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ON MEASURABILITY PROPERTIES OF BERNSTEIN
SETS

A. KHARAZISHVILI

Abstract. We envisage Bernstein subsets of the real line R from the
point of view of their measurability with respect to certain classes of
measures on R. In particular, it is shown that there exists a Bernstein
set absolutely nonmeasurable with respect to the class of all nonzero
σ-finite translation quasi-invariant measures on R, and that there
exist countably many Bernstein sets which collectively cover R and
are absolutely negligible with respect to the same class of measures.

îâäæñéâ. êŽöîëéöæ Ĳâîêöðâæêæï ïæéîŽãèââĲæ öâïûŽãèæèæŽ éŽåæ
äëéŽáëĲæï åãŽèïŽäîæïæå äëéŽåŽ àŽîçãâñèæ çèŽïæï éæéŽîå. çâ-
îúëá, áŽéðçæùâĲñèæŽ Ĳâîêöðâæêæï æïâåæ ïæéîŽãèæï ŽîïâĲëĲŽ, îë-
éâèæù ŽĲïëèñðñîŽá ŽîŽäëéŽáæŽ êŽéáãæè ôâîúäâ éëùâéñè õãâ-
èŽ ŽîŽêñèëãŽê ïæàéŽ-ïŽïîñè çãŽäæ-æêãŽîæŽêðñè äëéŽåŽ çèŽïæï
éæéŽîå. Žàîâåãâ áŽáàâêæèæŽ, îëé ŽîïâĲëĲï êŽéáãæèæ ôâîúæï
åãèŽáæ áŽòŽîãŽ, îëéèæï õãâèŽ ûâãîæ Ĳâîêöðâæêæï ïæéîŽãèââĲæŽ,
åŽêŽù âï ïæéîŽãèââĲæ ŽĲïëèñðñîŽá ñàñèãâĲâèõëòŽáæŽ äëéŽåŽ
äâéëå Žôêæöêñèæ çèŽïæï éæéŽîå.

According to the standard definition, a subset B of the real line R is a
Bernstein set if, for any nonempty perfect set P ⊂ R, the relations P∩B 6= ∅
and P ∩ (R \B) 6= ∅ are fulfilled.

Recall that such a set B was first constructed by Bernstein [1] in 1908.
In his argument Bernstein essentially relies on an uncountable form of the
Axiom of Choice and uses the method of transfinite recursion. Later it was
recognized that this technique is necessary for obtaining B.

The importance of Bernstein sets in various questions of general topol-
ogy, measure theory, and the theory of Boolean algebras is well known (see,
e.g., [6], [11], [13], [14]). In classical measure theory, the significance of these
sets is primarily caused by providing delicate counterexamples for seemingly
valid statements in real analysis and by constructions of measures lacking
nice regularity properties (see [6], [9]). For instance, one interesting appli-
cation of Bernstein sets may be found in [12] where it is shown that some
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Lebesgue nonmeasurable real-valued functions turn out to be integrable in
the Boks sense.

In this paper we study measurability properties of Bernstein sets with
respect to the class of all nonzero σ-finite translation invariant or translation
quasi-invariant measures on R.

For our further purposes, we need several auxiliary notions.
Let E be a base (ground) set and let µ be a measure defined on some

σ-algebra of subsets of E.
Recall that µ is said to be diffused (or continuous) if all singletons in E

belong to the domain of µ and µ vanishes at all of them.
A set Z ⊂ E is said to be µ-thick in E if the equality µ∗(E \Z) = 0 holds

true, where µ∗ denotes the inner measure associated with µ.
In view of the above definitions, the following remark is relevant.

Remark 1. Let M denote the class of the completions of all nonzero σ-
finite diffused Borel measures on R. It is not difficult to see that if B is
any Bernstein set in R and µ is any measure from the class M, then both
B and R \B are µ-thick subsets of R and, consequently, they are nonmea-
surable with respect to µ. Actually, this property completely characterizes
Bernstein sets in R. More precisely, for a subset T of R, the following two
assertions are equivalent:

(a) T is a Bernstein set;
(b) for every measure µ ∈ M, the set T is nonmeasurable with respect

to µ.
In particular, assertion (b) indicates that all Bernstein sets have ex-

tremely bad properties from the point of view of topological measure theory.

Now, we are going to discuss some measurability properties of Bernstein
sets with respect to invariant (quasi-invariant) measures.

Let (G, +) be a commutative group and let µ be a nonzero σ-finite mea-
sure defined on some σ-algebra of subsets of G. Let H be a subgroup of G.

