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ON SOLVING THE DIRICHLET GENERALIZED
PROBLEM FOR A HARMONIC FUNCTION IN THE CASE

OF INFINITE PLANE WITH HOLES

N. KOBLISHVILI AND M. ZAKRADZE

Abstract. An algorithm for an approximate solution of definite type
Dirichlet generalized problem is given. It consists of the following
stages: 1) reduction of the Dirichlet generalized problem to an ordi-
nary new (auxiliary) problem for harmonic function; 2) approximate
solution of the new problem by the modified version of MFS (the
method of fundamental solutions); 3) definition of the approximate
solution of the posed generalized problem by the solution of the new
problem. Examples of application of the proposed algorithm and the
results of numerical experiments are given.

îâäæñéâ. êŽöîëéöæ éëùâéñèæŽ àŽîçãâñæ ïŽýæï áæîæýèâï àŽê-
äëàŽáâĲñèæ ŽéëùŽêæï éæŽýèëâĲæåæ Žéëýïêæï Žèàëîæåéæ, îëéâ-
èæù öâáàâĲŽ öâéáâàæ âðŽìâĲæïàŽê: 1) áæîæýèâï àŽêäëàŽáâĲñèæ
ŽéëùŽêæï áŽõãŽêŽ øãâñèâĲîæã ŽýŽè ŽéëùŽêŽäâ ßŽîéëêæñèæ òñêó-
ùææïŽåãæï; 2) ŽýŽèæ ŽéëùŽêæï éæŽýèëâĲæåæ ŽéëýïêŽ òñêáŽéâêðñî
ŽéëýïêŽåŽ éâåëáæï éëáæòæùæîâĲñèæ ãâîïææï ïŽöñŽèâĲæå; 3) áŽï-
éñèæ àŽêäëàŽáâĲñèæ ŽéëùŽêæï ŽéëêŽýïêæï àŽêïŽäôãîŽ ŽýŽèæ Žéë-
ùŽêæï ŽéëêŽýïêæï ïŽöñŽèâĲæå. éëùâéñèæŽ öâéëåŽãŽäâĲñèæ Žèàë-
îæåéæï àŽéëõâêâĲæï éŽàŽèæåâĲæ áŽ îæùýãæåæ âóïìâîæéâêðâĲæï öâ-
áâàâĲæ.

1. Introduction

Let a domain D be the infinite plane z = x + iy ≡ (x, y) with the holes
Bi (i = 1, 2, . . . ,m), which are bounded by closed piecewise smooth contours

Si

(
Si =

l⋃
j=1

Sj
i , i = 1, 2, . . . , m

)
, respectively, having no multiple points.

It is evident that the whole boundary of domain D will be S =
m⋃

i=1

Si.

Moreover, we assume that parametric equations of the smooth curves Sj
i

are given and Sk

⋂
Sj = ∅ for k = j.
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It is known that the classical statement of the Dirichlet ordinary bound-
ary problem for harmonic function requires continuity of the boundary func-
tion. However, in practical problems (for example, during determination of
the temperature of the thermal field or of the potential of the electric field
and so on) there are cases when the boundary function is piecewise con-
tinuous and therefore it is necessary to consider the Dirichlet generalized
problem (see [1,2,3,4]).

A. On the boundary S of the domain D a function g(τ) is given which
is continuous everywhere, except a finite number of points τ1, τ2, . . . , τn at
which it has first kind break points. It is required to find a function u(z) ≡
u(x, y) ∈ C2(D)

⋂
C(D \ {τ1, τ2, . . . , τn}) satisfying the conditions

∆u(z) = 0, z ∈ D, (1.1)

u(τ) = g(τ), τ ∈ S, τ 6= τk (k = 1, 2, . . . , n), (1.2)

u(z) = c + O

(
1
|z|

)
for |z| → ∞, (1.3)

where ∆ is the Laplace operator and c is a real constant provided |c| < ∞.

