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ASYMMETRIC ORBIFOLDS AND WILSON LINES∗

Z. KAKUSHADZE AND H. TYE

Abstract. We generalize the rules for the free fermionic string
construction to include other asymmetric orbifolds. Examples
are given to illustrate the use of these rules.

ÒÄÆÉÖÌÄ. ÂÀÍÆÏÂÀÃÄÁÖËÉÀ ÈÀÅÉÓÖ×ÀËÉ ×ÄÒÌÉÏÍÖËÉ ÓÉÌÉÓ
ÀÂÄÁÉÓ ßÄÓÄÁÉ ÓáÅÀ ÀÓÉÌÄÔÒÉÖËÉ ÏÒÁÉ×ÏËÃÄÁÉÓÀÈÅÉÓ. ÂÀ-
ÍáÉËÖËÉÀ ÀÌ ßÄÓÄÁÉÓ ÓÀÉËÖÓÔÒÀÝÉÏ ÌÀÂÀËÉÈÄÁÉ.

1. Introduction

The construction of string models has a long history. The number of con-
sistent string models is clearly very large (One may consider various string
models as different classical string vacua of a single theory; in this case, we
are talking about the construction of classical vacua). The best understood
string models are probably those obtained via toroidal compactification,
and also their orbifolds [1]. However, classification of such orbifold string
models is still largely unexplored. This is in part due to the lack of simple
rules for constructing such models, in particular, for asymmetric orbifolds
[2].

The first class of asymmetric orbifold string models are the free fermionic
string models [3]. Although this class of models is rather restrictive (allowing
only multiple Z2 twists), the rules for such model building are quite simple.
As a result, rather complicated models can be readily constructed (for a
partial list, see [4]), sometimes with the help of computers.

A general framework for asymmetric orbifolds was given in [2], and it
provides a setting for all orbifold models, since some symmetric orbifolds
at fixed radii may be considered as special cases of asymmetric orbifolds.
However, this general approach is not easy to use in actual practice; as a
result, asymmetric orbifold models are not well explored. In this paper,
we simplify the construction of asymmetric orbifold models by presenting
explicit and rather simple rules for their model buildings.
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The rules for the asymmetric orbifold construction are quite similar to
those for the free fermionic string models. Here we shall follow the notations
of Ref. [5]. We shall impose the consistency requirements on the string
one-loop partition function in the light-cone gauge: (i) one-loop modular
invariance; (ii) world-sheet supersymmetry (if present), which insures space-
time Lorentz invariance in the covariant gauge; and (iii) physically sensible
projection; this means the contribution of a space-time fermionic (bosonic)
degree of freedom to the partition function counts as minus (plus) one. In
all cases that can be checked, this condition plus the one-loop modular
invariance and factorization imply multi-loop modular invariance.

The building blocks for any specific string model partition function are
the (appropriate) characters for world-sheet fermions and bosons. The
fermion characters are the same as the ones used in the free fermionic string
models. The characters for bosons are combined from two types: those for
twisted chiral bosons and those for chiral lattices. A key to obtaining simple
rules is the choice of basis for the chiral lattices. They are chosen so that,
up to phases, all the chiral lattice characters are permuted under any mod-
ular transformation, as is the case for the chiral fermion characters. Our
discussion shall focus on heterotic strings compactified to four spacetime
dimensions; the generalization to other dimensions and to Type II strings
is straightforward.

As in the free fermionic string model constructions, the rules may be
used to build new models without direct reference to their original partition
functions and/or the characters in them. This turns out to be useful because
the partition function can get rather complicated. In this paper, we consider
models with Wilson lines and only one twist. The rules given here can
be used as a basis for further generalization to the non-Abelian orbifold
case, which will be discussed elsewhere. For a general lattice, the sublattice
invariant under the twist may be difficult to identify. Sometimes, it is
easier to start with a lattice whose invariant sublattice is obvious, and then
introduce background fields, in particular Wilson lines, that commute with
the twist. In fact, this approach is very useful in the symmetric orbifold
construction [6]. Here, our work can be considered as a generalization of
their work to the asymmetric orbifold case.

In section 2, we briefly review the fermion and the boson characters that
we shall use later. In section 3, we derive the rules for model building.
To be specific, we shall consider only heterotic strings compactified to four
spacetime dimensions. Also, we shall confine ourselves to the elementary
particle sectors, where the conformal field theory description (as given by
the characters mentioned above) is sufficient. The rules for model building
are summarized. In section 4, some examples of asymmetric orbifold models,
with and without Wilson lines, are explicitly constructed to illustrate the
rules. In section 5, we discuss a model with higher-level gauge group. For
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the sake of completeness, we present a couple of symmetric orbifolds as
well, with and without Wilson lines, in section 6. Section 7 contains the
discussion and remarks. Some of the details are relegated to the appendices.

2. Preliminaries

2.1. Framework. In this subsection we set up the framework for the re-
mainder of this paper. To be specific, we consider heterotic strings com-
pactified to four space-time dimensions. In the light-cone gauge, which we
adopt, we have the following world-sheet degrees of freedom: One complex
boson ϕ0 (corresponding to two transverse space-time coordinates); three
right-moving complex bosons ϕℓR, ℓ = 1, 2, 3 (corresponding to six internal
coordinates); four right-moving complex fermions ψr, r = 0, 1, 2, 3 (ψ0 is
the world-sheet superpartner of the right-moving component of ϕ0, whereas
ψℓ are the world-sheet superpartners of ϕℓR, ℓ = 1, 2, 3); eleven left-moving
complex bosons ϕℓL, ℓ = 4, 5, . . . , 14 (corresponding to twenty-two internal
coordinates). Before orbifolding, the corresponding string model has N = 4
space-time supersymmetry and the internal momenta span an even self-dual
Lorentzian lattice Γ6,22.

It is convenient to organize the string states into sectors labeled by the
monodromies of the string degrees of freedom. Thus, consider the sector
where

ψr(ze−2πi) = exp(−2πiV r
i )ψ

r(z),

ϕℓR(ze
−2πi) = exp(−2πiW ℓ

i )ϕ
ℓ
R(z)− U ℓ

i , ℓ = 1, 2, 3,

ϕℓL(ze
2πi) = exp(−2πiW ℓ

i )ϕ
ℓ
L(z) + U ℓ

i , ℓ = 4, . . . , 14

(1)

(Note that ϕ0(ze2πi, ze−2πi) = ϕ0(z, z) since ϕ0 corresponds to space-time
coordinates). These monodromies can be combined into a single vector

Vi =
(
V 0
i

(
V 1
i (W 1

i , U
1
i )
)(
V 2
i (W 2

i , U
2
i )
)(
V 3
i (W 3

i , U
3
i )
)
||(W 4

i , U
4
i ) . . .

. . . (W 14
i , U14

i )
)
. (2)

The double vertical line separates the right- and left-movers. Without loss
of generality we can restrict the values of V r

i and W ℓ
i as follows: −1

2 ≤
V r
i < 1

2 ; 0 ≤W ℓ
i < 1 (A complex boson (fermion) with boundary condition

W ℓ
i (V r

i ) = 0 or 1
2 can be split into two real bosons (fermions)). The shifts

U ℓ
i can be combined into a real (6, 22) dimensional Lorentzian vector U⃗i

defined up to the identification U⃗i ∼ U⃗i+ P⃗ , where P⃗ is an arbitrary vector
of Γ6,22.

The monodromies (1) can be viewed as fields Φ (where Φ is a collective
notation for the fields ψr, ϕℓR and ϕℓL) being periodic Φ(ze2πi, ze−2πi) =
Φ(z, z) up to the identification Φ ∼ g(Vi)Φg

−1(Vi), where g(Vi) is an element
of the orbifold group G. In this paper we will only consider the cases where
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G is an Abelian group. For two elements g(Vi) and g(Vj) to commute, we
must have U ℓ

i = 0 if W ℓ
j ̸= 0, and U ℓ

j = 0 if W ℓ
i ̸= 0.