Recall that µ is an H-quasi-invariant measure if the domain of µ (=
dom(µ)) and the σ-ideal generated by all µ-measure zero sets (= I(µ)) are
H-invariant classes of subsets of G.

Also, recall that µ is an H-invariant measure if dom(µ) is an H-invariant
class of subsets of G and the equality µ(h + X) = µ(X) is satisfied for any
element h ∈ H and any set X ∈ dom(µ).

Clearly, every H-invariant measure is simultaneously H-quasi-invariant.
The converse assertion is not true in general.

Throughout this paper the class of all nonzero σ-finite H-quasi-invariant
measures on G will be denoted by the symbol M(G,H).

A set Y ⊂ G is called H-absolutely nonmeasurable if Y 6∈ dom(µ) for
any measure µ ∈M(G, H).
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It is clear that if H1 and H2 are two subgroups of G and H1 ⊂ H2,
then any H1-absolutely nonmeasurable subset of G is also H2-absolutely
nonmeasurable.

A set Z ⊂ G is called H-absolutely negligible, if for every measure µ ∈
M(G,H), there exists a measure µ′ ∈M(G,H) extending µ and such that
µ′(Z) = 0.

Various properties of H-absolutely nonmeasurable sets and H-absolutely
negligible sets are discussed, e.g., in [2], [8], [9], [17].

Let G coincide with the additive group R and let H ⊂ R be an uncount-
able vector space over the field Q of all rational numbers. We are going to
demonstrate that:

(*) there exists a Bernstein set B on R which is absolutely nonmeasurable
with respect to the class M(R,H);

(**) there exists a countable family {Bi : i ∈ I} of Bernstein subsets of
R such that ∪{Bi : i ∈ I} = R and each Bi (i ∈ I) is an H-absolutely
negligible set.

Statement (*) shows that there are Bernstein sets extremely bad from
the point of view of measurability with respect to all measures belonging to
M(R,H).

Statement (**) implies that, given any measure µ ∈M(R, H), there ex-
ists a Bernstein set B such that µ′(B) = 0 for some measure µ′ ∈M(R,H)
extending µ. Moreover, if µ is an H-invariant measure, then we may suppose
that its extension µ′ is H-invariant too.

In what follows, the symbol ω denotes the least infinite cardinal number,
ω1 denotes the least uncountable cardinal number, and the symbol c stands
for the cardinality continuum.

For establishing (*), we need one auxiliary proposition.

Lemma 1. Let H be an uncountable subgroup of R. Then there exist
two groups H ′ ⊂ H and H ′′ ⊂ R satisfying these three relations:

(1) H ′ is uncountable;
(2) H ′′ is a Bernstein subset of R;
(3) H ′ ∩H ′′ = {0}.

Proof. We identify c with the least ordinal number of cardinality c. Let
{Pξ : ξ < c} denote the family of all nonempty perfect subsets of R. Con-
sider two possible cases.

(a) ω < card(H) < c.
In this case, it is not difficult to construct by transfinite recursion a

strictly increasing (by inclusion) family {H ′′
ξ : ξ < c} of subgroups of R

such that, for each ordinal ξ < c, the following conditions are fulfilled:
(i) card(H ′′

ξ ) ≤ card(ξ) + ω;
(ii) H ′′

ξ ∩H = {0};
(iii) H ′′

ξ ∩ Pξ 6= ∅.
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Now, putting H ′ = H and H ′′ = ∪{H ′′
ξ : ξ < c}, we obtain the required

groups H ′ and H ′′.
(b) card(H) = c.
In this case, we again use the method of transfinite recursion and con-

struct two strictly increasing (by inclusion) families {H ′
ξ : ξ < c} and

{H ′′
ξ : ξ < c} of subgroups of R such that, for any ordinal ξ < c, the

following conditions are fulfilled:
(j) H ′

ξ ⊂ H;
(jj) card(H ′

ξ) ≤ card(ξ) + ω and card(H ′′
ξ ) ≤ card(ξ) + ω;

(jjj) H ′
ξ ∩H ′′

ξ = {0} and H ′′
ξ ∩ Pξ 6= ∅.

Now, putting H ′ = ∪{H ′
ξ : ξ < c} and H ′′ = ∪{H ′′

ξ : ξ < c}, we come to
the desired groups H ′ ⊂ H and H ′′ ⊂ R. ¤

Theorem 1. Let H ⊂ R be a vector space over the field Q of all rational
numbers. The following two assertions are equivalent:

(1) H is uncountable;
(2) there exist H-absolutely nonmeasurable Bernstein sets in R.