It is known (see [1,2]) that problem (1.1)–(1.3) is correct, i. e., the
solution exists, is unique, depends continuously on the data, and for the
generalized solution u(z) the generalized extremum principle is valid:

min
z∈S

u(z) < u(z)
z∈D

< max
z∈S

u(z), (1.4)

where for z ∈ S it is assumed that z 6= τk (k = 1, n).
It should be noted that condition (1.3) plays an important role in the

extremum principle (1.4) and, consequently, in the theorem on uniqueness
of the solution to Problem A (see [1,2]). To see that this is so, it is sufficient,
e. g., to consider an exterior of the disk with the center at the origin and
of radius r, as the domain D, i. e. S : |z| = r. If the function u1(z) is
a solution of problem A without condition (1.3), then the functions of the

type u2(z) = u1(z) + k ln
|z|
r

are the solutions of problem A, where k 6= 0 is
a real constant.

It can be easily shown that if we fix in advance the value of the constant
c, this will be a rather strong restriction. Really, since under conditions
(1.1), (1.2), (1.3) for the function u(x, y) the minimax principle is fulfilled
(see [1,2]), hence problem A with hitherto fixed c may turn out generally
unsolvable. To avoid this fact the constant c should be defined from the
condition (1.2) while solving problem A.

If g−(τk) and g+(τk) are the limit values of the boundary function g(τ),
when τ tends to the point τk along S, respectively, in the positive and nega-
tive directions (under the positive direction the counter-clockwise movement
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along the boundary direction is meant), then the following theorem explains
the behavior of the generalized solution in the neighbourhood of the point
τk (see [1,5]).

Theorem 1. The limit values of the solution u(z) of the Dirichlet gen-
eralized problem, when the point z ∈ D approaches the point τk lie between
g−(τk) and g+(τk).

Remark 1. If the domain D is the exterior of the circle S : x =
a cos t, y = a sin t (0 ≤ t ≤ 2π), then the solution of the problem A is
represented by Piosson’s integral (see [1,2]):

u(z) =
1
2π

2π∫

0

g(aeit)
r2 − a2

r2 − 2ar cos(t− ϕ) + a2
dt, (1.5)

where r > a and z = reiϕ (0 ≤ ϕ ≤ 2π). When r = a representation (1.5)
loses sense. However, it is proved (see [1,2]) that

lim
z→τ

u(z) = g(τ), τ = aeit, τ 6= τk, z ∈ D.

Remark 2. On the basis of the formula (1.5) the problem A for simply
connected domains can be solved by the method of conformal mapping (see
[6]). In particular, for this it is necessary to know the function z = ω(ζ)
which conformally maps the unit disk G(|ζ| < 1) onto a simply connected
domain D, and for calculation of the solution to the problem A at an arbi-
trary point of the initial domain D (also for determination the pre-images
tk of the points τk(k = 1, 2, . . . , n) in conformal mapping z = ω(ζ)) it is
necessary to know the function ζ = f(z) which is inverse to the function
z = ω(ζ).

2. On Application of the MFS for Generalized Problem

In general, it is known (see [3,7]) that the methods used for approxi-
mate solution of the ordinary boundary problems are less suitable (or not
suitable at all) for solving problems with singularities. In particular, the
convergence is very slow and, consequently, the accuracy is very low in the
neighbourhood of singularity of the boundary function. Similar case takes
place in solving the generalized Dirichlet boundary problem by the MFS.
Therefore researchers try to perform preliminary improvment of the posed
boundary problem. More precisely, they try to reduce, if possible, the posed
problem by smoothing a boundary function to solving the ordinary problem
(see e.g., [3,5,7]). For example, in the case of finite domains, the question
about application of the MFS to harmonic and biharmonic problems with
certain singularities is considered in (see e.g., [8,9,10,11]). In these papers it
is noted that from the view-point of the accuracy in the neighbourhood of
boundary singularities the MFS is ineffective for solution of harmonic and
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biharmonic problems with boundary singularities. Therefore, for solution
of the considered problems authors have used so-called modified versions of
the MFS, which are based on the direct subtraction of the leading terms
of the singular local solution (which must be determined) from the original
mathematical problem.