This leads us to a simpler form of Vi where instead of having a double
entry (W ℓ

i , U
ℓ
i ) for each complex boson we will specify either W ℓ

i (whenever
W ℓ

i ̸= 0, in which case U ℓ
i = 0), or U ℓ

i (whenever U ℓ
i ̸= 0, in which case

W ℓ
i = 0). To keep track of whether a given entry corresponds to a twist or

a shift, it is convenient to introduce an auxiliary vector

W =
(
0(0 W 1)(0 W 2)(0 W 2)||W 4 . . . W 14

)
. (3)

The entries W ℓ are defined as follows: W ℓ = 1
2 if in at least one sector

(labeled by, say, Vi) of the model the corresponding boson has twisted
boundary conditions (i.e., W ℓ

i ̸= 0); W ℓ = 0, otherwise. For example, if

W =
(
0
(
0
1

2

)3
||011

)
,

then
Vi =

(
V 0
i (V

1
i W 1

i )(V
2
i W 2

i )(V
3
i W 3

i )||U4
i . . . U14

i

)
is a priori compatible with W . Here W 1

i , W 2
i and W 3

i correspond to the
twists, U4

i , . . . , U
14
i correspond to the shifts, and V r

i , r = 0, 1, 2, 3, specify
the fermionic spin structures.

The notation we have introduced proves convenient in describing the
sectors of a given string model based on the orbifold group G. For G to be
a finite discrete group, the element g(Vi) must have a finite order mi ∈ N,
i.e. gmi(Vi) = 1. This implies that V r

i and W ℓ
i must be rational numbers,

and the shift vector U⃗i must be a rational multiple of a vector in Γ6,22; that
is, miV

r
i ,miW

ℓ
i ∈ Z, and miU⃗i ∈ Γ6,22. To describe all the elements of

the group G, it is convenient to introduce the set of generating vectors {Vi}
such that αV = 0 if and only if αi ≡ 0. Here 0 is the null vector:

0 =
(
0(0 0)3||011

)
. (4)

Also, αV ≡
∑

i αiVi (The summation is defined as (Vi + Vj)
ℓ = V ℓ

i + V ℓ
j ),

αi being integers that take values from 0 to mi − 1. The overbar notation
is defined as follows: αV ≡ αV −∆(α), and the components of αV satisfy
− 1

2 ≤ αV
r
< 1

2 , 0 ≤ αW
ℓ
< 1; here ∆r(α),∆ℓ(α) ∈ Z. So the elements of

the group G are in one-to-one correspondence with the vectors αV and will
be denoted by g(αV ). It is precisely the Abelian nature of G that allows
this correspondence (by simply taking all possible linear combinations of
the generating vectors Vi).

Now we can identify the sectors of the model. They are labeled by the
vectors αV , and in a given sector αV the monodromies of the string degrees
of freedom are given by Φ(ze2πi, ze−2πi) = g(αV )Φ(z, z)g−1(αV ).
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G is a symmetry of the Hilbert space of the original string model with
N = 4 supersymmetry compatible with the operator algebra of the under-
lying (super) conformal field theory. If |χ⟩ is a state in the original Hilbert
space, g(αV )|χ⟩ (where there must exist a representation of g(αV ) via the
vertex operators of the theory) also belongs to the same Hilbert space.
One consequence of this requirement is that G must commute with the
Virasoro algebra, which is indeed the case for the class of Abelian asym-
metric orbifolds considered in this paper. We must also require that G
(anti)commutes with the right-moving super-Virasoro algebra (which en-
sures space-time Lorentz invariance in the covariant gauge). This implies
the following supercurrent constraint

V ℓ
i +W ℓ

i = V 0
i ≡ si (mod 1), ℓ = 1, 2, 3. (5)

Here si is the monodromy of the supercurrent S(ze−2πi) = exp(2πisi)S(z),
which must satisfy si ∈ 1

2Z. Then the sectors with αV
0
= 0 give rise to

space-time bosons, while the sectors with αV 0
= −1

2 give rise to space-time
fermions.

2.2. Fermion and Boson Characters. Let us confine our attention to
the orbifolds with a single twist of prime order, generated by the V1 vector
(The order of this twist is defined as the smallest positive integer t1, such
that ∀ℓ t1W ℓ

1 ∈ Z; note that t1 is a divisor of m1).
In a given sector αV , the right- and left-moving Hamiltonians are given

by the corresponding sums of the Hamiltonians for individual string degrees
of freedom. The Hilbert space in the αV sector is given by the momentum
states |P⃗αV +αU⃗⟩, and also the states obtained from these states by acting
with the fermion and boson creation operators (oscillator excitations). In
the untwisted sectors, that is, sectors αV with α1 = 0, we have P⃗αV ∈ Γ6,22.
In the twisted sectors αV with α1 ̸= 0, we have P⃗αV ∈ Ĩ, where Ĩ is the
lattice dual to the lattice I, which in turn is the sublattice of Γ6,22 invariant
under the action of the twist part of the group element g(V1). This lattice
must have a prime NI , where NI is the smallest positive integer such that for
all vectors P⃗ ∈ Ĩ, NI P⃗

2 ∈ 2Z; moreover, for the corresponding characters
to have the correct modular transformation properties, it must be the case
that either NI = 1 (in which case I is an even self-dual lattice), or NI = t1
(in which case I is even but not self-dual).

Now we turn to expressing the group elements g(βV ) (in a given sector
αV ) in terms of the generators of twists Jℓ

αV
, shifts P⃗αV , and U(1) rotations

of the right-moving complex fermions −N ℓ
αV

(see Appendix A):

g(βV ) = exp
(
2πiβV · NαV +

1

2
ν(α1, β1)P⃗

2
αV

)
. (6)
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Here ν(α1, β1) is an integer taking value between 0 and NI − 1 defined as

α1ν(α1, β1) = β1 (mod NI), α1 ̸= 0, (7)

and ν(0, β1) ≡ 0. NαV = (Nr
αV
, Jℓ

αV
, P⃗αV ), and the dot product is under-

stood with respect to the following signature:

βV · NαV ≡ βU⃗ · P⃗αV +
∑
r

(βV )rNr
αV
ϵr +

∑
ℓ

(βW )ℓJℓ
αV
ϵℓ . (8)

The dot product of the vectors βU⃗ and P⃗αV is understood with respect to the
Lorentzian metric diag((−)6, (+)22). The signature ϵr for fermions equals
+1 for left-moving complex fermions, and −1 for right-moving complex
fermions, respectively. The signature ϵℓ for bosons equals −1 for left-moving
complex bosons, and +1 for right-moving complex bosons, respectively.

In section 3 we express the one-loop modular invariant partition function
for an orbifold model as a linear combination of the following characters:

ZαV
βV

≡ Tr
(
qH

L
αV qH

R
αV g−1(βV )

)
. (9)

Here HL
αV

and HR
αV

are the left- and right-moving Hamiltonians, respec-
tively. The trace is taken over the states in the Hilbert space corresponding
to the sector αV . These characters can be computed as products of building
blocks, or contributions of individual string degrees of freedom, which are
reviewed in Appendix A. The result can be written as a product of the
corresponding fermion and boson characters:

ZαV
βV

= Z
αV

βV YαV
βV

. (10)

The fermion characters ZαV

βV read:

Z
αV

βV =
∏
r

Z
αV

r

βV
r (11)

(The characters Zv

u for a right-moving fermion are complex conjugates of
the characters Zv

u for a left-moving fermion given by (84)).
The boson characters YαV

βV
read:

YαV
βV

= Y αU⃗
βU⃗

, α1 = β1 = 0, (12)

YαV
βV

= ξ(α1)Y
α1,αU⃗

β1,βU⃗

3∏
ℓ=1

X
αW

ℓ

βW
ℓ

14∏
ℓ=4

XαW
ℓ

βW
ℓ , α1 + β1 ̸= 0 (13)

(The characters Xv

u for a right-moving boson are complex conjugates of the
characters Xv

u for a left-moving boson given by (93)). The product over ℓ
does not include terms with αW

ℓ
= βW

ℓ
= 0.