Proof. Notice first that if a group H ⊂ R is at most countable, then it is easy
to define a nonzero σ-finite H-invariant measure whose domain coincides
with the power set of R. This circumstance directly implies that in the
case card(H) ≤ ω there are no H-absolutely nonmeasurable subsets of R.
Consequently, (1) follows from (2).

It remains to demonstrate the validity of the implication (1) ⇒ (2).
Suppose (1). By virtue of Lemma 1, we may assume (without loss of

generality) that card(H) = ω1 and H satisfies the following condition: there
exists a Bernstein group H ′′ ⊂ R such that

H ∩H ′′ = {0}, H + H ′′ = R.

Further, we follow the argument presented in [9]. Namely, according
to Lemmas 2 and 3 of Chapter 11 from [9], there are a countable group
H0 ⊂ H, an uncountable group H1 ⊂ H, and a set X ⊂ H such that:

(a) H0 + X = H;
(b) card((g + X) ∩ (h + X)) ≤ ω for any two distinct elements g and h

of H1.
Let us define Y = X + H ′′. Clearly, Y is a Bernstein set in R. Now, the

proof of Theorem 1 from Chapter 11 in [9] yields that Y is an H-absolutely
nonmeasurable set as well. So we conclude that there are H-absolutely
nonmeasurable Bernstein sets in R. ¤

Putting H = R we obtain from Theorem 1 that there exist R-absolutely
nonmeasurable Bernstein sets.

On the other hand, let us demonstrate that if H is an uncountable sub-
group of R, then there are Bernstein sets with relatively good properties
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with respect to the class M(R,H). For this purpose, we need the method
developed in the work [8].

Lemma 2. Let (E, || · ||) be a normed vector space over the field R and
let H be a nonseparable subgroup of the additive group of E. Then any ball
in E is an H-absolutely negligible set.

For a proof, see Proposition 4 from [8] which is much stronger than
Lemma 2.

In what follows the symbol l2(ω1) stands for the real Hilbert space having
an orthogonal basis equinumerous with ω1. Notice that in our further con-
sideration it is convenient to treat both R and l2(ω1) as vector spaces over
the field Q of all rational numbers. In this case, the algebraic dimension of
R and of l2(ω1) is equal to c, so these vector spaces are isomorphic to each
other.

Lemma 3. Let H be an uncountable subgroup of the additive group R.
There exists a group isomorphism

φ : R → l2(ω1)

satisfying the following conditions:
(1) the group φ(H) is everywhere dense in l2(ω1);
(2) the set φ−1({x ∈ l2(ω1) : ||x|| = 1}) is a Bernstein subset of R.

Proof. As before, we identify c with the least ordinal number of cardinal-
ity c. Denote by {Pξ : ξ < c} the family of all nonempty perfect subsets of
R. Without loss of generality, we can additionally assume that the partial
family {P2ξ+1 : ξ < c} also consists of all nonempty perfect subsets of R.

Since ω1 ≤ c and the topological weight of the space l2(ω1) is equal to ω1,
we may denote by {Uξ : ξ < c} some base of open sets in l2(ω1). Without
loss of generality, we can additionally assume that the partial family {U2ξ :
ξ < ω1} also forms a base of open sets in l2(ω1).

Further, by using the method of transfinite recursion, we define simulta-
neously two c-sequences

{tξ : ξ < c} ⊂ R, {eξ : ξ < c} ⊂ l2(ω1)

such that:
(a) the family {tξ : ξ < c} is linearly independent over Q in R and the

vector space spanQ({tξ : ξ < c}) has co-dimension c in R;
(b) the family {eξ : ξ < c} is linearly independent over Q in l2(ω1), and

the vector space spanQ({eξ : ξ < c}) has co-dimension c in l2(ω1);
(c) tξ ∈ Pξ and ||eξ|| = 1 if ξ < c is an odd ordinal number;
(d) eξ ∈ Uξ if ξ < ω1 is an even ordinal number;
(e) tξ ∈ H if ξ < ω1 is an even ordinal number.
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Transfinite construction of the two above-mentioned c-sequences can be
carried out in a standard manner, so we omit its details here. Afterwards,
we put

φ(tξ) = eξ (ξ < c).
In view of (a) and (b), the function φ can be extended to a group isomor-
phism between R and l2(ω1), for which we preserve the same notation φ.

According to (d) and (e), the group φ(H) is everywhere dense in the
Hilbert space l2(ω1), i.e., condition (1) is fulfilled.