In general, the MFS may be used for solving both ordinary problem
and generalized problem (see [12,13]). Concerning the rate of the conver-
gence and accuracy in the neighbourhood of singularity of the boundary
function, the noted fact was expected. Indeed, the fundamental solutions
(functions) have a high degree of smoothness on the contour S, therefore,
such smooth functions are less suitable for approximation of discontinuous
functions. Taking into account the fact that for very big N computation
becomes complicated, the above noted facts make the MFS less suitable (or
not suitable at all) for approximate solving the Problem A. An analogous
circumstance takes place when D is infinite domain. Thus, in the case of
generalised problem the MFS is ineffective from the view-point of accuracy.

3. A Method of Reduction of the Dirichlet Generalized
Problem to an Ordinary Problem in the Case of the Infinite

Plane with Holes

For reduction of Problem A to an ordinary problem it is sufficient to
have a function u0(z) which would be a solution of equation (1.1), bounded
in D, continuous in D everywhere, except the points τ = τk, and would
have the same jumps at the points τk, as g(τ). Indeed, if such a function is
constructed, then by introduction of a new unknown function

v(z) = u(z)− u0(z) (3.1)

for its determination we have already a Dirichlet ordinary problem.
B.

∆v(z) = 0, z ∈ D, (3.2)

v(τ) = f(τ), τ ∈ S, (3.3)

where f(τ) = g(τ)− u0(τ) is a continuous function on the contour S (since
the function f(τ) has removable break points at τk, i.e., f(τk) = f−(τk) =
f+(τk)).

Since the domain D is infinite, for the uniqueness of the solution of
Problems B and A (see [1,2]) we require additionally that

lim v(z) = c1 for z →∞, (3.4)

limu0(z) = c2 for z →∞. (3.5)

It is evident that in this case, since c = c1 +c2, c2 must be given in advance,
and c1 should be found while solving Problem (3.2), (3.3). Conditions (1.4),
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(3.4) and (3.5) are essential, respectively, for the uniqueness of the solution
of problems A and B in the case of an infinite domain.

After construction of function v(z) = v(x, y) from (3.1) we have

u(z) = v(z) + u0(z), z ∈ D, z 6= τk. (3.6)

For simplicity of presentation, the case, when D is the infinite plane with
the hole B1 (i.e. m = 1, S ≡ S1) we consider separately. In this case in the
role of u0(z) we can take the function (see [5])

u0(z) =
n∑

k=1

uk(z), (3.7)

uk(z) =
hk

δk
wk(z),

wk(z) = arg
(

z − τk

(z − z0)(z0 − τk)

)
,

where hk and δk are the jumps of the functions g(τ) and wk(τ) at the point
τk along S, respectively; in particular

hk = g+(τk)− g−(τk), δk = ϕ+
k − ϕ−k ,

ϕ+
k = lim

τ→τk+
wk(τ), ϕ−k = lim

τ→τk−
wk(τ), τ ∈ S;

in the expression of the function wk(z) the sign ”—-” denotes complex
conjugate, z0 is the inner point of the finite domain B1 (to avoid difficulties
in calculations, it is better to take the “center” of B1 as z0), arg denotes
the properly chosen branch of the argument.

From (3.7) for the value of the constant c2 (see (3.5)) we have

c2 = lim
z→∞

u0(z) =
n∑

k=1

hk

δk
arg(z0 − τk). (3.8)

