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ON YOUNG TYPE INEQUALITIES FOR GENERALIZED
CONVOLUTION

P. JAIN AND S. JAIN

Abstract. A generalized convolution is introduced using which new
iterated convolution inequalities have been obtained in a general fra-
mework of Lebesgue spaces with different indices and with different
weights. In each case, a characterization has been given for the corre-
sponding inequality to hold. These inequalities include several of the
known such inequalities.

îâäæñéâ. öâéëôâĲñèæŽ â.û. àŽêäëàŽáâĲñèæ êŽýãâãâĲæ èâĲâàæï ïæ-
ãîùââĲæï ïýãŽáŽïýãŽ éŽøãâêâĲèâĲæïŽ áŽ ûëêâĲæï øŽîøëâĲöæ. åæåë-
âñè öâéåýãâãŽöæ áŽáàâêæèæŽ öâïŽĲŽéæïæ ñðëèëĲæï áŽýŽïæŽåâĲŽ.
âï ñðëèëĲâĲæ öâæùŽãï îæà ùêëĲæè ñðëèëĲŽï.

1. Introduction

By a weight function or simply a weight, we shall mean a function which
is positive, measurable and finite a.e. For Ω ⊆ Rm, 1 ≤ p < ∞ and a weight
ρ, we shall denote by Lp(Ω, ρ), the weighted Lebesgue space which is the
space of all measurable functions f for which

‖f‖Lp(Ω,ρ) :=
( ∫

Ω

|f(ξ)|pρ(ξ)dξ

)1/p

< ∞.

When ρ ≡ 1, the corresponding non-weighted Lebesgue space will be de-
noted by Lp(Ω). According to Young’s inequality

‖F1 ∗1 F2‖Lr(R) ≤ ‖F1‖Lp(R) ‖F2‖Lq(R) , F1 ∈ Lp(R), F2 ∈ Lq(R),

where p, q, r > 0, 1
r + 1 = 1

p + 1
q and F1 ∗1 F2 is the Fourier convolution

defined by

(F1 ∗1 F2) (η) =
∫

R

F1(ξ)F2(η − ξ)dξ. (1.1)
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Inspired by Young’s inequality, several authors have studied more general
versions of it: sometimes by considering different type of convolutions and
sometimes by introducing weights in the corresponding inequalities. One
may refer to [2-10] and references there in.

Castro and Saitoh [2] considered the following three convolutions in ad-
dition to (1.1):

(F1 ∗2 F2) (η) =
∫

R

F1(ξ)F2(ξ − η)dξ, (1.2)

(F1 ∗3 F2) (η) =
∫

R

F1(ξ)F2(ξ + η)dξ, (1.3)

(F1 ∗4 F2) (η) =
∫

R

F1(ξ)F2(−ξ − η)dξ (1.4)

and proved the inequality
∞∫

−∞

1
(ρ1 ∗ ρ2) (η)

{
|((F1ρ1) ∗ (F2ρ2)) (η)|2

}
dη

≤
( ∞∫

−∞
|F1(η)|2ρ1(η)dη

)( ∞∫

−∞
|F2(η)|2ρ2(η)dη

)
, (1.5)

where ∗ denotes any one of the convolutions ∗1, ∗2, ∗3, ∗4 defined above and
ρ1, ρ2 are weights. Further, in [7], the authors introduced the so called
ϕ-convolution which is a generalization of the standard convolution. The
ϕ-convolution of F1 and F2, denoted by F1 ∗ϕ F2 is defined by

(F1 ∗ϕ F2) (η) =
∫

Rm

F1(ξ)F2(ϕ(ξ, η)) |(ϕη(ξ, η))| dξ, (1.6)

if the integral on the right exists. Here ϕ is a mapping from Rm × Rm to
Rm and

|(ϕη(ξ, η))| = det
∂

∂η
(ϕ(ξ, η)).

