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ON ONE NONLOCAL BOUNDARY VALUE PROBLEM
FOR QUASILINEAR DIFFERENTIAL EQUATIONS

V. BERIDZE, D. DEVADZE AND H. MELADZE

Abstract. In the paper, a theorem on the existence and unique-
ness of a generalized solution in the space Cα(G) is proved
for quasilinear differential equations. The Bitsadze–Samarski
boundary value problem is considered for a linear differential
equation of first order. The existence of a generalized equa-
tion in the space Cp

α(G) is proved and an a priori estimate is
obtained.

ÒÄÆÉÖÌÄ. ÍÀÛÒÏÌÛÉ ÃÀÌÔÊÉÝÄÁÖËÉÀ ÈÄÏÒÄÌÀ ÊÅÀÆÉßÒ×ÉÅÉ
ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÉÓÀÈÅÉÓ ÁÉßÀÞÄ-ÓÀÌÀÒÓÊÉÓ ÓÀ-
ÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓ ÂÀÍÆÏÂÀÃÏÄÁÖËÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÉ-
ÓÀ ÃÀ ÄÒÈÀÃÄÒÈÏÁÉÓ ÛÄÓÀáÄÁ Cα(G) ÓÉÅÒÝÄÛÉ. ÀÓÄÅÄ
ÂÀÍáÉËÖËÉÀ ÁÉßÀÞÄ-ÓÀÌÀÒÓÊÉÓ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÀ ÐÉÒÅÄËÉ
ÒÉÂÉÓ ßÒ×ÉÅÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÉÓÀÈÅÉÓ, ÃÀÌÔÊÉ-
ÝÄÁÖËÉÀ ÀÌ ÀÌÏÝÀÍÉÓ ÂÀÍÆÏÂÀÃÏÄÁÖËÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏ-
ÁÀ ÃÀ ÄÒÈÀÃÄÒÈÏÁÀ Cp

α(G) ÓÉÅÒÝÄÛÉ ÃÀ ÌÉÙÄÁÖËÉÀ ÀÐÒÉÏ-
ÒÖËÉ ÛÄ×ÀÓÄÁÀ.

Introduction

Nonlocal boundary value problems are quite an interesting generalization
of classical problems and at the same time they are naturally obtained
when constructing mathematical models in physics, engineering, sociology,
ecology and so on [1]–[5].

The investigation of nonlocal problems for differential equations origi-
nated in the last century. Here we should in the first place refer to the
works of T. Carleman, R. Beals, F. Browder and other works. The prob-
lems posed in [6]–[8] are the problems with nonlocal conditions, which are
considered only on the boundary of the definition domain of a differential
operator. In 1963, J. Cannon posed a nonlocal problem in his work [9] and

2010 Mathematics Subject Classification. 35J62.
Key words and phrases. Nonlocal boundary value problem; Bitsadze–Samarski prob-

lem, generalized solution.



32 V. BERIDZE, D. DEVADZE AND H. MELADZE

thus gave an impetus to the development of a new trend in the investigation
of nonlocal boundary value problems [10]–[13].

In 1969, the work of A. Bitsadze and A. Samarski [14] was published,
which was dedicated to the investigation of a nonlocal problem of a new
type. That problem arose in connection with the mathematical modeling
of plasma processes. Intensive studies of Bitsadze–Samarski nonlocal prob-
lems and their various generalizations began in the 80ties of the last century
(see the papers of D. G. Gordeziani, A. L. Skubachevski, V. P. Paneyakh,
V. A. Ilyin, I. Moiseyev, G .V. Meladze, M. P. Sapagovas, D. V. Kapanadze,
V. P. Mikhailov, A. K. Gushchin, G. Avalishvili, L. Gurevich [15]–[26] and
other works). The papers of D. G. Sapagovas, G. K. Berikelashvili are cer-
tainly interesting from the standpoint of application and numerical meth-
ods (see e.g. [11], [20]). The algorithm of reducing nonlocal problems of
the Bitsadze–Samarski type to an iteration sequence of Dirichlet problems
is investigated in D. G. Gordeziani’s papers [15], [16].

Problems of the existence and uniqueness of a generalized analytic func-
tion for the Riemann–Hilbert problem are investigated in I.N. Vekua’s mono-
graph [27]. Problems of the existence and uniqueness of a generalized
solution for quasilinear equations of first order on the plane with Rie-
mann–Hilbert boundary conditions are considered in [28]. In [29], [30] the
Bitsadze–Samarski nonlocal boundary value problem is considered for quasi-
linear differential equations.