Now we consider the general case, when D is the infinite plane with the
holes Bk (k = 1, 2, . . . ,m). It should be noted that in problem A it is not
necessary for points of discontinuity to be placed on all contours Sk (k =
1, 2, . . . ,m). For simplicity we introduce the following notations. We denote
by Γ1, Γ2, . . . , Γl (1 ≤ l ≤ m) those of the contours Sk (k = 1, 2, . . . ,m) on
which the points of discontinuity are situated, and suppose that the number
of the points of discontinuity on the contour Γi is ki. It is clear that for the
natural numbers ki we have 1 ≤ ki ≤ n and k1+k2+· · ·+kl = n. Further, we
denote by τik (k = 1, 2, . . . , ki) the points of discontinuity which are situated
on the contour Γi, and we introduce the notation hik = g+(τik) − g−(τik),
where hik is a jump of the function g(τ) at the point τik.
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In paper [5] it is shown that for smoothing of the function g(τ) on the
contour Γi we can take the function

ui(z) =
ki∑

k=1

uik(z), (3.9)

uik(z) =
hik

δik
wik(z),

wik(z) = arg
(

z − τik

(z − zi0)(zi0 − τik)

)
,

where zi0 is the ”center” of the finite domain Gi with the boundary Γi(zi0 ∈
Gi), while

δik = ϕ+
ik − ϕ−ik, ϕ+

ik = lim
τ→τik+

wik(τ), ϕ−ik = lim
τ→τik−

wik(τ), τ ∈ Γi.

In the considered case we can take the function (see [5])

u0(z) =
l∑

i=1

ki∑

k=1

uik(z) (3.10)

in the role of u0(z), then the function v(z) = u(z) − u0(z) is a solution of
problem B with the continuous boundary function

f(τ) = g(τ)− u0(τ), τ ∈ S (3.11)

Thus in the general case the solution u(z) of problem A can be repre-
sented in the form

u(z) = v(z) +
l∑

i=1

ki∑

k=1

uik(z). (3.12)

From (3.10) for the velue of the constant c2 we have

c2 = lim
z→∞

u0(z) =
l∑

i=1

ki∑

k=1

hik

δik
arg(zi0 − τik). (3.13)

4. On Application of the Modified Version of MFS to Solution
of the Dirichlet Ordinary Problem in the Case of Infinite

Plane with Holes

It is known (see [12,13,14]) that the method of fundamental solutions
can be used in the general case to solve approximately both internal and
external boundary value problems (besides, also the number of connectivity
of domain and dimension of space do not matter). On the basis of theory
[12,13] the system

{
ϕi,k(z)

}∞
k=1

=
{

ln |z − z̃i,k|
}∞

k=1
, z ∈ S (i = 1, 2, . . . , m), (4.1)
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plays the role of the system of fundamental solutions of the Laplace operator.
In (4.1) {z̃i,k}∞k=1 is a countable set of points lying everywhere densely on

the auxiliary closed Liapunov contours S̃i (S̃ =
m⋃

i=1

S̃i), where contours S̃i

lie respectively inside the finite domains Bi and min ρ(Si, S̃i) > 0, where
ρ is the distance between Si and S̃i. It is known that the system (4.1) is
linearly independent and complete not only in the space L2(S), but also in
C(S). Theoretically, with the aid of system (4.1), the boundary function
g(z) can be approximated to within any accuracy, but it is inconvenient for
an approximate solution of problem (3.2), (3.3), (3.4). Indeed, when using
the MFS, the approximate solution is sought in the form

uN (z) =
m∑

i=1

Ni∑

k=1

a
(Ni)
k ln |z − z̃i,k|, z ∈ D,

where N = N1+N2+ · · ·+Nm, the points z̃i,k(k = 1, 2, . . . , Ni) are situated
“uniformly” on the auxiliary contour S̃i, and a

(Ni)
k are the coefficients of

expansion of the function g(z) into a series with respect to the first N
functions of system (4.1). It is obvious that lim uN (z) = ∞ as |z| → ∞,
which means that condition (3.4) for the solution to be unique is not fulfilled.

Remark 3. Further (see [14]) while solving approximately the boundary
value problem, under contour S̃i we will mean the Jordan contour which
represents the boundary of the plane figure B̃i(B̃i ⊂ Bi). The figure B̃i is
similar to Bi, oriented in the same way and they have one and same the
“center” of gravity. As for the values ρ(Si, S̃i) and Ni, they can be chosen
during the numerical realization of the algorithm, taking into account an a
posteriori estimates of the accuracy of the results.