According to (c), the set B = φ−1({x ∈ l2(ω1) : ||x|| = 1}) intersects
every nonempty perfect subset of R. It can easily be seen that there exists
t ∈ R for which B ∩ (B + t) = ∅, whence it immediately follows that the set
R\B also intersects every nonempty perfect subset of R. We thus conclude
that B is a Bernstein set in R, i.e., condition (2) is fulfilled, too. ¤

Theorem 2. Let H be a subgroup of the additive group R. The following
two assertions are equivalent:

(1) H is uncountable;
(2) there exists a countable family {Bn : n < ω} of Bernstein subsets of

R such that ∪{Bn : n < ω} = R and each set Bn (n < ω) is H-absolutely
negligible in R.

Proof. It can easily be verified that if a group H ⊂ R is at most countable,
then no nonempty subset of R is H-absolutely negligible. This circumstance
directly indicates that (1) follows from (2).

It remains to demonstrate the validity of the implication (1) ⇒ (2).
Suppose (1). By virtue of Lemma 3, there exists a group isomorphism

φ : R → l2(ω1)

such that these two relations are fulfilled:
(a) the group φ(H) is everywhere dense in l2(ω1);
(b) the set φ−1({x ∈ l2(ω1) : ||x|| = 1}) is a Bernstein subset of R.
Keeping in mind (a) and (b), let us define

Bn = φ−1({x ∈ l2(ω1) : ||x|| ≤ n + 1}) (n < ω).

We thus obtain the countable family {Bn : n < ω} of subsets of R and we
are going to show that this family is as required.

Obviously, the family of balls

{x ∈ l2(ω1) : ||x|| ≤ n + 1} (n < ω)

forms a countable covering of the space l2(ω1), whence it follows that

∪{Bn : n < ω} = R.

Now, consider any set Bn, where n < ω. In view of (b), the set B0 is a
Bernstein subset of R. Since B0 ⊂ Bn, the set Bn meets every nonempty
perfect subset of R. Similarly to the proof of Lemma 3, there exists t ∈ R
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for which Bn ∩ (Bn + t) = ∅, whence it immediately follows that the set
R \ Bn also meets every nonempty perfect subset of R. We thus conclude
that Bn is a Bernstein set in R.

Finally, according to Lemma 2, any ball {x ∈ l2(ω1) : ||x|| ≤ n+1}, where
n < ω, is φ(H)-absolutely negligible in the additive group l2(ω1). Since φ−1

is a group isomorphism, we readily deduce that each set Bn (n < ω) is
H-absolutely negligible in R. ¤

Of course, the most interesting case in the above theorem is when H
coincides with the whole real line R.

Remark 2. It would be interesting to generalize Theorems 1 and 2 to the
case of a multi-dimensional Euclidean space instead of the real line R. More
precisely, let n ≥ 2 and let H be a subgroup of the group of all isometric
transformations of the Euclidean space Rn. The natural question arises:
under what assumptions on H there exists an H-absolutely nonmeasurable
Bernstein subset of Rn? The second question can be formulated as follows:
under what assumptions on H there exists a countable family {Bn : n <
ω} of Bernstein subsets of Rn such that ∪{Bn : n < ω} = Rn and all
Bn (n < ω) are H-absolutely negligible sets? In this connection, the work
[2] should be mentioned in which it is proved that if H contains the group
of all translations of Rn, then there exists a countable covering of Rn with
H-absolutely negligible sets (extensive information about this and further
results may be found in [17]).

Remark 3. Bernstein sets on R form a family of so-called pathological
subsets of R (cf. [6], [9], [11], [13], [14]). Another family of pathological
subsets of R is constituted by Vitali sets (see [3], [9], [11], [13], [14], [16]).
Recall that any Vitali set is a selector of the quotient set R/Q and is
absolutely nonmeasurable with respect to the class of all those measures on
R which extend the Lebesgue measure λ and are Q-invariant. On the other
hand, it was shown in [10] that there exists a Vitali set which is measurable
with respect to a certain translation quasi-invariant measure on R extending
λ. Some other measurability properties of Vitali type sets can be found in
[3], [9], [17]. By using an argument similar to the proof of Theorem 1, it can
be demonstrated that there exists an R-absolutely nonmeasurable subset of
R which is sumultaneously a Vitali set and a Bernstein set.

Remark 4. It was proved in [4] (see also [15]) that the following two
assertions are equivalent:

(1) the Continuum Hypothesis (CH);
(2) there exists a countable family {Zi : i ∈ I} of Hamel bases of R such

that ∪{Zi : i ∈ I} = R \ {0}.
It was shown in [7] that every Hamel basis of R is an R-absolutely neg-

ligible set. Therefore, the analogue of Theorem 2 in terms of Hamel bases
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cannot be established within ZFC set theory. This analogue is valid if and
only if CH holds true (see [7]).
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