In the framework of the ϕ-convolution, Nhan, Duc and Tuan [7] proved
the following:

Theorem A. Consider the iterated ϕ-convolution
∏n

j=1 ∗ϕFj defined by

n∏

j=1

∗ϕFj(ξ) =
( n−1∏

j=1

∗ϕFj

)
∗ϕ Fn(ξ), ξ ∈ Rm.
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Let ρj , j = 1, 2, . . . , n be weights such that the iterated ϕ-convolution∏n
j=1 ∗ϕρj exists. Then, for 1 < p < ∞, the inequality
∥∥∥∥∥
( n∏

j=1

∗ϕ(Fjρj)
)( n∏

j=1

∗ϕρj

)1/p−1
∥∥∥∥∥

Lp(Rm)

≤
n∏

j=1

‖Fj‖Lp(Rm,ρj)
, (1.7)

holds for all Fj ∈ Lp(Rm, ρj), 1 ≤ j ≤ n.

For ϕ(ξ, η) = η − ξ, the convolution ∗ϕ is the standard convolution ∗1
given by (1.1). This case of Theorem A was studied by Andersen [1].

Further, note that the convolutions ∗2, ∗3 and ∗4 can not be obtained as
special cases of ∗ϕ. Thus, it is natural to consider the generalized versions
of ∗2, ∗3, ∗4 corresponding to ∗ϕ . In this direction, we unify all these
generalizations and define the following:

Definition 1.1. Define ~ϕ-convolution of F1 and F2 by

(F1 ~ϕ F2) (η) =
∫

Rm

F1(ξ) ~ F2 (ϕ(ξ, η)) |ϕη(ξ, η)| dξ,

where ϕ is the mapping as in (1.6) and ~ is any one of the operations
inside the integrals of (1.1)-(1.4). For example, if ϕ(ξ, η) = ξ + η and
F1(ξ) ~ F2(τ) = F1(ξ)F2(τ), then

(F1 ~ϕ F2) (η) = (F1 ∗3 F2) (η).

As the first aim of this paper, we shall establish Theorem A in the frame-
work of ~ϕ-convolution. Moreover, we shall establish this new result in a
more general setting in the sense that different sets of weights ρi and βi are
considered on two sides of the corresponding inequality and also different
indices p and q are used. A characterization has been obtained for such
inequality for the case 1 < p < q < ∞.

Further, in a different paper [8], Nhan, Duc and Tuan studied the reverse
of the inequality (1.7). Precisely, they proved the following:

Theorem B. Let ρj , j = 1, 2, . . . , n be weights such that the ϕ-convolution∏n
j=1 ∗ϕρj exists and the function Fj’s satisfy 0 < m

1/p
j ≤ Fj ≤ M

1/p
j < ∞.

Then, for 1 < p < ∞, the inequality
∥∥∥∥∥
( n∏

j=1

∗ϕ (Fjρj)
)( n∏

j=1

∗ϕρj

)1/p−1
∥∥∥∥∥

Lp(Rm)

≥

≥
n∏

i=2

{
A−n

p,p′

( i∏

j=1

mj

Mj

)} n∏

j=1

‖Fj‖Lp(Rm,ρj)
, (1.8)

holds for all Fj ∈ Lp(Rm, ρj), 1 ≤ j ≤ n.
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In the present paper, we also extend Theorem B by taking different sets of
weights and different indices on two sides of the inequality (1.8) and obtain a
characterization for the corresponding inequality to hold for 1 < q < p < ∞.

2. ~ϕ-Convolution Inequality: The Case p = q

We begin with the following lemma which will be used in the subsequent
result:

Lemma 2.1. Let 1 < p < ∞ and ρj , j = 1, 2 be weights on Rm. Then
the inequality
∥∥∥ ((F1ρ1) ~ϕ (F2ρ2)) (ρ1 ~ϕ ρ2)

1/p−1
∥∥∥

Lp(Rm)
≤ ‖F1‖Lp(Rm,ρ1)‖F2‖Lp(Rm,ρ2)

holds for all functions Fj ∈ Lp(Rm, ρj).