ASYMMETRIC ORBIFOLDS AND WILSON LINES 85

Y αU⃗
βU⃗

are the characters for the even self-dual lattice Γ6,22, whereas Y α1,αU⃗

β1,βU⃗

are the characters for the lattice I (If I is an even self-dual lattice then
instead of Y α1,αU⃗

β1,βU⃗
we would have to use the characters similar to Y αU⃗

βU⃗
but

defined for the lattice I ⊂ Γ6,22):

Y αU⃗
βU⃗

=
1

η22(q)η6(q)

∑
P⃗∈Γ6,22

q
1
2 (P⃗

L+αU⃗L)2q
1
2 (P⃗

R+αU⃗R)2×

× exp(−2πiβU⃗ · P⃗ ), (14)

Y α1,αU⃗

β1,βU⃗
=

1

ηd(q)ηd
′

∑
P⃗∈Ĩ

q
1
2 (P⃗

L+αU⃗L)2q
1
2 (P⃗

R+αU⃗R)2×

× exp(−2πi(βU⃗ · P⃗ +
1

2
ν(α1, β1)P⃗

2)). (15)

Here I has the Lorentzian metric ((−)d
′
, (+)d). P⃗L, P⃗R, and U⃗L, U⃗R,

are the left- and right-moving parts of the momentum and shift vectors,
respectively.

The integers ξ(α1) are nothing but the number of fixed points in the
twisted sectors (MI is the determinant of the metric of I) [2]:

ξ(α1) =M
− 1

2

I

∏
ℓ

2 sin(παW ℓ
), α1 ̸= 0, (16)

and ξ(0) = 1 (The product over ℓ does not include terms with αW
ℓ
= 0 ).

Under the S- and T -modular transformations the characters ZαV
βV

trans-
form as follows:

ZαV
βV

S→ exp(2πiαV · βV )ZβV

−αV
, α1β1 = 0, (17)

ZαV
βV

S→ exp
(
2πi(αV −W ) · (βV −W ) + χ(α1, β1)

)
ZβV

−αV
, (18)

α1β1 ̸= 0,

ZαV
βV

T→ exp
(
2πi
(1
2
αV · αV − αV ·W +

1

2

)
ZαV

βV−αV+V0
. (19)

Here V0 is the vector with −1/2 entry for each world -sheet fermion and
zero otherwise:

V0 =
(
− 1

2

(
− 1

2
0
)3

||011
)
. (20)

According to the above modular transformation properties of ZαV
βV

, V0 is
always among the generating vectors Vi (The sector corresponding to V0 is
the Ramond sector of the original heterotic string). The dot product of two
vectors αV and βV is defined as in (8). For example,

Vi · Vj = U⃗i · U⃗j +
∑
r

V r
i V

r
j ϵ

r +
∑
ℓ

W ℓ
iW

ℓ
j ϵ

ℓ . (21)
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3. Orbifold Rules

In this section we derive the rules for constructing consistent string mod-
els in the framework discussed in section 2. The contribution to the orbifold
one-loop partition function is a linear combination of the characters ZαV

βV
:

Z =
1∏
imi

∑
α,β

CαV
βV

ZαV
βV

. (22)

The coefficients CαV
βV

must be such that (22) is modular invariant. Tak-
ing into account the modular transformation properties (17), we have the
following constraints on the coefficients CαV

βV
coming from the requirement

of modular invariance of (22):

S : CαV
βV

exp(2πiαV · βV ) = CβV

−αV
, α1β1 = 0, (23)

CαV
βV

exp
(
2πi(αV −W ) · (βV −W ) + χ(α1, β1)

)
=

= CβV

−αV
, α1β1 ̸= 0, (24)

T : CαV
βV

exp
(
2πi
(1
2
αV · αV − αV ·W +

1

2

)
= CαV

βV−αV+V0
. (25)

In addition to (23) we require that for any physical sector labeled by αV the
sum over β’s in (22) form a proper projection with eigenvalues 0 or ξ(α1).
Specifically, this means that

1∏
imi

∑
β

CαV
βV
g−1(βV ) = e2πiαsη

(
αV ,NαV , P⃗

2
αV

)
, (26)

where η(αV ,NαV , P⃗
2
αV

) takes values 0 or 1 depending on the values of αi,
NαV and P⃗ 2

αV
. As a consequence, we have in this case

Z = Tr
(
qH

L
αV qH

R
αV ξ(α1)e

2πiαsη(αV ,NαV , P⃗
2
αV

)
)
. (27)

This is precisely the physically sensible projection; space-time bosons con-
tribute into the partition function with the weight plus one, whereas space-
time fermions contribute with the weight minus one (Each with degeneracy
ξ(α1) due to fixed points in the twisted sectors).

The formal solution to (26) is given by

CαV
βV

= exp
(
2πi[βϕ(αV ) + αs]

)
. (28)

The phases ϕi(αV ) are constrained due to (23):
S : βϕ(αV ) + αϕ(βV ) + αs+ βs+

+αV · βV = 0 (mod 1), α1β1 = 0, (29)
βϕ(αV ) + αϕ(βV ) + αs+ βs+ (αV −W ) · (βV −W ) +
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+χ(α1, β1) = 0 (mod 1) , α1β1 ̸= 0, (30)

T : αϕ(αV )+ϕ0(αV )+
1

2
αV · αV −αV ·W+

1

2
=0 (mod 1). (31)

Provided that 2V1 ·W ∈ Z, we have:

χ(α1, β1) +W ·W − αV ·W − βV ·W ≡ 0 (mod 1), α1β1 ̸= 0, (32)

and the solution to the system of equations (29), (30) and (31) is given by:

ϕi(αV ) =
∑
j

kijαj + si − Vi · αV (mod 1). (33)

The structure constants kij must satisfy the following constraints:

kij + kji = Vi · Vj (mod 1), (34)
kijmj = 0 (mod 1), (35)

kii + ki0 + si + Vi ·W − 1

2
Vi · Vi = 0 (mod 1) (36)

(Note that there is no summation over repeated indices).
All the states are projected out of the sum in (22) except those satisfying

Vi · NαV = ϕi(αV ) (mod 1), i ̸= 1 or α1 = 0, (37)

α1V1 · NαV +
1

2
P⃗ 2
αV

= α1ϕ1(αV ) (mod 1), α1 ̸= 0. (38)

This is the spectrum generating formula (Note that in the twisted sectors
(α1 ̸= 0) all the states appear with the multiplicity ξ(α1)).

The states that satisfy the spectrum generating formula include both
on- and off-shell states. The on-shell states must satisfy the additional
constraint that the left- and right-moving energies are equal. In the αV
sector they are given by:

EL
αV

= −1

2
+
∑
ℓ: left

{
1

2
αW

ℓ
(1− αW

ℓ
)+

+
∞∑
q=1

[
(q + αW

ℓ − 1)nℓq + (q − αW
ℓ
)nℓq

]}
+

+

∞∑
q=1

q(n0q + n0q) +
1

2
(P⃗L

αV
+ U⃗L)2 , (39)

ER
αV

= −1 +
∑

ℓ: right

{
1

2
αW

ℓ
(1− αW

ℓ
)+

+
∞∑
q=1

[
(q + αW

ℓ − 1)mℓ
q + (q − αW

ℓ
)mℓ

q

]}
+
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+
∞∑
q=1

q(m0
q +m0

q) +
1

2
(P⃗R

αV
+ U⃗R)2+

+
∑
r

{
1

2
(αV

r
)2 +

∞∑
q=1

[(
q + αV

r − 1

2

)
krq+

+
(
q − αV

r − 1

2

)
k
r

q

]}
. (40)

Here nℓq and nℓq are occupation numbers for the left-moving bosons ϕℓL,
whereas mℓ

q and mℓ
q are those for the right-moving bosons ϕℓR. These take

non-negative integer values. krq and k
r

q are the occupation numbers for
the right-moving fermions, and they take only two values: 0 and 1. The
occupation numbers are directly related to the boson and fermion number
operators. For example, Nr

αV
=
∑∞

q=1(k
r
q − k

r

q ).
We conclude this section by summarizing the rules. To construct a con-

sistent orbifold model, start with an N = 4 space-time supersymmetric four
dimensional heterotic string model with the internal momenta spanning an
even self-dual lattice Γ6,22 that possesses a Zk symmetry (k is a prime). The
invariant sublattice I must be such that NI = 1 or k. Now one can intro-
duce a set of vectors Vi (which includes V0) that correspond to a particular
embedding of the orbifold group Zk. A given embedding is acceptable if
and only if the set {Vi} satisfies (5), and the set of constraints (34), (35)
and (36) for some choices of the structure constants kij . Then, a particular
choice of the set {Vi, kij} defines a consistent string model. The complete
spectrum (on- and off-shell states) of the model is given by the spectrum
generating formula (37), which together with the left/right energy formula
(39) determines the on-shell physical spectrum. In the next three sections
we will illustrate the rules with some examples.

