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ON THE STRONG LOGARITHMIC SUMMABILITY OF
THE DOUBLE FOURIER-WALSH-PALEY SERIES

R. GETSADZE

Abstract. The following theorem is proved: Suppose that E ⊂
[0, 1)2 is any Lebesgue measurable set, µ2E > 0, and ϕ(u) is a
nonnegative, continuous and nondecreasing function on [0,∞)
such that uϕ(u) is a convex function on [0,∞) and ϕ(u) =
o(lnu), u → ∞. Then there exists a function g ∈ L1([0, 1)

2)
such that ∫

[0,1)2
| g(x, y) | ϕ(| g(x, y) |)dxdy < ∞

and the sequence of the strong logarithmic means Q
(w)
N (g;x, y)

by squares of the Fourier series of g with respect to the double
Walsh-Paley system, that is the sequence

Q
(w)
N (g;x, y) =

1

lnN

N∑
k=1

| S(w)
k,k (g;x, y)− g(x, y) |

k
,

is not bounded in measure on E.

ÒÄÆÉÖÌÄ. ÃÀÌÔÊÉÝÄÁÖËÉÀ ÛÄÌÃÄÂÉ ÈÄÏÒÄÌÀ: ÃÀÅÖÛÅÀÈ ÒÏÌ
E ⊂ [0, 1)2 ÍÄÁÉÓÌÉÄÒÉ ËÄÁÄÂÉÓ ÀÆÒÉÈ ÆÏÌÀÃÉ ÓÉÌÒÀÅËÄÀ,
µ2E > 0, ÃÀ ϕ(u) ÀÒÉÓ ÀÒÀÖÀÒÚÏ×ÉÈÉ, ÖßÚÅÄÔÉ ÃÀ ÀÒÀÊËÄ-
ÁÀÃÉ ×ÖÍØÝÉÀ [0,∞)-ÆÄ ÃÀ ϕ(u) = o(lnu), u → ∞. ÌÀÛÉÍ
ÀÒÓÄÁÏÁÓ ×ÖÍØÝÉÀ g ∈ L1([0, 1)

2) ÉÓÄÈÉ ÒÏÌ∫
[0,1)2

| g(x, y) | ϕ(| g(x, y) |)dxdy < ∞

ÃÀ g ×ÖÍØÝÉÉÓ ÏÒÌÀÂÉ ÖÏËÛ-ÐÄËÉÓ ÓÉÓÔÄÌÉÓ ÌÉÌÀÒÈ ×ÖÒÉ-

ÄÓ ÌßÊÒÉÅÉÓ ÞËÉÄÒÉ ËÏÂÀÒÉÈÌÖËÉ Q
(w)
N (g;x, y) ÓÀÛÖÀËÏÄ-

ÁÉÓ ÌÉÌÃÄÅÒÏÁÀ ÊÅÀÃÒÀÔÄÁÉÓ ÂÀÓßÅÒÉÅ, Ä.É. ÌÉÌÃÄÅÒÏÁÀ

Q
(w)
N (g;x, y) =

1

lnN

N∑
k=1

| S(w)
k,k (g;x, y)− g(x, y) |

k
,

ÀÒ ÀÒÉÓ ÆÏÌÉÈ ÛÄÌÏÓÀÆÙÅÒÖËÉ E-ÆÄ.
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1. Introduction

Let µd, d = 1, 2, . . . , denote the Lebesgue measure in the Euclidean
space Rd.