Proof. By applying Hölder’s inequality, Fubini’s theorem and change of vari-
ables, we have
∥∥∥
(
(F1ρ1) ~ϕ (F2ρ2)

)
(ρ1 ~ϕ ρ2)

1/p−1
∥∥∥

p

Lp(Rm)
≤

≤
∫

Rm

|((F1ρ1) ~ϕ (F2ρ2))(η)|p |(ρ1 ~ϕ ρ2) (η)|1−p
dη =

=
∫

Rm

∣∣∣∣
∫

Rm

(F1ρ1)(ξ) ~ (F2ρ2)(ϕ(ξ, η)) |ϕη(ξ, η)| dξ

∣∣∣∣
p

×

× |(ρ1 ~ϕ ρ2) (η)|1−p
dη=

=
∫

Rm

∣∣∫
Rm (F1(ξ) ~ F2(ϕ(ξ, η))) (ρ1(ξ) ~ ρ2(ϕ(ξ, η))) |ϕη(ξ, η)| dξ

∣∣p

|(ρ1 ~ϕ ρ2) (η)|p−1 dη ≤

≤
∫

Rm

∫

Rm

|F1(ξ) ~ (F2(ϕ(ξ, η))|p |ρ1(ξ) ~ ρ2(ϕ(ξ, η))| |ϕη(ξ, η)| dξdη ≤

≤
∫

Rm

∫

Rm

|F1(ξ)|p |F2(ϕ(ξ, η))|p ρ1(ξ)ρ2(ϕ(ξ, η)) |ϕη(ξ, η)| dξdη =

=
∫

Rm

|F1(ξ)|p ρ1(ξ)
( ∫

Rm

|F2(ϕ(ξ, η))|p ρ2(ϕ(ξ, η)) |ϕη(ξ, η)| dη

)
dξ =

=
( ∫

Rm

|F1(ξ)|p ρ1(ξ)dξ

)( ∫

Rm

|F1(τ)|p ρ1(τ)dτ

)
=

= ‖F1‖p
Lp(Rm,ρ1)

‖F2‖p
Lp(Rm,ρ2)

and we are done. ¤
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Now, we prove the following:

Theorem 2.2. Let 1 < p < ∞ and ρj , j = 1, 2, . . . , n be weights such
that the convolution

∏n
j=1 ~ϕρj exists. Then the inequality

∥∥∥∥∥
( n∏

j=1

~ϕ(Fjρj)
)( n∏

j=1

~ϕρj

)1/p−1
∥∥∥∥∥

Lp(Rm)

≤
n∏

j=1

‖Fj‖Lp(Rm,ρj)
(2.1)

holds for all functions Fj ∈ Lp(Rm, ρj), j = 1, 2, . . . , n.

Proof. We will prove it by the induction. By Lemma 2.1, the result holds
for n = 2. For n = k +1, by applying Hölder’s inequality, Fubini’s theorem,
change of variables and induction hypothesis, we have
∥∥∥∥∥
( k+1∏

j=1

~ϕ(Fjρj)
)( k+1∏

j=1

~ϕρj

)1/p−1
∥∥∥∥∥

p

Lp(Rm)

≤

≤
∫

Rm

∣∣∣∣
( k+1∏

j=1

~ϕ(Fjρj)
)

(η)
∣∣∣∣
p ∣∣∣∣

k+1∏

j=1

~ϕρj(η)
∣∣∣∣
1−p

dη ≤

≤
∫

Rm

[ ∫

Rm

∣∣∣∣
( k∏

j=1

~ϕ(Fjρj)
)

(ξ) ~ (Fk+1ρk+1) (ϕ(ξ, η))
∣∣∣∣ |ϕη(ξ, η)| dξ

]p

×

×
[ ∫

Rm

∣∣∣∣
( k∏

j=1

~ϕρj

)
(ξ) ~ ρk+1 (ϕ(ξ, η))

∣∣∣∣ |ϕη(ξ, η)| dξ

]1−p

≤

≤
∫

Rm

∫

Rm

∣∣∣∣
( k∏

j=1

~ϕ(Fjρj)
)

(ξ)
∣∣∣∣
p

~
∣∣(Fk+1ρk+1) (ϕ(ξ, η))

∣∣p×

×
∣∣∣∣
( k∏

j=1

~ϕρj

)
(ξ)

∣∣∣∣
1−p

~
∣∣ρk+1 (ϕ(ξ, η))

∣∣1−p |ϕη(ξ, η)| dξdη =

=
∫

Rm

∣∣∣∣
( k∏

j=1

~ϕ(Fjρj)
)

(ξ)
∣∣∣∣
p ∣∣∣∣

( k∏

j=1

~ϕρj

)
(ξ)

∣∣∣∣
1−p

×

×
[ ∫

Rm

∣∣(Fk+1ρk+1) (ϕ(ξ, η))
∣∣p(ρk+1 (ϕ(ξ, η))

