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ON THE STRONG LOGARITHMIC SUMMABILITY OF
THE DOUBLE FOURIER-WALSH-PALEY SERIES

R. GETSADZE

ABsTrRACT. The following theorem is proved: Suppose that E C
[0,1)? is any Lebesgue measurable set, u2E > 0, and ¢(u) is a
nonnegative, continuous and nondecreasing function on [0, c0)
such that u¢(u) is a convex function on [0,00) and ¢(u) =
o(lnu), u — oo. Then there exists a function g € L1(]0,1)%)
such that

/ | g(x,y) | (| g(x,y) [)dzdy < oo
[0,1)?

and the sequence of the strong logarithmic means Q%")(g; z,y)
by squares of the Fourier series of g with respect to the double
Walsh-Paley system, that is the sequence

W | S5 (g5, y) g9(z,y) |
( lnN Z

9:2,Y)

)

is not bounded in measure on E .
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1. INTRODUCTION

Let pg, d = 1,2,..., denote the Lebesgue measure in the Euclidean
space R?.
Set
I1=100,1). (1)

If f € Llog™ L(I?), F. Méricz, F. Schipp and W. R. Wade [1] have shown
that as ny,ny — oo, the (C, 1) means a,(fl”?w (f;z,y) of the double Fourier-
Walsh-Paley series of f converge to f(z,y) for a.e. (x,y) € I?. G4t [2] proved
that this result is best possible in the following sense. Given a positive
measurable function §(¢) defined on [0, c0) with lim 0(t) = 0, there is h €

L5(L)log™ L(I?), i. f|h|6 h|)log* |n| < oo, with limsup o4] yu, (5

7n1,N2—>00

x,y) = oo for a.e. (x,y) €%

Let S,(,szl (f;x,y) denote the rectagular partial sum of the Fourier series of
f € L1(I?) with respect to the double Walsh-Paley system (m,n = 1,2,...).

Goginava [3] proved that given a function f € L;(I?), then sequence
of Marcinkiewicz (C, 1) means of it’s double Fourier-Walsh-Paley series is
convergent a.e. to f(x,y), that is

N

tim S (SE(fr ) — f() =0

n=1

holds for almost all (z,y) € I°.
It follows from a general result of Rodin ( [4 ], p. 764) that, the following
theorem is true

Theorem 1. If f € LLn" L(I?) then

M N
MN_>OOMNZZ fyfﬂy flx,y) |=0
k=1 1=1

almost everywhere on I2.

The strong logarithmic means Q%ﬂ)( f;x,y) by squares of the Fourier
series of a function f € L;(I?) with respect to the double Walsh-Paley
system are defined by (N =2,3...)

@) (f:2,y) INZ (s, y) f(%y)\. @)

It is natural to study the class of all those functions f that satisfy the
following condition

: (w) (e, —
J\;g}nooQN (f7$7y) - 0
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almost everywhere on I2. In this paper we prove that this class cannot be
wider than LLn* L(I?). More precisely, we prove that the following theorem
is true

Theorem 2. Suppose that E C I? is any Lebesque measurable set,
uoE > 0, and ¢(u) is a nonnegative, continuous and nondecreasing function
on [0,00) such that up(u) is a convex function on [0,00) and

o(u) = o(lnu), u— oco. (3)

Then there exists a function g € L1(I?) such that

[ st 190 ) sy < oo

and the sequence {Q%ﬂ)(g;x,y) : N =1,2,...} is not bounded in measure
on E.

The corresponding results for the double trigonometric Fourier series were
studied in papers [5]-[11].

2. SOME DEFINITIONS AND AUXILIARY PROPOSITIONS

Let Z denote the set of all positive integers. For a finite set A Let | A |
denote the number of elements in A.