4. Asymmetric Orbifolds and Wilson Lines

Consider an even self-dual Lorentzian lattice Γ6,22 = Γ2,2 ⊗Γ2,2 ⊗Γ2,2 ⊗
Γ8 ⊗ Γ8. Here we take Γ2,2 to be the even self-dual Lorentzian lattice
spanned by the vectors (p, p) such that p, p ∈ Γ̃2 (SU(3) weight lattice),
and p − p ∈ Γ2; Γ2 (SU(3) root lattice). Γ8 is the E8 root lattice. The
lattice Γ6,22 has a Z3 symmetry under 120◦ rotations of the right-moving
momenta while the left-moving momenta are untouched. Here we discuss
asymmetric orbifolds obtained via modding out by this discrete symmetry.

Consider the following set of generating vectors

W =
(
0
(
0
1

2

)3
||03|08|08

)
, (41)

V0 =
(
− 1

2

(
− 1

2
0
)3

||03|08|08
)
, (42)
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V1 =
(
0
(
− 1

3

1

3

)3
||03|vI

)
, (43)

V2 =
(
0(0 0)3||w 02|AI

)
, (44)

V3 =
(
0(0 0)3||0

(1
2
ζ
)2

|ÃI
)

(45)

(Here we have chosen the basis where all the right-moving fermions, as well
as the bosons corresponding to the Γ2,2⊗Γ2,2⊗Γ2,2 sublattice, are complex;
the first single vertical line separates the three complex and sixteen real
left-moving bosons, the latter corresponding to the Γ8 ⊗ Γ8 sublattice; the
second single vertical line separates the real bosons corresponding to the
first and second Γ8 sublattices, respectively). Note that V1 ·W = 1

2 . Let
us choose 3vI , 3AI , 2ÃI ∈ Γ8 ⊗ Γ8; w ∈ Γ̃2, w2 = 2

3 ; ζ ∈ Γ2, ζ2 = 2. Then
m1 = t1 = m2 = 3, m3 = 2. The matrix of the dot products Vi · Vj reads
(for simplicity we choose ÃIvI = ÃIAI = 0):

Vi · Vj =


−1 −1

2
0 0

−1

2
(vI)2 vIAI 0

0 vIAI (AI)2 +
2

3
0

0 0 0 (ÃI)2 + 1

 . (46)

The structure constants kij are given by:

kij =


k00 0 0 k30
1

2

1

2
(vI)2 −k21 + vIAI 0

0 k21
1

2
(AI)2 +

1

3
0

k30 0 0 k30 +
1

2
(ÃI)2 +

1

2

 . (47)

To satisfy the constraints (35) we must have:
3vIAI , (ÃI)2 ∈ Z , 3(vI)2, 3(AI)2 ∈ 2Z . (48)

The invariant sublattice (i.e., the sublattice of Γ6,22 invariant under the
twist part of V1) is I = Γ2 ⊗ Γ2 ⊗ Γ2 ⊗ Γ8 ⊗ Γ8. Note that its dual lattice
is Ĩ = Γ̃2 ⊗ Γ̃2 ⊗ Γ̃2 ⊗ Γ8 ⊗ Γ8, and NI = 3(= t1). The determinant of the
metric of I is MI = 33 = 27, and

ξ(α1) =M
− 1

2

I

[
2 sin

(α1π

3

)]3
= 1, α1 = 1, 2. (49)

Therefore, the number of fixed points in each of the twisted sectors is one.
Before discussing the orbifold models generated by these vectors, we note

that the model, which we will refer to as N0, generated by the set {V0}
(which contains only V0) is an N = 4 space-time supersymmetric Narain
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model [7]. Its massless spectrum consists of the N = 4 supergravity multi-
plet (graviton, four gravitinos, six vector bosons, four spin-12 fermions, and
one complex scalar (dilaton plus axion)), and also the N = 4 super-Yang-
Mills multiplet (gauge bosons, four spin- 12 fermions, and six real scalars)
transforming in the adjoint of the gauge group E8 ⊗E8 ⊗SU(3)⊗SU(3)⊗
SU(3). The bosons come from the 0 sector, whereas their superpartners
come from the V0 sector.

4.1. Asymmetric Orbifolds without Wilson Lines. Next, consider the
model, which we will refer to as A1, generated by the set {V0, V1}, with
vI = ( 13

1
3

2
3 05|08). This is an asymmetric orbifold model without Wilson

lines. It possesses N = 1 space-time supersymmetry. The sectors αV ,
α0 = 0, give rise to bosons, whereas their superpartners come from the
sectors αV , α0 = 1.

First consider the untwisted sectors αV = α0V0 (α1 = 0). In these sectors
the momenta P⃗αV = (p1, p2, p3||p1, p2, p3|pI) (pℓ, pℓ ∈ Γ̃2, pℓ − pℓ ∈ Γ2,
ℓ = 1, 2, 3; pI ∈ Γ8 ⊗ Γ8) span Γ6,22.

The spectrum generating formula in the untwisted sectors reads:

V0 · NαV =
1

2

3∑
r=0

Nr
αV

= k00α0 +
1

2
(mod 1), (50)

V1 · NαV =
1

3

( 3∑
r=1

Nr
αV

+

3∑
ℓ=1

Jℓ
αV

)
+ vIpI = 0 (mod 1). (51)

Thus, the untwisted sectors 0 (α0 = 0) and V0 (α0 = 1) give rise to the
following massless states: (i) The graviton N = 1 supermultiplet (gravi-
ton and one gravitino); (ii) the dilaton N = 1 supermultiplet (one spin- 12
fermion and one complex scalar (dilaton plus axion)); (iii) N = 1 Yang-Mills
supermultiplet (gauge bosons and one spin- 12 fermion) transforming in the
adjoint of SU(3)⊗ E6 ⊗ E8 ⊗ (SU(3))3 (These states satisfy vIpI ∈ Z; the
first SU(3) subgroup arises in the breaking E8 ⊃ SU(3)⊗E6 due to the shift
vI ; the other three SU(3) subgroups come from the Γ2,2⊗Γ2,2⊗Γ2,2 lattice);
(iv) three N = 1 chiral supermultiplets transforming in the representation
(3,27,1,1,1,1) of the gauge group (These states have vIpI ∈ ± 1

3 + Z for
those transforming in 3 and 3, respectively). The chirality of these states
depends on the choice of k00: For k00 = 1/2 they are left-movers, whereas
for k00 = 0 they are right-movers. For definiteness in the following we
choose k00 = 1/2.