)1−p∣∣ (ϕη(ξ, η))
∣∣dη

]
dξ =

=

∥∥∥∥∥
( k∏

j=1

~ϕ(Fjρj)
)( k∏

j=1

~ϕρj

)1/p−1
∥∥∥∥∥

p

Lp(Rm)

‖Fk+1‖p
Lp(Rm,ρk+1)

≤

≤
k+1∏

j=1

‖Fj‖p
Lp(Rm,ρj)
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and the assertion follows. ¤

Remark 2.3. If the functions Fj are real valued then Fj = Fj and there-
fore inequality (2.1) reduces to (1.7). Consequently, Theorem 2.2 extends
Theorem A. At the same time, the convolution ~ϕ in inequality (2.1) is
more general than ∗2, ∗3 and ∗4 as well, and so (2.1) also extends (1.5)
given by Castro and Saitoh [2].

3. ~ϕ-Convolution Inequality: The Case p < q

Throughout, for r > 0, we shall denote

Ir = (−r, r)× (−r, r)× · · · × (−r, r)︸ ︷︷ ︸
m−times

.

In this section, we shall study inequality (2.1) for different sets of weights
and for different indices on both sides of it. A weight characterization has
been obtained for the corresponding inequality. We prove a lemma first:

Lemma 3.1. Let 1 < p < q < ∞ and ρj , βj , j = 1, 2 be weights on Rm.
If

C := sup
r>0

∥∥∥∥
ρ1

β
p/q
1

∥∥∥∥
L

q
q−p (Ir)

∥∥∥∥
ρ2

β
p/q
2

∥∥∥∥
L

q
q−p (Ir)

< ∞, (3.1)

then the inequality
∥∥∥((F1ρ1) ~ϕ (F2ρ2)) (ρ1 ~ϕ ρ2)

1/p−1
∥∥∥

Lp(Rm)
≤

≤ C‖F1‖Lq(Rm,β1)‖F2‖Lq(Rm,β2) (3.2)

holds for all functions Fj ∈ Lq(Rm, βj), j = 1, 2.

Proof. By applying Hölder’s inequality, Fubini’s theorem, change of vari-
ables and (3.1), we have
∥∥∥ ((F1ρ1) ~ϕ (F2ρ2)) (ρ1 ~ϕ ρ2)

1/p−1
∥∥∥

p

Lp(Rm)
≤

≤
∫

Rm

∣∣ ((F1ρ1) ~ϕ (F2ρ2)) (η)
∣∣p |(ρ1 ~ϕ ρ2) (η)|1−p

dη =

=
∫

Rm

∣∣∣∣
∫

Rm

(F1ρ1)(ξ) ~ (F2ρ2)(ϕ(ξ, η)) |ϕη(ξ, η)| dξ

∣∣∣∣
p

×

× |(ρ1 ~ϕ ρ2) (η)|1−p
dη =

=
∫

Rm

∣∣∫
Rm (F1(ξ) ~ F2(ϕ(ξ, η))) (ρ1(ξ) ~ ρ2(ϕ(ξ, η)) |ϕη(ξ, η)| dξ

∣∣p

|(ρ1 ~ϕ ρ2) (η)|p−1 dη ≤
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≤
∫

Rm

∫

Rm

|F1(ξ) ~ F2(ϕ(ξ, η))|p |ρ1(ξ) ~ ρ2(ϕ(ξ, η))| |ϕη(ξ, η)| dξdη ≤

≤
∫

Rm

∫

Rm

|F1(ξ)|p |F2(ϕ(ξ, η))|p ρ1(ξ)ρ2(ϕ(ξ, η)) (β1(ξ)β2(ϕ(ξ, η)))p/q ×

× (β1(ξ)β2(ϕ(ξ, η)))−p/q |ϕη(ξ, η)| dξdη ≤

≤
( ∫

Rm

∫

Rm

|F1(ξ)|q |F2(ϕ(ξ, η))|q β1(ξ)β2(ϕ(ξ, η)) |ϕη(ξ, η)| dξdη

)p/q

×

×
( ∫

Rm

∫

Rm

(
ρ1(ξ)ρ2(ϕ(ξ, η))