Set
I = [0, 1). (1)

If f ∈ L log+ L(I2), F. Móricz, F. Schipp and W. R. Wade [1] have shown
that as n1, n2 → ∞, the (C, 1) means σ

(w)
n1,n2(f ;x, y) of the double Fourier-

Walsh-Paley series of f converge to f(x, y) for a.e. (x, y) ∈ I2. Gát [2] proved
that this result is best possible in the following sense. Given a positive
measurable function δ(t) defined on [0,∞) with lim

t→∞
δ(t) = 0, there is h ∈

Lδ(L) log+ L(I2), i.e.
∫
I2

|h|δ(|h|) log+ |h| < ∞, with lim sup
n1,n2→∞

σ
(w)
2n1 ,2n2 (h;

x, y) = ∞ for a.e. (x, y) ∈ I2.
Let S(w)

m,n(f ;x, y) denote the rectagular partial sum of the Fourier series of
f ∈ L1(I

2) with respect to the double Walsh-Paley system (m,n = 1, 2, . . . ).
Goginava [3] proved that given a function f ∈ L1(I

2), then sequence
of Marcinkiewicz (C, 1) means of it’s double Fourier-Walsh-Paley series is
convergent a.e. to f(x, y), that is

lim
N→∞

1

N

N∑
n=1

(S(w)
n,n(f ;x, y)− f(x, y)) = 0

holds for almost all (x, y) ∈ I2.
It follows from a general result of Rodin ( [4 ], p. 764) that, the following

theorem is true

Theorem 1. If f ∈ LLn+L(I2) then

lim
M,N→∞

1

MN

M∑
k=1

N∑
l=1

| S(w)
k,l (f ;x, y)− f(x, y) |= 0

almost everywhere on I2.

The strong logarithmic means Q
(w)
N (f ;x, y) by squares of the Fourier

series of a function f ∈ L1(I
2) with respect to the double Walsh-Paley

system are defined by (N = 2, 3 . . . )

Q
(w)
N (f ;x, y) =

1

lnN

N∑
k=1

| S(w)
k,k (f ;x, y)− f(x, y) |

k
. (2)

It is natural to study the class of all those functions f that satisfy the
following condition

lim
N→∞

Q
(w)
N (f ;x, y) = 0
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almost everywhere on I2. In this paper we prove that this class cannot be
wider than LLn+L(I2). More precisely, we prove that the following theorem
is true

Theorem 2. Suppose that E ⊂ I2 is any Lebesgue measurable set,
µ2E > 0, and ϕ(u) is a nonnegative, continuous and nondecreasing function
on [0,∞) such that uϕ(u) is a convex function on [0,∞) and

ϕ(u) = o(lnu), u → ∞. (3)
Then there exists a function g ∈ L1(I

2) such that∫
I2

| g(x, y) | ϕ(| g(x, y) |)dxdy < ∞

and the sequence {Q(w)
N (g;x, y) : N = 1, 2, . . . } is not bounded in measure

on E.
The corresponding results for the double trigonometric Fourier series were

studied in papers [5]–[11].

2. Some Definitions and Auxiliary Propositions

Let Z+ denote the set of all positive integers. For a finite set A Let | A |
denote the number of elements in A.

The Walsh-Paley system {wm(x), m = 0, 1, 2, . . . } is defined on I in the
following way (see, for example [12], p.1). Given a non-negative integer m
it is possible to write the binary expansion of m uniquely as

m =
∞∑
i=0

αi(m)2i, (4)

where αi(m) = 0 or αi(m) = 1. Then

wm(x) =
∞∏
i=0

r
αi(m)
i (x), (5)

where {ri(x)} is the Rademacher system.
Let S

(w)
m,m(f ;x, y) denote the square partial sum of the Fourier series of

f ∈ L1(I
2) with respect to the double Walsh-Paley system (m = 1, 2, . . . ) :

S(w)
m,m(f ;x, y) =

m−1∑
i=0

m−1∑
j=0

∫ 1

0

∫ 1

0

f(s, t)wi(s)wj(t)dsdtwi(x)wj(y). (6)

We define Dirichlet kernels of the Walsh-Paley system by D
(w)
0 (x) = 0

and

D(w)
m (x) =

m−1∑
l=0

wl(x), x ∈ [0, 1), m = 1, 2, . . . . (7)