Remark 4. If we seek the solution to problem B in the form

uN (z) =
m∑

i=1

Ni∑

k=1

a
(Ni)
k ln |z − z̃i,k|+ cN ,

under the condition
m∑

i=1

Ni∑
k=1

a
(Ni)
k = 0, where cN is a real constant and

|cN | < ∞, then it can be easily proved that uN (∞) = cN . However while
finding the constants a

(Ni)
k (i = 1, 2, . . . ,m; k = 1, 2, . . . , Ni) and cN some

considerable difficulties arise which are connected with investigation of the
questions about solvability of obtained systems and conditionality of its
matrix.

To avoid the above noted situations in (see [15]) the modified version of
the system of fundamental solutions (4.1) is constructed by the method of



78 N. KOBLISHVILI AND M. ZAKRADZE

conformal mapping, which has the following form

{ψi,k(z)}∞k=1 ≡ {ψ(z, z̃i,k)}∞k=1 =
{

ln
∣∣∣∣

z̃i,k − z

(z − z0)(z̃i,k − z0)

∣∣∣∣
}∞

k=1

, (4.2)

where z0 is ”the center” of either domain (hole) from the finite domains
Bi (i = 1, 2, . . . , m).

For system (4.2) following conditions are satisfied (see [15]):
10. ∆ψi,k(z) = 0, ∀z ∈ D;
20. The system {ψi,k(z)}∞k=1(i = 1, 2, . . . , m) is linearly independent and

complete not only in the space L2(S), but also in C(S).
30. limψi,k(z) is finite as |z| → ∞.
Since, in our case f(z) ∈ C(S), therefore on the basis of property 20 for

the arbitrary ε > 0 there exist such natural numbers N0
i (ε) and system of

coefficients a
(Ni)
k (i = 1, 2, . . . , m, k = 1, 2, . . . , Ni), that if Ni ≥ N0

i , then

max
z∈S

∣∣∣∣f(z)−
m∑

i=1

Ni∑

k=1

a
(Ni)
k ψi,k(z)

∣∣∣∣ < ε.

If we introduce notation

vN (z) ≡ vN (x, y) =
m∑

i=1

Ni∑

k=1

a
(Ni)
k ψi,k(z),

where N = N1 + N2 + · · ·+ Ni, then on the basis of minimax principle we
obtain that max

z∈D
|v(z)− vN (z)| < ε, where v(z) is exact solution to problem

B, i.e. vN (z) converges uniformly to v(z) in D for N →∞.
Thus, the approximate solution vN (z) of problem B by the modified

version of MFS has the form

vN (z) ≡ vN (x, y) =
m∑

i=1

Ni∑

k=1

a
(Ni)
k ln

∣∣∣∣
z̃i,k − z

(z − z0)(z̃i,k − z0)

∣∣∣∣, (4.3)

where the auxiliary points (simulation sources) z̃i,k(i = 1, 2, . . . , m, k =
1, 2, . . . , Ni) are situated “uniformly” on the contours S̃i.

As for the coefficients a
(Ni)
k , they can be found (see [12,13,14]) from the

system of linear algebraic equations of the form
m∑

i=1

Ni∑

k=1

a
(Ni)
k ψ(zr,j , z̃i,k) = f(zr,j), (4.4)

where the collocation points zr,j (r = 1, 2, . . . , m; j = 1, 2, . . . , Ni) are sit-
uated “uniformly” on the contours Sr. The matrix of system (4.4) has
the same properties as matrix, which was obtained while solving internal
problems by system (4.1) (see [15]).
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From (4.3) for the approximate value of constant c1 we have

cN
1 = lim

z→∞
vN (z) = vN (∞) = −

m∑

i=1

Ni∑

k=1

a
(Ni)
k ln

∣∣z̃i,k − z0

∣∣,

or |cN
1 | < ∞.