Next, consider the twisted sectors αV = α0V0 + α1V1 (α1 = 1, 2). In
these sectors the momenta P⃗αV = (0, 0, 0||p1, p2, p3|pI) (pℓ ∈ Γ̃2, ℓ = 1, 2, 3;
pI ∈ Γ8 ⊗ Γ8) span Ĩ.
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The spectrum generating formula in the twisted sectors reads ((vI)2 =
2/3)

V0 · NαV =
1

2

3∑
r=0

Nr
αV

= α0

(
k00 +

1

2
α1

)
(mod 1), (52)

α1V1 · NαV +
1

2
P⃗ 2
αV

=
α1

3

( 3∑
r=1

Nr
αV

+

3∑
ℓ=1

Jℓ
αV

)
+vIpI+

1

2

3∑
ℓ=1

p2ℓ =

= −1

3
α2
1 (mod 1). (53)

The twisted sectors give rise to one left-moving chiral N = 1 supermul-
tiplet transforming in the following representations of the gauge group: (i)
(3,27,1,1,1,1) (these have vIpI ∈ − 1

3 + Z); (ii) (1,27,1,x,y, z), where
one of x,y, z) is 3 or 3, and the other two are 1 (these have vIpI ∈ 1

3 +Z);
(iii) (3,1,1,x,y, z), where two of x,y, z are 3 or 3, and the other one is 1
(these have vIpI ∈ Z).

The A1 model is the original asymmetric orbifold model of [2].

4.2. Turning on Wilson Lines. Wilson lines are incorporated via vec-
tors Vi that contain only lattice shifts. Thus, consider the model, which
we will refer to as N2, generated by the vectors V0 and V2, with AI =
( 13

1
3

2
3 05|(− 1

3 ) (−
1
3 ) (−

2
3 ) 0

5), and w being a weight vector corresponding
to the 3 irrep of SU(3). This model is an N = 4 space-time supersymmetric
Narain model. The sectors with α0 = 0 give rise to bosons, whereas their
superpartners are supplied by the sectors with α0 = 1.

The spectrum generating formula reads ((AI)2 = 4/3):

V0 · NαV =
1

2

3∑
r=0

Nr
αV

= k00α0 +
1

2
(mod 1), (54)

V2 · NαV = wp1 +AIpI = 0 (mod 1). (55)
The momenta that survive this projection are given by:

P⃗ =
(
q + 3AIpIw, p2, p3||q + (3AIpI + α2)w, p2, p3|pI + α2A

I
)
, (56)

where q, q ∈ Γ2.
Thus, the “unshifted” sectors (α2 = 0) give rise to the following massless

states: (i) The N = 4 supergravity multiplet; (ii) N = 4 vector supermul-
tiplet transforming in the adjoint of SU(3) ⊗ E6 ⊗ SU(3) ⊗ E6 ⊗ SU(3) ⊗
(SU(3))2.

The “shifted” sectors (α2 = 1 and 2) give rise to the N = 4 vector
supermultiplets transforming in the representations (3,1,3,1,3,1,1) and
(3,1,3,1,3,1,1), respectively. These states combine with those in the
“unshifted” sectors and give rise to the N = 4 Yang-Mills supermultiplet



92 Z. KAKUSHADZE AND H. TYE

transforming in the adjoint of the resulting gauge group E6 ⊗ E6 ⊗ E6 ⊗
SU(3)⊗ SU(3).

4.3. Asymmetric Orbifolds with Wilson Lines. Now we turn to asym-
metric orbifold models with Wilson lines. Consider the model, which we
will refer to as A2, generated by the vectors V0, V1 and V2. This model has
N = 1 space-time supersymmetry.

First consider the untwisted sectors αV = α0V0 + α2V2. The spectrum
generating formula reads:

V0 · NαV =
1

2

3∑
r=0

Nr
αV

= k00α0 +
1

2
(mod 1), (57)

V1 · NαV =
1

3

( 3∑
r=1

Nr
αV

+
3∑

ℓ=1

Jℓ
αV

)
+vIpI =−k21α2 (mod 1), (58)

V2 · NαV = wp1 +AIpI = 0 (mod 1). (59)

If k21 = 0, then the gauge group of the A2 model is the same as that of
N2. If k21 ̸= 0, then the gauge group is broken down to (E6)

2 ⊗ (SU(3))5.
For definiteness we will choose k21 = 0. Then the untwisted sectors con-
tribute the following massless states: (i) The gravitonN = 1 supermultiplet;
(ii) the dilaton N = 1 supermultiplet; (iii) N = 1 Yang-Mills supermultiplet
transforming in the adjoint of the gauge group E6 ⊗ E6 ⊗ E6 ⊗ (SU(3))2

(these states satisfy vIpI ∈ Z).
Next, consider the twisted sectors αV = α0V0 + α1V1 (α1 = 1, 2). The

spectrum generating formula in the twisted sectors reads ((vI)2 = 2/3):

V0 · NαV =
1

2

3∑
r=0

Nr
αV

= α0(k00 +
1

2
α1) (mod 1), (60)

α1V1 · NαV +
1

2
P⃗ 2
αV

=
α1

3

( 3∑
r=1

Nr
αV

+
3∑

ℓ=1

Jℓ
αV

)
+vIpI+

1

2

3∑
ℓ=1

p2ℓ =

−1

3
α2
1 (mod 1), (61)

V2 · NαV = wp1 +AIpI = −2

3
α1 (mod 1). (62)

The twisted sectors with α2 = 0 give rise to one left-moving chiral N = 1
supermultiplet transforming in the following representations of the group
SU(3)⊗E6⊗SU(3)⊗E6⊗SU(3)⊗(SU(3))2: (i) (1,27,1,1,1,x,y), where
one of x,y is 3 or 3, and the other one is 1 (these have AIpI ∈ 1

3 + Z); (ii)
(3,1,1,1,3,x,y), where one of x,y is 3 or 3, and the other one is 1 (these
have AIpI ∈ Z).
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The twisted sectors with α2 = 2 give rise to one left-moving chiral N = 1
supermultiplet transforming in the following representations of the group
SU(3)⊗E6⊗SU(3)⊗E6⊗SU(3)⊗(SU(3))2: (i) (1,1,1,27,1,x,y), where
one of x,y is 3 or 3, and the other one is 1 (these have AIpI ∈ −1

3 + Z);
(ii) (1,1,3,1,3,x,y), where one of x,y is 3 or 3, and the other one is 1
(these have AIpI ∈ Z).

The twisted sectors with α2 = 1 give rise to one left-moving chiral N = 1
supermultiplet transforming in the following representations of the group
SU(3) ⊗ E6 ⊗ SU(3) ⊗ E6 ⊗ SU(3) ⊗ (SU(3))2: (3,1,3,1,1,x,y), where
one of x,y is 3 or 3, and the other one is 1 (these have AIpI ∈ Z).

Thus, the states from the twisted sectors combine into the following rep-
resentations of the resulting gauge group E6 ⊗ E6 ⊗ E6 ⊗ SU(3) ⊗ SU(3):
There is one left-moving chiral N = 1 supermultiplet in the representations
(27,1,1,x,y), (1,27,1,x,y), (1,1,27,x,y), where one of x,y is 3 or 3,
and the other one is 1.

Finally, we briefly discuss the model, which we refer to as A3, generated
by the vectors V0, V1, V2 and V3, with ÃI = (07 1|07 1). Note that if
k30 = 1/2, the supersymmetry is broken to N = 0. For definiteness we will
choose k30 = 0. Then the model possesses N = 1 space-time supersym-
metry. The sectors αV with α3 = 1 contribute massive string states only.
However, some of the states from the other sectors are projected out due to
the presence of the Wilson line generated by V3. Thus, the gauge symmetry
is broken down to E6⊗ (SO(10)⊗U(1))2⊗ (SU(2)⊗U(1))2. In the twisted
sectors we have chiral N = 1 supermultiplets in the following representa-
tions of E6 ⊗ SO(10) ⊗ SO(10) ⊗ SU(2) ⊗ SU(2) (Here we drop the U(1)
charges for the sake of simplicity; they are straightforward to work out,
however): Four fields (with different U(1) charges) in (27,1,1,1,1); one
field in each of (1,16,1,2,1), (1,16,1,1,2), (1,1,16,2,1), (1,1,16,1,2).
We also have Higgs N = 1 supermultiplets in the following representa-
tions: Four fields (with different U(1) charges) in each of (1,10,1,1,1),
(1,1,10,1,1). There are also four singlets in the twisted sectors.