The following is true (see [13], p.272)
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Lemma 1. Let n ∈ Z+ and

m =
n−1∑
i=0

αi(m)2i (8)

be the binary expansion of m ∈ Z+.
Let k be an integer such that 1 ≤ k ≤ n and let x be a real number that

satisfies the inequality
1

2k
≤ x <

1

2k−1
. (9)

Then
a) if αk−1(m) = 0 we have

D(w)
m (x) = wm(x)

k−1∑
i=0

αi(m)2i (10)

and
b) if αk−1(m) = 1 we have

D(w)
m (x) = −wm(x)[1 +

k−1∑
i=0

(1− αi(m))2i]. (11)

Let for a number h ∈ I, Ih denote the interval [0, 1− h).
If F is a Lebesgue measurable set in R2, with 0 < µ2F < ∞, then let

L0(F ) denote the set of all Lebesgue measurable functions on F that are
finite a.e. on F .

A set Q of Lebesgue measurable functions on F is called bounded in
measure on F if for any ϵ > 0 there is a constant R > 0 such that µ2{(x, y) ∈
F : | f(x, y) |≥ R} ≤ ϵ for any function f ∈ Q.

A sequence {fn(x, y), n = 1, 2, . . . } of Lebesgue measurable functions on
F is called bounded in measure on F if for any ϵ > 0 there is a constant
R1 > 0 such that µ2{(x, y) ∈ F : | fn(x, y) |≥ R1} ≤ ϵ for any n = 1, 2, . . . .

An operator T : L1(I
2) → L0(I2) is called superlinear ([14], p.131) if for

any f0 ∈ L1(I
2) there is a linear operator Gf0 : L1(I

2) → L0(I2) such that

Gf0(f0)(x, y) = T (f0)(x, y) (12)

and
| Gf0(f)(x, y) |≤| T (f)(x, y) | for any f ∈ L1(I

2) (13)
and for almost all points (x, y) in I2.

A superlinear operator T : L1(I
2) → L0(I2) is said to be bounded in

measure on I2 if the set of functions

Q = {T (f) : ∥ f ∥L1≤ 1}

is bounded in measure on I2.
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For each pair of numbers (θ, η) ∈ I2h and a number h ∈ I introduce the
following function of two variables (x, y) defined on I2 by

δθ,η,h(x, y) =

{
h−2, if (x, y) ∈ [θ, θ + h]× [η, η + h];

0, otherwise on I2.
(14)

The Kernel for a superlinear operator T : L1(I
2) → L0(I2) is defined by

K(x, y, θ, η) = lim
h→�∞

T (δθ,η,h(., .))(x, y) , (x, y, θ, η) ∈ I4, (15)

provided the limit exists for a.e. (x, y, θ, η) ∈ I4.
In [15] we have proved the following

Theorem 3. Suppose that E ⊂ I2 is any Lebesgue measurable set,
µ2E > 0, and ϕ(u) is a nonnegative, continuous and nondecreasing function
on [0,∞) such that uϕ(u) is a convex function on [0,∞).

Let {Tn : L1(I
2) → L0(I2), n = 1, 2, . . . } be a sequence of superlinear

operators that are bounded in measure on I2 and let Kn(x, y, θ, η),

∥ Kn(x, y, θ, η) ∥∞< ∞, (16)
be the kernel for Tn, n = 1, 2, . . . .

Suppose that for each integer n > n0 there exist: positive numbers hn,
ξn, and a Lebesgue measurable set En, En ⊂ E, µ2En ≥ γ1 > 0, such that:

i) For each set F ⊂ En, with µ2F ≥ γ1

6 , there exists a positive number
λn(F ) with the property

µ4{(x, y, θ, η) ∈ F × I2 : | Kn(x, y, θ, η) |≥ C1λn(F )} ≥ ξn
λn(F )

> 0. (17)

ii)
lim

n→∞
ξn = ∞, (18)

iii)
ϕ(h−2

n ) = o(ξn) (n → ∞), (19)
iv)