The Walsh-Paley system {wy,(x), m =0,1,2,...} is defined on I in the
following way (see, for example [12], p.1). Given a non-negative integer m
it is possible to write the binary expansion of m uniquely as

oo

m=>"o;(m)2’, (4)
where a;(m) =0 or aj(m) = 1. Then
wn() = [ [ @), (5)
i=0

where {r;(z)} is the Rademacher system.
Let Sfﬁf 8 (f;x,y) denote the square partial sum of the Fourier series of
f € Ly(I?) with respect to the double Walsh-Paley system (m = 1,2,...) :
m—1m—1 1 1
s =3 3 [ [ fetiulous@dsdusau ). (©)
i=0 j=0 70 O
We define Dirichlet kernels of the Walsh-Paley system by D(()w) () =0

and
m—1

DiW(x) =Y wi(x), x€[0,1), m=1,2,.... (7)
1=
The following is true (see [13], p.272)
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Lemma 1. Letn € Z and

3
|
—

o (m)2 (8)

3
Il
I

i
be the binary expansion of m € Z.
Let k be an integer such that 1 < k < n and let x be a real number that
satisfies the inequality

2% <z< 2,% ()
Then
a) if ag—1(m) =0 we have
k—1 4
DL(2) = wn(@) 3 as(m)? (10)
i=0
and
b) if ag—1(m) =1 we have
k—1
D{(x) = —wm(@)[1+ Y (1 = az(m))2']. (11)
i=0

Let for a number h € I, Ij, denote the interval [0,1 — h).

If F is a Lebesgue measurable set in R?, with 0 < usF < oo, then let
LO°(F) denote the set of all Lebesgue measurable functions on F' that are
finite a.e. on F.

A set @ of Lebesgue measurable functions on F' is called bounded in
measure on F' if for any € > 0 there is a constant R > 0 such that us{(z,y) €
F: | f(z,y) |> R} < e for any function f € Q.

A sequence {f,(z,y), n =1,2,...} of Lebesgue measurable functions on
F' is called bounded in measure on F' if for any ¢ > 0 there is a constant
Ry > 0 such that po{(x,y) € F: | fu(z,y) |> Ri} <eforanyn=1,2,....

An operator T : Ly(I?) — L°(I?) is called superlinear ([14], p.131) if for
any fo € Li(I?) there is a linear operator Gy, : L1(I?) — L°(I?) such that

Gro(fo)(z,y) = T(fo)(x,y) (12)
and
| Gro(F)(@,y) ISIT(f)(x,y) | for any f € Ly (I?) (13)
and for almost all points (z,y) in I2.

A superlinear operator T : Ly(I?) — L9(I?) is said to be bounded in
measure on I2 if the set of functions

Q=AT(): I fle, <1}

is bounded in measure on I2.
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For each pair of numbers (6,n) € I? and a number h € I introduce the
following function of two variables (z,y) defined on I? by

h=2,  if (x,y) € (0,04 h] x [n,n+ hl;

14
0, otherwise on 12 (14)

607177h(x? y) = {

The Kernel for a superlinear operator T : Ly (I?) — L%(I?) is defined by
K(ag Y, 9, 77) = hl—i>moo T((ng,h(., ))(xa y) ; (33, Y, 07 77) € 147 (15)

provided the limit exists for a.e. (z,y,0,n) € I*.
In [15] we have proved the following

Theorem 3. Suppose that E C I? is any Lebesgue measurable set,
waE > 0, and ¢(u) is a nonnegative, continuous and nondecreasing function
on [0,00) such that ugp(u) is a convex function on [0, 00).

Let {T,, : Li(I?) — L°(I?),n = 1,2,...} be a sequence of superlinear
operators that are bounded in measure on I? and let K, (z,y,0,7),

| Kn(z,y,0,1) |loo< 00, (16)

be the kernel for T,, n=1,2,....
Suppose that for each integer n > ng there exist: positive numbers h.,,
&n, and a Lebesgue measurable set E,, B, C E, usE, >~ > 0, such that:
i) For each set F' C E,, with psF' > %, there exists a positive number
An(F) with the property

pa{(z,y,0,m) € F x I? : | Kp(2,y,0,n) |> CiAu(F)} > /\%LF) >0. (17)

ii)
Jim ¢, = oo, (18)

iii)
d(hy%) = 0(&,) (n— 00), (19)

iv)

paf(z,y,0,n) € Ex
KIZ T, ),9) — Ko, 6,m) [ 1) < 550 (20)
and

V)
hy < tn, (21)

where
Ay = supp. peg,, #QFZ%})‘TL(F)) (22)
P U (23)

~ 50A,
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and C1, y1 and ng are positive constants , independent of n and (x,y).
Then there exists a function g € L1(I?) such that

/I2 | 9(z,y) | ¢(| 9(z,y) |)dady < oo

and the sequence of functions {T,(g), n =1,2,...} is not bounded in mea-
sure on I.