(β1(ξ)β2(ϕ(ξ, η)))p/q

)q/(q−p)

|ϕη(ξ, η)| dξdη

)1−p/q

≤

≤ C

( ∫

Rm

∫

Rm

|F1(ξ)|q |F2(ϕ(ξ, η))|q β1(ξ)β2(ϕ(ξ, η)) |ϕη(ξ, η)| dξdη

)p/q

=

=C

(∫

Rm

|F1(ξ)|q β1(ξ)
(∫

Rm

|F2(ϕ(ξ, η))|q β2(ϕ(ξ, η)) |ϕη(ξ, η)| dη

)
dξ

)p/q

=

= C ‖F1‖p
Lq(Rm,β1)

‖F2‖p
Lq(Rm,β2)

and the inequality (3.2) is obtained. ¤

Now, we prove the following:

Theorem 3.2. Let 1 < p < q < ∞ and ρj , βj , j = 1, 2, . . . , n be weights
such that the convolution

∏n
j=1 ~ϕρj exists. Then the inequality

∥∥∥∥∥
( n∏

j=1

~ϕ(Fjρj)
)( n∏

j=1

~ϕρj

)1/p−1
∥∥∥∥∥

Lp(Rm)

≤ C1

n∏

j=1

‖Fj‖Lq(Rm,βj)
(3.3)

holds for some constant C1 > 0 and for all functions Fj ∈ Lq(Rm, βj),
j = 1, 2, . . . , n, if and only if

sup
r>0

n∏

j=1

∥∥∥∥
ρj

β
p/q
j

∥∥∥∥
L

q
q−p (Ir)

< ∞. (3.4)

Proof. Assume first that (3.4) holds. We shall apply induction procedure.
For n = 2, the assertion follows from Lemma 3.1. For n = k + 1, we apply
Hölder’s inequality for q/p > 1, Fubini’s theorem, change of variables and
induction hypothesis, and obtain
∥∥∥∥∥
( k+1∏

j=1

~ϕ(Fjρj)
)( k+1∏

j=1

~ϕρj

)1/p−1
∥∥∥∥∥

p

Lp(Rm)

≤
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≤
∫

Rm

[ ∫

Rm

∣∣∣∣
( k∏

j=1

~ϕ(Fjρj)
)

(ξ)
∣∣∣∣
∣∣(Fk+1ρk+1)(ϕ(ξ, η))

∣∣ |ϕη(ξ, η)| dξ

]p

×

×
[ ∫

Rm

∣∣∣∣
( k∏

j=1

~ϕρj

)
(ξ)

∣∣∣∣ |ρk+1 (ϕ(ξ, η))| |ϕη(ξ, η)| dξ

]1−p

dη ≤

≤
∫

Rm

∫

Rm

∣∣∣∣
( k∏

j=1

~ϕ(Fjρj)
)
(ξ)

∣∣∣∣
p

|(Fk+1ρk+1) (ϕ(ξ, η))|p
∣∣∣∣
( k∏

j=1

~ϕρj

)
(ξ)

∣∣∣∣
1−p

×

× (
ρk+1 (ϕ(ξ, η))

)1−p |ϕη(ξ, η)| dξdη =

=
∫

Rm

∣∣∣∣
( k∏

j=1

~ϕ(Fjρj)
)
(ξ)

∣∣∣∣
p∣∣∣∣

( k∏

j=1

~ϕρj

)
(ξ)

∣∣∣∣
1−p[∫

Rm

∣∣(Fk+1ρk+1)(ϕ(ξ, η))
∣∣p×

× (
ρk+1 (ϕ(ξ, η))

)1−p |ϕη(ξ, η)| dη

]
dξ =

=

∥∥∥∥∥
( k∏

j=1

~ϕ(Fjρj)
)( k∏

j=1

~ϕρj

)1/p−1
∥∥∥∥∥

p

Lp(Rm)

×

×
∫

Rm

|Fk+1(σ)|p ρk+1(σ)β−p/q
k+1 (σ)βp/q

k+1(σ)dσ≤

≤
k∏

j=1

∥∥∥∥
ρj

β
p/q
j

∥∥∥∥
Lq/(q−p)(Rm)

k∏

j=1

‖Fj‖p
Lq(Rm,βj)