µ4{(x, y, θ, η) ∈ E×

×I2tn : | Tn(δθ,η,hn)(x, y)−Kn(x, y, θ, η) |> 1} ≤ ξn
20Λn

(20)

and
v)

hn ≤ tn, (21)
where

Λn = sup{F : F⊂En, µ2F≥ γ1
6 }λn(F ), (22)

tn =
ξn

50Λn
(23)
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and C1, γ1 and n0 are positive constants , independent of n and (x, y).
Then there exists a function g ∈ L1(I

2) such that∫
I2

| g(x, y) | ϕ(| g(x, y) |)dxdy < ∞

and the sequence of functions {Tn(g), n = 1, 2, . . . } is not bounded in mea-
sure on E.

3. Proof of Theorem 4

Set (N = 3, 4, . . . )

BN =

[N3 ]∪
k=[N4 ]+1

[ 1

2k
,

1

2k−1

)
×
[ 1

2N−k
,

1

2N−k−1

)
. (24)

It is clear that for N ≥ 13

µ2BN =

[N3 ]∑
k=[N4 ]+1

1

2k
1

2N−k
≥ 1

24

N

2N
. (25)

Now we prove

Lemma 2. Let the set BN be defined by (24). Then for all integers
N ≥ N1 and (x, y) ∈ BN the following inequality holds

1

N

2N∑
m=1

| D(w)
m (x)D

(w)
m (y) |

m
≥ C22

N , (26)

where C2 and N1 are positive constants.

Proof . We choose a positive integer q such that

C =
1

4

(1
3
− 64

1

2q

)
2−2q > 0. (27)

We keep q fixed.
Let (x, y) ∈ BN . Then (see (24)) there exists an integer k = k(x, y) such

that [N
4

]
+ 1 ≤ k ≤

[N
3

]
, (28)

1

2k
≤ x <

1

2k−1
(29)

and
1

2N−k
≤ y <

1

2N−k−1
. (30)
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Then according to the Abel’s transformation
2N−1∑
m=1

1

m
| D(w)

m (x)D(w)
m (y) |=

=

2N−1∑
j=1

(1
j
− 1

j + 1

) j∑
m=1

| D(w)
m (x)D(w)

m (y) | + 1

2N

2N∑
m=1

| D(w)
m (x)D(w)

m (y) |≥

≥
2N−1∑
j=1

(1
j
− 1

j + 1

) j∑
m=1

| D(w)
m (x)D(w)

m (y) |≥

≥ 1

2

2N−1∑
j=1

1

j2

j∑
m=1

| D(w)
m (x)D(w)

m (y) |≥

≥ 1

2

2N−2∑
j=2[

3N
4

]+1+1

1

j2

j∑
m=1

| D(w)
m (x)D(w)

m (y) |≥

≥ 1

2

2N−2∑
j=2[

3N
4

]+1+1

1

j2

j∑
m=[ j2 ]+1

| D(w)
m (x)D(w)

m (y) |≥

≥ 1

2

2N−2∑
j=2[

3N
4

]+1+1

1

j2

∑
m∈P0

| D(w)
m (x)D(w)

m (y) | (31)

where (see (28), (4))

P0 = P0(j,N, k, q) =
([[ j

2

]
+ 1, j

]
\ (P ∪Q)

)
∩ Z+, (32)

P = {m ∈ Z+ : 1 ≤ m ≤ j, αk−1(m) = αk−2(m) · · · = αk−q(m) = 1}∪
∪{m ∈ Z+ : 1 ≤ m ≤ j, αk−1(m) = αk−2(m) · · · = αk−q(m) = 0} (33)

and
Q = {m ∈ Z+ : 1 ≤ m ≤ j, αN−k−1(m) =

= αN−k−2(m) · · · = αN−k−q(m) = 1}∪
∪{m ∈ Z+ : 1 ≤ m ≤ j, αN−k−1(m) =

= αN−k−2(m) · · · = αN−k−q(m) = 0}. (34)
Let j be an integer such that

2[
3N
4 ]+1 + 1 ≤ j ≤ 2N − 2. (35)