The examples we have considered indicate that incorporating Wilson lines
into asymmetric orbifolds may be useful for controlling the gauge symmetry
and the number of chiral generations in a given model. As we discuss in
the next section, asymmetric orbifolds are also very handy in constructing
models with reduced rank.

5. Rank Reduction

We start with an even self-dual Lorentzian lattice Γ6,22 = Γ2,2 ⊗ Γ2,2 ⊗
Γ2,2⊗Γ8⊗Γ8. Here we take Γ2,2 to be the even self-dual Lorentzian lattice
spanned by the vectors (p, p) such that p, p ∈ Γ̃2 (SU(3) weight lattice),
and p− p ∈ Γ2 (SU(3) root lattice). Γ8 is the E8 root lattice.
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Consider the following set of generating vectors (Here we choose ζ ∈ Γ2,
ζ2 = 2).

W =
(
0
(
0
1

2

)2
(0 0)||

(1
2

)2
0|
(1
2

)4
|04
)
, (63)

V0 =
(
− 1

2

(
− 1

2
0
)3

|03|04|04
)
, (64)

V1 =
(
0
(
− 1

2

1

2

)2
(0 0)|

(1
2

)2(1
2
ζ
)
|
(1
2

)4
|04
)
. (65)

Here all the bosons are complexified. The complexification for the sixteen
E8 ⊗E8 real bosons φI

1 and φI
2, I = 1, . . . , 8 is chosen as ϕ7 = 1

2 (φ
1
1 − φ1

2 +

i(φ2
1 − φ2

2)), . . . , ϕ
10 = 1

2 (φ
7
1 − φ7

2 + i(φ8
1 − φ8

2)); ϕ11 = 1
2 (φ

1
1 + φ1

2 + i(φ2
1 +

φ2
2)), . . . , ϕ

14 = 1
2 (φ

7
1 + φ7

2 + i(φ8
1 + φ8

2)). The second single vertical line in
Vi separates ϕℓ, ℓ = 7, . . . , 10, from ϕℓ, ℓ = 11, . . . , 14.

The twist V1 has the following action on ϕℓ, ℓ = 7, . . . , 14: ϕℓ → −ϕℓ,
ℓ = 7, . . . , 10, and ϕℓ → ϕℓ, ℓ = 11, . . . , 14. This corresponds to modding out
by the permutational symmetry ϕI1 ↔ ϕI2, that is, the outer automorphism
of the Γ8 ⊗ Γ8 lattice.

The matrix of the dot products Vi · Vj and structure constants kij for
this model are given by

Vi · Vj =

 −1 −1

2

−1

2
−1

 , kij =

 k00 k10 +
1

2

k10 k10 +
1

2

 . (66)

The invariant sublattice is I = Γ2,2 ⊗∆8, where ∆8 ≡ {
√
2pI |pI ∈ Γ8}.

The dual lattice is Ĩ = Γ2,2 ⊗ ∆̃8, where ∆̃8 ≡ { 1√
2
pI |pI ∈ Γ8} is the lattice

dual to ∆8. Note that NI = 2(= t1). The determinant of the metric of I is
MI = 28, and in the twisted sectors (α1 = 1) we have

ξ(α1) =M
− 1

2

I

[
2 sin

(α1π

2

)]8
= 16. (67)

The model generated by the set {V0, V1} has N = 2 space-time super-
symmetry. The bosons come from the sectors with α0 = 0, whereas the
fermions arise in the sectors with α0 = 1.

First consider the untwisted sectors αV = α0V0 (α1 = 0). In these
sectors the momenta P⃗αV = (p1, p2, p3||p1, p2, p3|q) (pℓ, pℓ ∈ Γ̃2, pℓ−pℓ ∈ Γ2,
ℓ = 1, 2, 3; q ∈ Γ8 ⊗ Γ8) span Γ6,22.

The spectrum generating formula in the untwisted sectors reads

V0 · NαV =
1

2

3∑
r=0

Nr
αV

= k00α0 +
1

2
(mod 1), (68)

V1 · NαV =
1

2

(
N1

αV
+N2

αV
+ J1

αV
+ J2

αV
− J4

αV
− J5

αV
−
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−
10∑
ℓ=7

Jℓ
αV

+ ζp3
)
=
(
k10 +

1

2

)
α0 (mod 1). (69)

The untwisted sectors 0 and V0 give rise to the following massless states:
(i) The N = 2 supergravity multiplet; (ii) N = 2 Yang-Mills supermultiplet
transforming in the adjoint of the gauge group E8 ⊗ SU(2) ⊗ SU(2) ⊗
(SU(2) ⊗ U(1)) gauge group; (iii) two N = 2 scalar supermultiplets in
each of the representations (248,1,1,1)(0), (1,5,1,1)(0), (1,1,5,1)(0),
(1,1,1,2)(3) and (1,1,1,2)(−3) of E8 ⊗ SU(2)⊗ SU(2)⊗ (SU(2)⊗U(1))
(The U(1) charge is given in regular font in the parentheses).

In the twisted sectors αV = α0V0 + V1 the momenta P⃗αV =

(0, 0, p3||0, 0, p3|04|Q) (p3, p3 ∈ Γ̃2, p3 − p3 ∈ Γ2; Q ∈ ∆̃8) span Ĩ.
The spectrum generating formula in the twisted sectors reads (α1 = 1):

V0 · NαV =
1

2

3∑
r=0

Nr
αV

= k00α0 + k10 +
1

2
(mod 1), (70)

V1 · NαV +
1

2
P⃗ 2
αV

=
1

2

(
N1

αV
+N2

αV
+ J1

αV
+ J2

αV
− J4

αV
− J5

αV
−

−
10∑
ℓ=7

Jℓ
αV

+ ζp3 +Q2
)
=
(
k10 +

1

2

)
(α0 + 1) (mod 1). (71)

Thus, the twisted sectors give rise to the following massless states: Four
N = 2 scalar supermultiplets transforming in the representation
(1,2,2,2)(0) of the gauge group.

Note the rank reduction of the gauge group from twenty-two to twelve.
This indicates that the gauge group is realized via a higher level Kac-Moody
algebra. Also note appearance of massless states in 5 irrep of SU(2). This
is too a sign of a higher level Kac-Moody algebra realization. A care-
ful analysis of the underlying conformal field theory unambiguously de-
termines the levels of each subgroup: E8 is realized at level two (It arises
in the breaking (E8)1 ⊗ (E8)1 ⊃ (E8)2 × (Ising Model); the central charge
of (E8)2 is c = 15/2, whereas an Ising model has c = 1/2); the first two
SU(2) subgroups are realized at level four (as a result of a special breaking
SU(3)1 ⊃ SU(2)4; note that under this breaking 8 = 3+5, and the central
charge of both SU(3)1 and SU(2)4 is c = 2); the last SU(2) is realized at
level one (It arises in a regular breaking SU(3)1 ⊃ SU(2)1 ⊗ U(1)).

6. Other Examples

For completeness, in this section we briefly discuss symmetric orbifolds
with and without Wilson lines. We construct these examples (familiar from
the previous developments [1, 6]) using the rules given in section 3. This is
to further clarify the rules and notation.
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6.1. Symmetric Orbifolds without Wilson Lines. We start from the
lattice Γ6,22 = Γ2,2⊗Γ2,2⊗Γ2,2⊗Γ8⊗Γ8 considered in the previous section.
Consider the model generated by the following set of vectors

W =
(
0
(
0
1

2

)3
||
(1
2

)3
|08|08

)
, (72)

V0 =
(
− 1

2

(
− 1

2
0
)3

||03|08|08
)
, (73)

V1 =
(
0
(
− 1

3

1

3

)3
||
(1
3

)3
|vI
)
, (74)

where the order of the shift vI is three, i.e., 3vI ∈ Γ8 ⊗ Γ8. The matrix of
the dot products Vi · Vj and structure constants kij are given by

Vi · Vj =

 −1 −1

2

−1

2
(vI)2 − 1

3

 , kij =

(
k00 0
1

2

1

2
(vI)2 +

1

3

)
. (75)

Due to the constraint (35) we have m1k11 ∈ Z (m1 = t1 = 3), and the shift
vI must satisfy the condition

3(vI)2 ∈ 2Z . (76)
The sublattice I ⊂ Γ6,22 invariant under the twist part of V1 is given

by I = Γ8 ⊗ Γ8, and NI = MI = 1 (since it is an even self-dual lattice).
Therefore, the multiplicity of states ξ(α) in the twisted sectors (α = 1, 2) is
given by

ξ(α1) =M
− 1

2

I

[
2 sin

(α1π

3

)]6
= 27. (77)

If we take vI = ( 13
1
3

2
3 05|08), then we obtain the original symmetric

orbifold model of [1]. The gauge group of this model is E6 ⊗ SU(3) ⊗
E8 ⊗ (U(1))6 (The six U(1)’s survive because before orbifolding the Γ2,2

sublattices were at the special radius of enhanced gauge symmetry; after
orbifolding the original SU(3) gauge group undergoes a regular breaking
SU(3) ⊃ U(1) ⊗ U(1)). The twisted sectors give rise to ξ(α1) = 27 chiral
matter fields (Which is the number of fixed points of the original Z-orbifold).