In the present paper, a theorem on the existence and uniqueness of a
generalized solution in the space Cα(G) is proved for quasilinear differential
equations of first order with nonlocal boundary conditions. Also, the Bit-
sadze–Samarski nonlocal boundary value problem is considered for a linear
differential equation of first order. It is shown that there exists a generalized
solution in the space Cp

α(G) and the a priori estimate is obtained. Nonlocal
boundary value problems are investigated by using the iteration algorithm
of reducing the considered problem to a sequence of Riemann–Hilbert prob-
lems for generalized analytic functions. This method enables one not only to
solve the problem numerically, but also to prove the existence of a solution.

1. Existence of a Generalized Solution of the
Bitsadze–Samarski Nonlocal Boundary

Value Problem

Let G be the bounded domain of the complex plane E with boundary
Γ which is a closed simple Lyapunov curve (i.e. the angle formed by the
tangent to this curve with the constant direction is Holder-continuous).

Denote by γ the part of the boundary Γ, which is an open Liapunov
curve with the parametric equation z = z(s), 0 ≤ s ≤ δ. Let γ0 be the
diffeomorphic image z0 = I(z) of γ, which lies in the domain G, with the
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parametric equation z0 = z0(s), 0 ≤ s ≤ δ. Lett γ0 intersect Γ, but not
tangentially to it, z = x+ iy ∈ G, w = w1 + iw2. Assume that

∂z =
1

2

(
∂

∂x
+ i

∂

∂y

)
is the generalized Sobolev derivative [27], C(G) is the Banach space con-
sisting of all continuous functions on G. The norm in C(G) is defined by
the equality

∥f∥C(G) = max
z∈G

|f(z)|.

Cα(G) is assumed to be the set of all bounded functions satisfying the Holder
condition with index α. The norm in Cα(G) is defined by the equality

∥f∥Cα(G) = max
z∈G

|f(z)|+ sup
z1,z2∈G

|f(z1)− f(z2)|
|z1 − z2|α

.

Lp(G) is the Banach space consisting of all measurable functions on G,
which are summable over G with power p ≥ 1. The norm in Lp(G) is
defined by the equality

∥f∥Lp(G) =

(∫
G

|f |p dz
)1/p

.

In the domain G we will consider the Bitsadze–Samarski boundary value
problem [14] for quasilinear differential equations of first order

∂zw = f(z, w,w), z ∈ G, (1.1)
Re[w(z)] = ϕ(z), z ∈ Γ \ γ, Im[w(z∗)] = c, z∗ ∈ Γ \ γ, (1.2)

Re[w(z(s))]=σRe
[
w(z0(s))

]
, z(s)∈γ, z0(s)∈γ0, 0<σ=const . (1.3)

It is assumed that the following conditions are fulfilled:
(A1) The function f(z, w,w) is defined for z ∈ G, |w| < R, f(z, 0, 0) ∈

Lp(G), p > 2, and∣∣f(z, w,w)− f(z, w0, w0)
∣∣ ≤ L

(
|w − w0|+ |w − w0|

)
.

(A2) ϕ(z) ∈ Cα(Γ \ γ), α > 1/2.
To prove the existence of a solution of problem (1.1)–(1.3), we consider

the following iteration process:
∂zwn = f(z, wn, wn), z ∈ G, (1.4)

Re[wn(z)] = ϕ(z), z ∈ Γ \ γ, Im
[
wn(z

∗)
]
= c, z∗ ∈ Γ \ γ, (1.5)

Re
[
wn(z(s))

]
= σRe

[
wn−1(z0(s))

]
, z(s) ∈ γ, z0(s) ∈ γ0, (1.6)

n = 1, 2, 3, . . . ,
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where w0(z) is any function from Cα(γ) that continuously adjoins the values
of ϕ(z) at the ends of the contour γ.

For every n ∈ N , problem (1.4)–(1.6) is a Dirichlet type problem and a
regular generalized solution belongs to the space Cα(G) [27], [28].

Let us consider the function vn = wn+1 − wn. Then from (1.5)–(1.6) it
follows that the function vn is the solution of the following problem

∂zvn = f(z, wn+1, wn+1)− f(z, wn, wn) ≡
≡ F (z, wn, wn, wn+1, wn+1), z ∈ G, (1.7)

Re[vn(z)] = 0, z ∈ Γ \ γ, Im
[
vn(z

∗)
]
= 0, z∗ ∈ Γ \ γ, (1.8)

Re
[
vn(z(s))

]
= σRe

[
vn−1(z0(s))

]
, z(s) ∈ γ, z0(s) ∈ γ0, (1.9)

n = 1, 2, 3, . . . .