It is obvious that then (see (28), (27))
[log2 j] > N − k − 1 > N − k − q > k − 1 > k − q > 0, (36)
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for all N > N2, where N2 is a certain positive constant.
It is clear that the number of elements of the set P ∪ Q satisfies the

following inequality (see (33), (34))

| P ∪Q |≤ 2[log2 j]+6−q ≤ 64
j

2q
.

Therefore (see (32))

| P0 |≥ j

2
− 1− 64

j

2q
. (37)

Let m ∈ P0. Then (see (32), (4), (36))

m = α[log2 j](m)2[log2 j] + α[log2 j]−1(m)2[log2 j]−1 + · · ·+ α[ 3N4 ](m)2
3N
4 ] + . . .

+αN−k−1(m)2N−k−1 + · · ·+ αN−k−q(m)2N−k−q + . . .

+αk−1(m)2k−1 + · · ·+ αk−q(m)2k−q + · · ·+ α0(m) ≥ 2[
3N
4 ]. (38)

Now we will prove that

| D(w)
m (x) |≥ 2k−q. (39)

Indeed, we consider two cases:
Case 1. αk−1(m) = 1. Then (see (33), (32)) there exists an integer i0

such that
k − 1 > i0 ≥ k − q

and
αi0(m) = 0.

Thus (see (38), (11), (29))

| D(w)
m (x) |= (1− αk−1(m))2k−1+

+ · · ·+ (1− αk−q(m))2k−q ≥ (1− αi0(m))2i0 ≥ 2k−q. (40)

Case 2. αk−1(m) = 0. Then (see (33), (32)) there exists an integer j0
such that

k − 1 > j0 ≥ k − q

and
αj0(m) = 1.

Thus (see (8), (9), (10), (29))

| D(w)
m (x) |= αk−1(m)2k−1 + · · ·+ αk−q(m)2k−q ≥ αj0(m)2j0 ≥ 2k−q.

The inequality (39) (see (40)) is proved.
Similarly we can prove that (see (30), (32), (34))

| D(w)
m (y) |≥ 2N−k−q. (41)
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Now we have (see (41), (39), (35)–(37), (27))

1

2

2N−2∑
j=2[

3N
4

]+1+1

1

j2

∑
m∈P0

| D(w)
m (x)D(w)

m (y) |≥

≥ 1

2

2N−2∑
j=2[

3N
4

]+1+1

1

j2

∑
m∈P0

2k−q2N−k−q ≥

≥ 1

2

2N−2∑
j=2[

3N
4

]+1+1

1

j2
| P0 | 2N−2q ≥

≥ 1

2

2N−2∑
j=2[

3N
4

]+1+1

1

j2

( j
2
− 1− 16

j

2q

)
2N−2q ≥

≥ 1

2

2N−2∑
j=2[

3N
4

]+1+1

1

j2
j
(1
3
− 16

1

2q

)
2N−2q ≥

≥ 1

2

2N−2∑
j=2[

3N
4

]+1+1

1

j

(1
3
− 64

1

2q

)
2N−2q ≥

≥ 1

4

(1
3
− 64

1

2q

)
2N−2q

2N−2∑
j=2[

3N
4

]+1+1

1

j
≥ C2N2N

for all N ≥ N1 (for certain positive constants N1 and C2).
Lemma 2 (see (31), (26)) is proved. �
Let (x, y) ∈ I2. Consider the set (for the definition and properties of the

operation +̇ see [12], p. 10-13)
BN +̇(x, y) = {(θ, η) ∈ I2 : (θ, η) = (θ1+̇x, η1+̇y), (θ1, η1) ∈ BN}.