6.2. Symmetric Orbifolds with Wilson Lines. Now let us start from
the lattice Γ6,22 of the N2 Narain model discussed in subsection 4.2. Con-
sider the model generated by the same vectors as in the previous subsection
(The structure constants are then the same as for the previous model).

The invariant sublattice is given by I = {pI |pIAI ∈ Z, pI ∈ Γ8 ⊗ Γ8}
(Here AI = ( 13

1
3

2
3 05|(− 1

3 ) (−1
3 ) (−2

3 ) 05) is the Wilson line). The dual
lattice is Ĩ = {pI + AI |pI ∈ Γ8 ⊗ Γ8}, and NI = 3(= t1). The determinant
of the metric of I is MI = 9, and

ξ(α1) =M
− 1

2

I

[
2 sin

(α1π

3

)]6
= 9, α1 = 1, 2. (78)
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This model is one of the symmetric orbifold models with one Wilson line
[6] at the special radius. The model has N = 1 space-time supersymmetry,
and the gauge group is E6 ⊗ E6 ⊗ (SU(6) ⊗ U(1)) ⊗ (U(1))4 (Recall that
the N2 model has the gauge group (E6)

3 ⊗ SU(3)2; after orbifolding one
of the E6 subgroups undergoes a regular breaking E6 ⊃ SU(6)⊗U(1), and
each of the SU(3)’s breaks to U(1)2). The twisted sectors contribute chiral
matter fields with the multiplicity ξ(α1) = 9.

7. Discussion and Remarks

We have seen that the rules for asymmetric orbifolds are almost as easy to
use as those for the free fermionic string models. The rules for asymmetric
orbifold model-building are summarized at the end of section 3. These rules
are for models with only one twist. Can the rules given in this paper be
generalized to models with multi-twists? In cases where the twists do not
overlap, this generalization is straightforward. In more general situations,
the twist (plus shift) operators typically do not commute with each other.
Can the rules given in this paper be further generalized to include such
non-Abelian orbifolds?

Recall the rules for the free fermionic string models [3]. It is well-known
that many of the free fermionic string models, in particular, the ones with
reduced rank gauge groups, can be constructed in the bosonic language as
non-Abelian orbifolds. However, it is also known that some of the Abelian
(e.g., Z2) orbifold models easily obtainable in the bosonic language cannot
be constructed with the free fermionic string model rules.

Consider the example of a single boson. By the free fermionic string
construction rules, we must start with a complex fermion, i.e., a boson
compactified at radius one. Using the free fermionic string rules, it is easy
to change the radius to any rational value. It is also easy to construct its
Z2 orbifold at radius one, using the real fermion basis. However, the rules
[5] do not allow us to construct the Z2 orbifold version at any other radius.
This is because this particular model involves a subgroup of the space group,
which is non-Abelian. Fortunately, it turns out that the free fermionic string
construction rules can be generalized to include such non-Abelian orbifolds.
Such a generalization can also be applied to the rules given in this paper as
well. This generalization will be discussed elsewhere.

Appendix A. Fermion and Boson Characters

A.1. Free Fermions. Consider a single free left-moving complex fermion
with the monodromy

ψv(ze
2πi) = e−2πivψv(z), −

1

2
≤ v <

1

2
. (79)
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The field ψv(z) has the following mode expansion

ψv(z) =
∞∑

n=1

{
bn+v−1/2z

−(n+v) + d†n−v−1/2z
n−v−1

}
. (80)

Here b†r and d†s are creation operators, and br and ds are annihilation oper-
ators. The quantization conditions read

{b†r, br′} = δrr′ , {d†s, ds′} = δss′ , others vanish. (81)

The Hamiltonian Hv and fermion number operator Nv are given by

Hv =
v2

2
− 1

24
+

∞∑
n=1

{(
n+ v − 1

2

)
b†n+v−1/2bn+v−1/2 +

+
(
n− v − 1

2

)
d†n−v−1/2dn−v−1/2

}
, (82)

Nv =

∞∑
n=1

{
b†n+v−1/2bn+v−1/2 − d†n−v−1/2dn−v−1/2

}
. (83)

Note that the vacuum energy is v2

2 − 1
24 . Also note that for a Ramond

fermion (v = −1/2) the vacuum is degenerate: There are two ground states
|0⟩ and b†0|0⟩.

The operator −Nv is the generator of U(1) rotations. The corresponding
characters read

Zv
u = Tr

(
qHvg−1(u)

)
= Tr

(
qHv exp(−2πiuNv)

)
=

= q
v2

2 − 1
24

∞∏
n=1

(
1 + qn+v−1/2e−2πiu

)(
1 + qn−v−1/2e2πiu

)
. (84)

Under the generators of modular transformations (q = exp(2πiτ))

S : τ → −1/τ , T : τ → τ + 1, (85)

the characters (84) transform as

Zv
u

S→ e2πivuZu
−v , (86)

Zv
u

T→ e2πi(
v2

2 − 1
24 )Zv

u−v−1/2 . (87)

In the cases where v = −1/2 (Ramond fermion) or v = 0 (Neveu-Schwarz
fermion) in (79) the complex fermion ψv(z) can be represented in terms of
a linear combination of two real fermions. The corresponding characters for
real fermions then are square roots of the characters Zv

u for the complex
fermions (v and u being −1/2 or 0). A more detailed discussion of the real
fermion characters is given in [5].
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A.2. Twisted Bosons. Consider a single free left-moving complex boson
with the monodromy

∂ϕv(ze
2πi) = e−2πiv∂ϕv(z), 0 ≤ v < 1. (88)

The field ∂ϕv(z) has the following mode expansion
i∂ϕv(z) = δv,0pz

−1 + (1− δv,0)
√
v bvz

−v−1 +

+
∞∑

n=1

{√
n+ v bn+vz

−n−v−1 +
√
n− v d†n−vz

n−v−1
}
.(89)

Here b†r and d†s are creation operators, and br and ds are annihilation oper-
ators. The quantization conditions read

[br, b
†
r′ ] = δrr′ , [ds, d

†
s′ ] = δss′ , [x

†, p] = [x, p†] = i, others vanish. (90)
The Hamiltonian Hv and angular momentum operator Jv are given by

Hv=δv,0pp
†+(1−δv,0)vb†vbv+

∞∑
n=1

{
(n+v)b†n+vbn+v+(n−v)d†n−vdn−v

}
+

+
v(1− v)

2
− 1

12
, (91)

Jv=δv,0i(xp
† − x†p)−(1− δv,0)b

†
vbv−

∞∑
n=1

{
b†n+vbn+v−d†n−vdn−v

}
. (92)

Note that the vacuum energy is v(1−v)
2 − 1

24 .
The operator Jv is the generator of U(1) rotations. The corresponding

characters read (v + u ̸= 0):
Xv

u =Tr
(
qHvg−1(u)

)
= Tr

(
qHv exp(2πiuJv)

)
=

=q
v(1−v)

2 − 1
12

(
1− (1− δv,0)q

ve−2πiu
)−1×

×
∞∏

n=1

(
1− qn+ve−2πiu

)−1(
1− qn−ve2πiu

)−1
. (93)

Under the generators of modular transformations the characters (93)
transform as

Xv
u

S→
(
2 sin(πu)δv,0 + [2 sin(πv)]−1δu,0+

+ (1− δvu,0)e
−2πi(v−1/2)(u−1/2)

)
Xu

−v , (94)

Xv
u

T→ e2πi(
v(1−v)

2 − 1
12 )Xv

u−v . (95)

In the cases where v = −1/2 or v = 0 in (88), the complex boson ϕv(z)
can be represented in terms of a linear combination of two real bosons. The
corresponding characters for real bosons then are square roots of the char-
acters Xv

u for the complex bosons (v and u being −1/2 or 0). The twisted
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boson characters with a different overall normalization were discussed in
Ref. [8].