3. PROOF OF THEOREM 4

11 1 1
By= U [ﬁ’Qk—l)XbN—k’zN—k—l)' (24)

(5]
1 1 1 N
paBy = Z KONk = 31N (25)
k=[F1+1

Now we prove

Lemma 2. Let the set By be defined by (24). Then for all integers
N > Ny and (z,y) € By the following inequality holds

2N
1 | D (@)D (y) |
N m

m=1

> 02V, (26)

where Cy and Ny are positive constants.

Proof. We choose a positive integer ¢ such that
1/1 1
—(z- 4f)2*2q . 2
C=3 ( 5 — 64 >0 (27)

We keep ¢ fixed.
Let (z,y) € By. Then (see (24)) there exists an integer k = k(z,y) such
that

N N
= <k< |l
T ises(3] (29)
1 1
27 S Tz < 2k—1 (29)
and
1 1
oN—F =Y < N1 (30)



ON THE STRONG LOGARITHMIC SUMMABILITY

Then according to the Abel’s transformation

2N _1 1
— | DW) () pw) -
> — | D@D () |

m=1

j Jj+1

73

2N _1 j 2N
1 1 1
=Y (5-77) X IR @D W) | 455 D | DY @)D ) |
j=1 m=1 m=1

N1 J
> Y (5-759) X 1 W@ ) 2

j=1 J ']+1 m=1
1 2N 1 1 J
= Z B Z DY) (2) DS (y) >
j=1 m=1
LN LNy
-1 5> | D@D ) |2
j:2[%1+1+1 m=1
1A= 1
D S S RIET I
j=olT 4 T m=[4]+1
R
>1 LY D@D W) | (31)
3:2[%]+1+1 J mePy
where (see (28), (4))
P={meZ;: 1<m<j, ag_1(m) =ag_2(m)- - = ag_q(m) =1}U
U{fme Zy: 1<m<j, ap_1(m) =ap_o(m)- - =ap_q(m) =0} (33)
and
Q={meZ;: 1<m<j, ay_g_1(m)=
=an_k—2(m) - = an_g_q(m) =1}U
UmeZy: 1<m<j, an_k-_1(m) =
= OZN,k,Q(m) e = aN,k,q(m) = 0} (34)
Let j be an integer such that
T L1 < j <oV 2 (35)
It is obvious that then (see (28), (27))
(36)

logoj] >N —-k—-1>N—-k—q>k—1>k—q>0,
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for all N > N5, where N, is a certain positive constant.
It is clear that the number of elements of the set P U @ satisfies the
following inequality (see (33), (34))

| PUQ |< 2log2dl+6-a < 642%.

Therefore (see (32))
J J
Py|>=—1—-64=—.
Py l>d 164 (37)

Let m € Py. Then (see (32), (4), (36))

]

m = Qlog, j) (m)Q[logz iy Oé[1og2j]_1(m)2“°g2 =14 . 4 a[%](m)g + ...
tan_p_1(m)2VN TRy aN_k_q(m)ZN_k_q +...
Fap1 (m)25 b g (m)25 7+ ag(m) > 25T (38)
Now we will prove that
| DR () |2 247 (39)

Indeed, we consider two cases:
Case 1. ag_1(m) = 1. Then (see (33), (32)) there exists an integer g
such that

k—1>i>k—q
and
o, (m) = 0.
Thus (see (38), (11), (29))
| D (@) = (1 — a1 (m))2" '+
o (1= ag_g(m))2F77 > (1 — g (m))27 > 2874, (40)