5. Numerical Examples

In this section on the basis of considered scheme the results of approxi-
mate solution of generalized problems for m = 1 and m = 2 (see section 1)
are given.In examples considered below the coefficients a

(Ni)
k of expansion

(4.3) are found from system (4.4).
In the Tables, N is the number of auxiliary and collocation points on the

contours S̃ and S, respectively; ε is an a posteriori error estimate of the
solution of the problem B or the problem A:

ε = max
{|f(zi,j)− vN (zi,j)|

}m

i=1
,

where f(zi,j) = g(zi,j)− u0(zi,j)(zi,j 6= τi,k) and τi,k is the point of discon-
tinuity; The points zi,j(j = 1, 2, . . . , Mi) are situated ”uniformly” on the
contour Si. If zi,j = τi,k, then f(zi,j) = f+(τi,k) ≡ f−(τi,k).

In numerical realization, provided the parametric equation of contour Si

is z = pi(t) and τi,k = pi(ti,k), in the role of f(τi,k) we can take values
f(pi(ti,k + ε1) or f(pi(ti,k − ε1), where ε1 > 0 is sufficiently small. In
numerical experiments M = M1 + M2 + · · ·+ Mm, and computations were
realized by the MATLAB system.

Example 1. The domain D is the exterior of the circle S : x = 2 cos t, y =
2 sin t (0 ≤ t ≤ 2π). Since m = 1, therefore for simplicity: τ1,k ≡ τk; h1,k ≡
hk; δ1,k ≡ δk. In the role of g(τ) we took a function with four break points
τ1 = (2; 0), τ2 = (0; 2), τ3 = (−2; 0), τ4 = (0;−2). In particular, we took
the function

g(τ) =





x + y, (x, y) ≡ τ ∈ τ1τ2,

x2 − y2, τ ∈ τ2τ3,

x + y , τ ∈ τ3τ4,

x2 − y2, τ ∈ τ4τ1.

where τ1τ2, τ2τ3, τ3τ4, τ4τ1 are open arcs of the contour S (S ≡ S1,m = 1).
In the considered case: g+(τ1) = 2, g−(τ1) = 4; g+(τ2) = −4; g−(τ2) =
2; g+(τ3) = −2, g−(τ3) = 4; g+(τ4) = −4; g−(τ4) = −2, and h1 =
−2, h2 = −6, h3 = −6, h4 = −2, δk = −π (k = 1, 2, 3, 4), z0 = (0; 0)
(see ((3.7),(4.3))). In the role of optimal auxiliary contour S̃ (in the sense
of accuracy of approximate solution) for the given N the circle S̃ : x =
(2 − δ) cos t, y = (2 − δ) sin t (0 ≤ t ≤ 2π, δ = 0.007) is taken in solving
problem B by the modified version of MFS.
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Auxiliary points, collocation points and points for calculation of the a
posteriori estimate ε in this and other examples are situated uniformly with
respect to the parameter t on the contours S̃ and S, respectively. In the
Table 1, uN (zk) is the value of approximate solution to the problem A at the
point zk ∈ D which is calculated with (3.6); u(zk) is value of exact solution
to the problem A at point zk ∈ D which is calculated by Piosson’s integral
(1.5). It is easy to see that in the considered case for the exact solution to
problem A we have limu(z) = 0 for z → ∞. In the case N = 1000, ε =
0.2E − 02 and for N = 2000, ε = 0.5E − 03.

Table 1
M = 5000; ε1 = 10−6

k zk u(zk) uN (zk), N = 1000 uN (zk), N = 2000
1 (2.00001; 0) 3.0000082 2.9999979 2.9999984
2 (0; 2.00001) −0.9999441 −0.9999609 −0.9999581
3 (−2.00001; 0) 0.9999441 0.9999611 0.9999266
4 (0;−2.00001) −3.0000082 −2.9999951 −3.0000197
5 (1000; 0) 0.0032812 0.0038018 0.0032889
6 ∞ 0 0.5E − 03 0.7E − 05

Example 2. The infinite plane with holes Bi (i = 1, 2) is taken in the
role D with boundary S = S1 ∪ S2 where the contour S1 (S1 ≡ Γ1) is the
ellipse S1 : x = 2 cos t, y = sin t (0 ≤ t ≤ 2π) and the contour S2 (S2 ≡ Γ2)
is the circle S2 : x = 10 + 2 cos t, y = 2 sin t (0 ≤ t ≤ 2π).