A.3. Chiral Lattices. Consider d free left-moving real bosons with the
monodromy

ϕIv(ze
2πi) = ϕIv(z) + vI , (96)

where I = 1, 2, . . . , d, and vI is the Ith component of the shift vector v. The
field ϕIv(z) has the following mode expansion:

iϕIv(z) = ixI + (pI + vI) ln(z)−
∑
n̸=0

1√
n
aInz

−n. (97)

Here aIn, n > 0, are annihilation operators, and aIn, n < 0, are creation
operators. In the following the eigenvalues of the momentum operator pI
are taken to span an even lattice Γd. The quantization conditions read

[aIn, a
J
n′ ] = δIJδnn′ , [xI , pJ ] = iδIJ , others vanish. (98)

The Hamiltonian operator is given by

Hv =
(p+ v)2

2
+

∞∑
n=1

naI−na
I
n − d

24
. (99)

The momentum operator p is the generator of translations. Thus, the
action of the operator

g(u) ≡ exp(2πipu), pu ≡ pIuI , (100)
on the field ϕIv(z) is given by

g(u)ϕIv(z)g
−1(u) = ϕIv(z) + uI . (101)

The corresponding characters read
Y v
u = Tr(qHvg−1(u)) = Tr(qHv exp(−2πipu)) =

=
1

ηd(q)

∑
p∈Γd

q
1
2 (p+v)2 exp(−2πipu). (102)

Let wa ∈ Γ̃d, a = 1, . . . ,M−1, be a set of vectors such that Γd
0⊕Γd

1⊕· · ·⊕
Γd
M−1 = Γ̃d, where w0 is the null vector (wI

0 ≡ 0), and Γd
a ≡ {wa+p|p ∈ Γd},

a = 0, 1, . . . ,M − 1 (Thus, wa /∈ Γd for a ̸= 0; also note that M = det(gij)).
Consider the set of characters Y v+wa

u :

Y v+wa
u

T→ exp
(
2πi
(1
2
(wa + v)2 − d

24

))
Y v+wa
u−v , (103)

Y v+wa
u

S→
M−1∑
b=0

Sab(v, u)Y
u+wb
−v , (104)

where
Sab(v, u) =M− 1

2 exp
(
2πi(wa + v)(wb + u)

)
. (105)
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Let N be the smallest positive integer such that ∀a Nw2
a ∈ 2Z. If N = 1

(in which case Γd is an even self-dual lattice with M = det(gij) = 1), we
will use the characters Y v

u defined in (102) whose modular transformations
are particularly simple for N = 1:

Y v
u

T→ exp
(
2πi
(1
2
v2 − d

24

))
Y v
u−v , (106)

Y v
u

S→ exp(2πivu)Y u
−v . (107)

If N > 1, the set of characters Y v+wa
u is such that the T -transformation

is diagonal (with respect to a), whereas the S-transformation is not. There
exists a basis such that both S- and T -transformations act as permutations.
In particular, consider the case where N is a prime. In the discussion of
asymmetric orbifolds we will use the set of characters

Y 0,v
σ,u ≡ Y v

u , (108)

Y λ,v
σ,u ≡

M−1∑
a=0

exp
(
− 2πiλ

(
uwa +

1

2
σw2

a

))
Y v+λwa
u , λ ̸= 0, (109)

where λ and σ are integers taking values between 0 and N − 1, such that
λ+ σ ̸= 0. The modular transformation properties of Y λ,v

σ,u read

Y λ,v
σ,u

T→ exp
(
2πi
(1
2
v2 − d

24

))
Y λ,v
σ−λ,u−v , (110)

Y λ,v
σ,u

S→
{
M− 1

2 δλ,0 +M
1
2 δσ,0 + (1− δλσ,0) exp(2πiχ(λ, σ))

}
×

× exp(2πivu)Y σ,u
−λ,−v , (111)

where Y λ,v
σ,u ≡ Y λ+N,v

σ,u ≡ Y λ,v
σ+N,u, and

exp(2πiχ(λ, σ)) ≡M− 1
2

M−1∑
a=0

exp
(
− 2πi

1

2
λσw2

a

)
, λσ ̸= 0. (112)

Note that χ(λ, σ) are real numbers, and χ(λ, λ) ≡ −d/8.
To illustrate the above discussion we note that the root lattices of simply-

laced Lie groups are even. The groups that have prime N are the following:
(i) SU(n), n is an odd prime, and N = n; (ii) E6, N = 3; (iii) SO(8n),
N = 2; (iv) E8, N = 1.

Similar considerations apply to right-moving chiral lattices, and also
Lorentzian lattices. In the latter case all the scalar products of vectors
are understood with respect to the Lorentzian signature.

Appendix B. N2 Model

Since the N2 model of subsection 4.2 has N = 4 space-time supersym-
metry, it must correspond to one of the four-dimensional N = 4 super-
symmetric models classified by Narain [7], i.e., there must be a choice of
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the constant background fields such that the corresponding even self-dual
Lorentzian lattice is spanned by momenta (56). Here we briefly construct
such a lattice.

Consider a general lattice Γ2,18 spanned by the vectors
P = kimi + kin

i + kJpJ , mi, n
i ∈ Z , pJ ∈ Γ16, (113)

where (i = 1, 2)

ki =
(1
2
ℓ∗i;

1

2
ℓ∗i;0

)
, (114)

ki =
(
−
(
Bji +

1

4
AI

jA
I
i

)
ℓ∗j − ℓi;−

(
Bji +

1

4
AI

jA
I
i

)
ℓ∗j + ℓi;A

I
i

)
, (115)

kJ =
(
− 1

2
ℓ∗iAJ

i ;−
1

2
ℓ∗iAJ

i ; δ
IJ
)

(116)

are Lorentzian vectors of signature ((−)2, (+)18), and
ℓ∗i · ℓj = δij , ℓi · ℓj = gij , ℓ

∗i · ℓ∗j = gij , (117)
gij , Bij and AI

i being constant background symmetric, anti-symmetric and
gauge (Wilson lines) fields, respectively. Suppose that ℓ∗i=2ζi and ℓj= 1

2ζ
∗
i ,

where {ζimi} = Γ2 (SU(3) root lattice), and {ζ∗i ni} = Γ̃2 (SU(3) weight
lattice), and in the following we will use the convention where ζ1 · ζ1 =
ζ2 · ζ2 = −2ζ1 · ζ2 = 2. Then, provided that AI

1 = −AI
2 ≡ AI , 2B12 =

−2B21 ∈ Z + 1
2 , and 1

2 (A
I)2 ∈ Z + 2

3 , the momenta P can be expressed as

P =
(
p; p; pI + α2A

I
)
, (118)

where p ∈ 3AIpIw + Γ2, p ∈ (3AIpI + α2)w + Γ2 and pI ∈ Γ16 (Here
α2 ≡ n1 − n2, and w ≡ ζ∗2 − ζ∗1 ).

The lattice Γ2,2⊗Γ2,2⊗Γ2,18 has exactly the momentum spectrum of the
model N2. This proves that the latter does describe an N = 4 space-time
supersymmetric heterotic string model with a Wilson line.
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