Case 2. ap_1(m) = 0. Then (see (33), (32)) there exists an integer jo
such that

k—1>j0>k—q
and
A (m) =1
Thus (see (8), (9), (10), (29))
| DI () = a1 (m)27 4 g (m)2870 > ag, (m) 2 > 2874,

The inequality (39) (see (40)) is proved.
Similarly we can prove that (see (30), (32), (34))

| DI (y) [= 2N (41)



ON THE STRONG LOGARITHMIC SUMMABILITY

Now we have (see (41), (39), (35)—(37), (27))

N_
R |

3 > 2 > 1D () DY (y) =

meP,

S

mePy

1
Z — | P2V 7% >

1221 1
> = Z ,—j(f— 6 )2N—2‘1>
-2 27\3 24
]—Q[TH'IJ,»] J
2N _2

11 1
>-(z - 4f)2N*2q
= 4(3 0434 2

j=olPi 4ty

1
= > (OyN2N
J

for all N > Ny (for certain positive constants Ny and Cy).

Lemma 2 (see (31), (26)) is proved.

75

O

Let (x,y) € I2. Consider the set (for the definition and properties of the

operation + see [12], p. 10-13)
By+(x,y) = {(0,n) € I* - (0,n) = (01+x,m+y), (01,m) € By}

It is clear that if (0, 7) € By+(z,y) then there exists a point (61,71) € By

2" (W) (g (w),
1 Z | D’ (0+2) Dy’ (n+y) | S
N

m=1 m
2N (w) (w)
1 Dy’ (01) Dy

m
m=1

such that (0,71) = (614, 71+y) and, consequently, according to Lemma 2,
for a.e. (6,n) € By+(z,y) and for all integers N > N the following in-
equality holds (see (26))
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Let F' C E be any set such that uo ' > %, where v =puo £/ > 0. Consider
the set

QN = {(1‘7%9777) EFX

L S~ | D8 04) D (ny) |
. — > 02N ). 43
It is easy to see from (25), (42), (43) that for a.e. (z,y) € I?
1 N
/ Xay (2,9, 0,m)dbdn 2 paBy 2 7o
and, consequently,
0 // 2.y, 0,n)dzdydody > L LN (44)
Hadln = I2XQN Y, 0,1 yavan = 6 249N "
We set in Theorem 3 for N > Ny, N € Z,, (see (43))
Ey = E, (45)
1
71
N2 4
v=11 (47)
Cy = Cy, (48)
and
Ay (F) =2V, (49)
Then (see (22), (23)) we have
Ay =2V (50)
and
1 14
=02 > 1
=55 gn = P (51)
In Theorem 3 we set also
N
T (f)(z,y) = 1 S M (52)
N ) N o] m )

that is clearly (see (6), (12), (13)) superlinear and bounded in measure.
Then it is easy to see that the kernel (see (14), (15), (52), (6))

Z\D (0+x)D )(n+y)|

K (2,9,0,7) (53)
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Introduce the following set

i—1 14 1 j—1 3 1
Pe=UU |5 5w —g) < [rsv —ow) 9
i=1j=1
It is clear that 5
poPy =1 — TN (55)

It is obvious that (see (14), (4)—(6)) we have for almost all (z,y,6,7) €
I? x Py and for all 1 <m < 2N and N > 16

m—1m—1 0+hn pn+hy
S Gnamiz =3 3 mit [ [T s () dsdtu ) ()=
i=0 j=0 n
m—1m—1
=3 3" wi®)w;(nwi(x)w;(y) = D (0-+2) DL (n+y).
i=0 ;=0
Set
O = {(r.0m) € T Ty :| & 37 [ 5tonnnin) |
N — Y, 0,m tN ¢ N Pt m
N . w .
1 i | D (642) DS (i) I‘ -
N — m '

It is obvious that (see (51)) O C I? x (I?\ Py) and, consequently, (see
(55)) ,

Taking account of (1)—(3), (43)-(53), (16)—(23), (57), (56) we can con-
clude that according to Theorem 3 we have proved Theorem 2.
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