It is clear that if (θ, η) ∈ BN +̇(x, y) then there exists a point (θ1, η1) ∈ BN

such that (θ, η) = (θ1+̇x, η1+̇y) and, consequently, according to Lemma 2,
for a.e. (θ, η) ∈ BN +̇(x, y) and for all integers N ≥ N1 the following in-
equality holds (see (26))

1

N

2N∑
m=1

| D(w)
m (θ+̇x)D

(w)
m (η+̇y) |

m
≥

≥ 1

N

2N∑
m=1

| D(w)
m (θ1)D

(w)
m (η1) |

m
≥ C22

N . (42)
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Let F ⊂ E be any set such that µ2F ≥ γ1

6 , where γ1=µ2E > 0. Consider
the set

ΩN =

{
(x, y, θ, η) ∈ F×

×I2 :
1

N

2N∑
m=1

| D(w)
m (θ+̇x)D

(w)
m (η+̇y) |

m
≥ C22

N

}
. (43)

It is easy to see from (25), (42), (43) that for a.e. (x, y) ∈ I2∫
I2

χΩN
(x, y, θ, η)dθdη ≥ µ2BN ≥ 1

24

N

2N

and, consequently,

µ4ΩN =

∫
F

∫
I2

χΩN
(x, y, θ, η)dxdydθdη ≥ γ1

6

1

24

N

2N
. (44)

We set in Theorem 3 for N ≥ N1, N ∈ Z+, (see (43))

EN = E, (45)

hN =
1

29N
, (46)

ξN =
γ1
6

1

24
N, (47)

C1 = C2, (48)
and

λN (F ) = 2N . (49)
Then (see (22), (23)) we have

ΛN = 2N (50)

and

tN =
γ1

6
1
24N

50 · 2N
≥ hN . (51)

In Theorem 3 we set also

TN (f)(x, y) =
1

N

2N∑
m=1

| S(w)
m,m(f ;x, y) |

m
, (52)

that is clearly (see (6), (12), (13)) superlinear and bounded in measure.
Then it is easy to see that the kernel (see (14), (15), (52), (6))

K
(w)
N (x, y, θ, η) =

1

N

2N∑
m=1

| D(w)
m (θ+̇x)D

(w)
m (η+̇y) |

m
. (53)



ON THE STRONG LOGARITHMIC SUMMABILITY 77

Introduce the following set

PN =
2N∪
i=1

2N∪
j=1

[ i− 1

2N
,

i

2N
− 1

28N

)
×
[j − 1

2N
,
j

2N
− 1

28N

)
. (54)

It is clear that
µ2PN ≥ 1− 2

27N
. (55)

It is obvious that (see (14), (4)–(6)) we have for almost all (x, y, θ, η) ∈
I2 × PN and for all 1 ≤ m ≤ 2N and N > 16

S(w)
m,m(δθ,η,hN

;x, y)=
m−1∑
i=0

m−1∑
j=0

h−2
N

∫ θ+hN

θ

∫ η+hN

η

wi(s)wj(t)dsdtwi(x)wj(y)=

=

m−1∑
i=0

m−1∑
j=0

wi(θ)wj(η)wi(x)wj(y) = D(w)
m (θ+̇x)D(w)

m (η+̇y).

Set

ΘN =

{
(x, y, θ, η) ∈ I × ItN :

∣∣∣ 1
N

2N∑
m=1

| S(w)
m,m(δθ,η,hn ;x, y) |

m
−

− 1

N

2N∑
m=1

| D(w)
m (θ+̇x)D

(w)
m (η+̇y) |

m

∣∣∣ > 1

}
.

It is obvious that (see (51)) ΘN ⊂ I2 × (I2 \ PN ) and, consequently, (see
(55))

µ4ΘN ≤ 2

27N
. (56)

Taking account of (1)–(3), (43)–(53), (16)–(23), (57), (56) we can con-
clude that according to Theorem 3 we have proved Theorem 2.
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