In the role of a boundary function g(τ) we took the function

g(τ) =

{
g1(τ), τ ∈ S1,

g2(τ), τ ∈ S2.
(5.1)

In (5.1) the functions g1(τ) and g2(τ) have the form

g1(τ) =





1, τ ∈ τ1,1τ1,2 ,

2, τ ∈ τ1,2τ1,3 ,

3, τ ∈ τ1,3τ1,4 ,

4, τ ∈ τ1,4τ1,1 ;

g2(τ) =





1, τ ∈ τ2,1τ2,2 ,

3, τ ∈ τ2,2τ2,3 ,

5, τ ∈ τ2,3τ2,4 ,

7, τ ∈ τ2,4τ2,1.

on the contours S1 and S2, respectively.
It is evident that the jumps of the function g(τ) at the break points:

τ1,1 = (2; 0), τ1,2 = (0; 1), τ1,3 = (−2; 0), τ1,4 = (−1; 0), τ2,1 = (12; 0),
τ2,2 = (10; 2), τ2,3 = (8; 0), τ2,4 = (10;−2), respectively are equal to: h1,1 =
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−3, h1,2 = 1, h1,3 = 1, h1,4 = 1, h2,1 = −6, h2,2 = 2, h2,3 = 2, h2,4 = 2,
respectively.

On the basis of the Section 3 we used the functions (3.9) and (3.10)
for smoothing of the boundary function (5.1), where l = 2,m = 2, δik =
−π (i = 1, 2; k = 1, 2, 3, 4; ki = 4), and z1,0 = (0; 0) and z2,0 = (10; 0).

While solving the problem B by the modified version of MFS, in the role
of contours S̃1 and S̃2 we took the contours S̃1 : x = (2 − δ1) cos t, y =
(1−δ1) sin t and S̃2 : x = 10+(2−δ2) cos t, y = (2−δ2) sin t, (0 ≤ t ≤ 2π).

In numerical experiment the number of collocation (auxiliary) points on
the contours S1 and S2 (S̃1 and S̃2) were equal N = N1 + N2 (N1 = N2).
Analogously M = M1 + M2, where M1 = M2. δ1 = 0.01, δ2 = 0.03 and
z0 = (0; 0) (see (4.3)).

In the Table 2 the values of approximate solution uN (z) of the problem
A calculated by (3.12) at the various points zk ∈ D are given. For N =
1600, ε = 0.4E − 03 and for N = 2800, ε = 0.1E − 04.

Table 2
M = 5000; ε1 = 10−6

k zk uN (zk), N = 1600 uN (zk), N = 2800
1 (2.00001; 0) 2.50000673 2.50000672
2 (0; 1.00001) 1.50000514 1.50000454
3 (−2.00001; 0) 2.50000283 2.50000283
4 (0;−1.00001) 3.50000022 3.49999939
5 (12.00001; 0) 3.99999860 3.99999860
6 (10; 2.00001) 2.00000399 2.00000399
7 (7.99999; 0) 3.99999654 3.99999654
8 (10;−2.00001) 5.99999203 5.99999203
9 ∞ 3.31068243 3.31066393

6. Concluding Remarks

From Tables 1,2 it is clear that for the approximate solution uN (z) of the
problem A at the considered points of the domain D, the conditions of the
generalized extremum principle and Theorem 1 are fulfilled.

The results of numerical experiments indicate the effectivness of the pro-
posed algorithm for approximate solution problem of type A. In particular,
the algorithm is sufficiently simple for numerical realization and it is char-
acterized by accuracy, which is practically sufficient for many problems.

The proposed algorithm can be applied for approximate solution such
generalized three-dimensional Dirichlet problems, which could be reduced
to the problems of type A.
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