TnHLP)w9(a7b) (20)

holds.

Theorem 3.5. Let 1 < p < g < oo and 8 > 0. Then for arbitrary
[a,b] C (=7, ), (a/,b') C (a,b) and arbitrary polynomial T, we have

< cla,b,d' V,p, )G Tl proany- (21)

1Tl 008 0 <

The proofs of Theorems 3.2-3.5 are based on the Bari’s inequalities and
are similar to the proofs of Theorems 2.1 and 2.3 therefore we omit them.
In the sequel by E,,(f)r.0(q,) denote

En(f)reo(apy = f || f = Tillpr.o(a)
where the infimum is taken over all trigonometric polynomials T}, with order
not greater than n.
The definition of the space Bf7);0(a, b) is similar to that of the space
5D),0
By (T).

Theorem 3.6. Let 1l <p<qg<oo,0>0,r>0,s; >s>0. Suppose

that 1 1\2 2\
sm1-(3-1)2-250
p q)r 7T

Then for arbitrary [a,b] C (—m,m) the following continuous embedding

. . ’91
B (a,b) = B (a,b), p =,

holds.

Theorem 3.7. Let 1 <p<qg<oo,0>0,r>0,s; >s>0. Suppose

that T
%:1—<—>—>&
p q)r r

Then for arbitrary [a’,b'] C (a,b), [a,b] C (—m,w) the following continuous
embedding

B (a,b) — BZ?Q?E(a’,b’), p = xur
holds.

The proofs are similar to that of Theorem 3.1. It is enough to apply
Theorems 3.2-3.5 instead of Theorems 2.1 and 2.3.
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