The solution of problem (1.8)–(1.9) can be reduced to the following non-
linear integral equation [28]

v∗(z) = ψn(z) + φn(z)−

− 1

π

∫∫
G

F (ζ, wn(ζ), wn(ζ), wn+1(ζ), wn+1(ζ))

ζ − z
dξ dη, (1.10)

where ζ = ξ + iη, ψn(z) is a holomorphic function that satisfies conditions
(1.7)–(1.9), and φn(z) is a holomorphic function such that the difference

φn(z)−
1

π

∫∫
G

F (ζ, wn, wn, wn+1, wn+1)

ζ − z
dξ dη

satisfies the homogeneous boundary conditions, and an a priori estimate has
the form

∥φn∥Cα(G) ≤ C1∥F∥Lp(G), C1 = const > 0.

The integral operator in the right-hand part of equation (1.10) is denoted
by TG. Note that the operator TG maps the space Lp(G) into Cβ(G),
β = (p− 2)/p < α [27].

Let consider the following conditions:
(A3) There exists a number R1 > 0, R1 ≤ R, such that the inequality
∥ψn∥Cα(G) +

(
C1 + ∥TG∥Lp(G),Cα(G)

)(
2L|G|1/pR1

)
≤ R1, |G| = mesG,

is fulfilled.
(A4) 2|G|1/pL

(
C1 + ∥TG∥Lp(G),Cα(G)

)
< 1.

Assume that conditions (A1)–(A4) are fulfilled, then there exists a
unique solution of problem (1.7)–(1.9) in a ball ∥vn∥Cα(G) ≤ R1 [28].

Let us estimate the function vn(z) from equality (1.10) in the metric of
the space C(G):

∥vn∥C(G) ≤ ∥ψn∥C(G) + ∥φn∥C(G) +
∥∥TG[F ]∥∥C(G)

. (1.11)
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Using the previous estimates, from inequality (1.11) we obtain
∥vn∥C(G) ≤ ∥ψn∥C(G) +

(
C1 + ∥TG∥Lp(G),Cα(G)

)
∥F∥Lp(G). (1.12)

By virtue of (A1) we have∣∣F (z, wn, wn, wn+1, wn+1)
∣∣ = ∣∣f(z, wn+1, wn+1)− f(z, wn, wn)

∣∣ ≤
≤ 2L|wn+1 − wn| = 2L|vn|.

With (A1) taken into account, the latter inequality implies that the com-
plex function F (z, wn, wn, wn+1, wn+1) belongs to the space Lp(G). Then

∥F∥Lp(G) ≤ 2L∥vn∥Lp(G) ≤ 2L|G|1/p∥vn∥C(G).

Thus, from inequality (1.12) we can write that

∥vn∥C(G) ≤ ∥ψn∥C(G) + 2L|G|1/p
(
C1 + ∥TG∥Cα(G)

)
∥vn∥C(G),

i.e., taking (A4) into account, we finally obtain

∥vn∥C(G) ≤
∥ψn∥C(G)

1− 2L|G|1/p(C1 + ∥TG∥Cα(G))
. (1.13)

Note that the function ψn(z) is the solution of the following problem
∂zψn(z) = 0, z ∈ G,

Re[ψn(z)] = 0, z ∈ Γ \ γ, Im
[
ψn(z

∗)
]
= 0,

Re
[
ψn(z)

]
= σRe

[
ψn−1(z0)

]
, z ∈ γ, z0 ∈ γ0, n = 1, 2, 3, . . . ,

ψ0(z) = w1(z)− w0(z).

Since Re[ψn(z)] is a harmonic function, all the conditions of Schwartz’
lemma [27] are fulfilled for it and there exists 0 < q < 1 which is independent
of ψn and for which the following inequality [16] is fulfilled:

∥ψn∥C(G) ≤Mqn,

where the constant M > 0 depend only on ϕ(z).
Using this estimate, from (1.13) we can write

∥vn∥C(G) ≤
M

1− 2L|G|1/p(C1 + ∥TG∥Cα(G))
qn. (1.14)

Now from (1.14) we can conclude that the series
∞∑
k=1

vk converges uniformly

to zero in the domain G. Hence it follows that the sequence {wn(z)} is
fundamental in C(G) and has the limit w(z) ∈ C(G).

Let us consider the integral representation for the function wn(z):

wn(z) = ψ′
n(z) + φ′

n(z)−
1

π

∫∫
G

f(ζ, wn, wn)

ζ − z
dξ dη, (1.15)
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where ψ′
n(z) is a holomorphic function that satisfies conditions (1.5)–(1.6),

and φ′
n(z) is a holomorphic function such that the difference

φ′
n(z)−

1

π

∫∫
G

f(ζ, wn, wn)

ζ − z
dξ dη

satisfies the homogeneous boundary conditions.
From representation (1.15) we can conclude that w(z) is the solution of

problem (1.1)–(1.3) and w(z) ∈ Cα(G). By the uniqueness of the holomor-
phic solution and the integral representation (1.15) we conclude that this
solution is unique in the class Cα(G).

We have thereby proved

Theorem 1. Let conditions (A1)–(A4) be fulfilled, then the solution of
problem (1.1)–(1.3) exists in the space Cα(G) and is unique.

2. Linear Problem

Let us consider, in the domain G, the Bitsadze–Samarski boundary value
problem for a linear differential equation of first order

∂zw = A(z)w +B(z)w + d(z), z ∈ G,

Re[w(z)] = 0, z ∈ Γ \ γ, Im[w(z∗)] = 0, z∗ ∈ Γ \ γ,
Re[w(z(s))] = σRe

[
w(z0(s))

]
, z(s) ∈ γ, z0(s) ∈ γ0.

(2.1)

Assume that A(z), B(z), d(z) ∈ Lp(G), p > 2, |A|, |B| ≤ N .
Denote by Cp

α(G) the set of functions w(z) ∈ Cα(G) such that
Re[w(z)] = 0, z ∈ Γ \ γ, Im[w(z∗)] = 0, z∗ ∈ Γ \ γ,
Re[w(z(s))] = σRe

[
w(z0(s))

]
, z(s) ∈ γ, z0(s) ∈ γ0

(2.2)

and possessing the norm

∥w∥Cp
α(G) = ∥w∥Cα(G) + ∥∂zw∥Lp(G) < +∞. (2.3)

It is easy to verify that the set Cp
α(G) is a linear normalized space over the

real field with the norm defined by means of equality (2.3). If p > q > 2,
then Cp

α(G) ⊂ Cq
α(G) and ∥w∥Cq

α(G) ≤ ℓ∥w∥Cp
α(G), where ℓ is a positive

constant and w is any element from Cp
α(G).

Theorem 2. For any function d(z) ∈ Lp(G), p > 2, the solution w(z) of
problem (2.1) exists, belongs to the space Cp

α(G) and the following a priori
estimate holds for it

∥w∥Cp
α(G) ≤ λ∥d∥Lp(G), (2.4)

where λ is the positive constant depending only on p, N and |G| = mesG.
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Proof. The existence and uniqueness of the solution of problem (2.1) im-
mediately follows from Theorem 1. It remains to prove the validity of the
a priori estimate (2.4).

We have to reduce problem (2.1) to an integral equation. For this we
introduce the operator

TG[z, f ] = − 1

π

∫∫
G

f(t)

t− z
dξ dη, t = ξ + iη

and the operator SG[z, f ] from Lp(G) into a subset of analytic functions,
which satisfies the conditions

Re
{
TG[z, f ] + SG[z, f ]

}
= 0, z ∈ Γ \ γ,

Re
{
TG[z, f ] + SG[z, f ]

}
= σRe

{
TG[z0, f ] + SG[z0, f ]

}
,

z0 ∈ γ0, z ∈ γ,

Im
{
TG[z

∗, f ] + SG[z
∗, f ]

}
= 0,

(2.5)

where z∗ ∈ Γ \ γ is a fixed point.
Due to conditions (2.5) we define the operator SG[z, f ] uniquely. Let us

define the operators
P (f) = TG[z, f ] + SG[z, f ],

PAB(f) = P (Af) + P (Bf),
(2.6)

where the functions A(z) and B(z) are from the right-hand part of equation
(2.1).

Taking now into account that ∂zP (f) = f(z), it can be easily proved
that the solution of problem (2.1) satisfies the following integral equation

w(z) = PAB(w) + P (d). (2.7)
It is likewise easy to show that problems (2.1) and (2.7) are equivalent.

Using the properties of the operators TG[z, f ] and P (f) [27], it can be shown
that these operators are completely continuous over the field of real num-
bers. It is obvious that the operator PAB(f), too, is completely continuous.

Since for d(z) = 0 equation (2.1) has only the trivial solution, the equa-
tion w(z) = PAB(w) will also have only the trivial solution. Hence, because
the operator PAB(f) is completely continuous, we obtain the existence and
boundedness of the operator (I −PAB)

−1, where I is the identity operator.
We introduce the notation

∥I − PA∥−1

Cα(G),Lp(G)
=M, ∥P∥Lp(G),Cα(G) =MP ,

where M and Mp are positive constants. From equation (2.7) we immedi-
ately obtain

∥w(z)∥Cα(G) ≤MMp∥d∥Lp(G). (2.8)
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Equation (2.1) immediately implies
∥∂zw∥Lp(G) ≤ 2N∥w∥Cα(G) + ∥d∥Lp(G). (2.9)

From inequalities (2.8), (2.9) we obtain the estimate
∥w∥Cp

α(G) = ∥w∥Cα(G) + ∥∂zw∥Lp(G) ≤ λ∥d∥Lp(G),

where λ =MMp(2N + 1) + 1. �
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