(∫

Rm

|Fk+1(σ)|q βk+1(σ)dσ

)p/q

×

×
( ∫

Rm

(
ρk+1(σ)

β
p/q
k+1(σ)

)q/(q−p)

dσ

)(q−p)/q

=

=
k+1∏

j=1

∥∥∥∥
ρj

β
p/q
j

∥∥∥∥
Lq/(q−p)(Rm)

k+1∏

j=1

‖Fj‖p
Lq(Rm,βj)

≤ Cp
1

k+1∏

j=1

‖Fj‖p
Lq(Rm,βj)

with Cp
1 = sup

r>0

n∏

j=1

∥∥∥ ρj

β
p/q
j

∥∥∥
L

q
q−p (Ir)

and (3.3) follows.

Conversely, assume that (3.3) holds. For j = 1, 2, . . . , n, we use the a.e.
finiteness of the weights βj . There exist sets Aj with m(Aj) = 0 such that
βj are finite on Rm \ Aj . Similarly, there exist sets Bj with m(Bj) = 0
such that ρj are finite on Rm \ Bj . If we write Ej = Aj ∪ Bj , then clearly
measure of Ej is zero, i.e., m(Ej) = 0. Now, define the function

Fj = χ
Ir−Ej

(
βj

ρj

)1/(p−q)

. (3.5)
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In view of the above arguments, we find that Fj is a positive, measurable,
finite and bounded function. Then there exist mj , Mj such that

0 < m
1/p
j ≤ Fj ≤ M

1/p
j < ∞.

It was proved in ([8], p. 82) that the following inequality holds:
(( n∏

j=1

∗ϕ (Fjρj)
)

(η)
)p(( n∏

j=1

∗ϕρj

)
(η)

)1−p

≥

≥
n∏

i=2

{
A−np

p,p′

( i∏

j=1

mj

Mj

)}( n∏

j=1

∗ϕ(F p
j ρj)

)
(η), η ∈ Rm. (3.6)

Note that if Fj ’s in (3.6) are taken as defined by (3.5), then (3.6) also holds
with the operation ∗ϕ replaced by ~ϕ since these functions are real valued.
Thus, the following holds:

(( n∏

j=1

~ϕ (Fjρj)
)

(η)
)p(( n∏

j=1

~ϕρj

)
(η)

)1−p

≥

≥
n∏

i=2

{
A−np

p,p′

( i∏

j=1

mj

Mj

)}( n∏

j=1

~ϕ(F p
j ρj)

)
(η), η ∈ Rm. (3.7)

By using (3.7), the inequality (3.3) reduces to

n∏

i=2

{
A−np

p,p′

( i∏

j=1

mj

Mj

)} ∫

Rm

∣∣∣∣
n∏

j=1

~ϕ(F p
j ρj)

∣∣∣∣(η)dη ≤ Cp
1

n∏

j=1

‖Fj‖p
Lq(Rm,βj)

,

i.e.,

n∏

i=2

{
A−np

p,p′

( i∏

j=1

mj

Mj

)} ∫

Rm

∣∣∣∣
∫

Rm

( n−1∏

j=1

~ϕ(F p
j ρj)

)
(ξ)×

× (F p
nρn) (ϕ(ξ, η)) |ϕη(ξ, η)| dξ

∣∣∣∣dη ≤ Cp
1

n∏

j=1

‖Fj‖p
Lq(Rm,βj)

,

which by Fubini’s theorem and change of variables gives

n∏

i=2

{
A−np

p,p′

( i∏

j=1

mj

Mj

)} ∫

Rm

( n−1∏

j=1

~ϕ(F p
j ρj)

)
(ξ)dξ

∫

Rm

(F p
nρn)(σ)dσ ≤

≤ Cp
1

n∏

j=1

‖Fj‖p
Lq(Rm,βj)

.
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By using the definition of convolution, then Fubini’s theorem and change of
variables (n− 2) times on the last inequality, we get

n∏

i=2

{
A−np

p,p′

( i∏

j=1

mj

Mj

)} n∏

j=1

∫

Rm

(
F p

j ρj

)
(x)dx ≤ Cp

1

n∏

j=1

‖Fj‖p
Lq(βj)

.

In view of the fact that m(Ej) = 0, the last inequality, for Fj ’s given by
(3.5), becomes

n∏

j=1

( ∫

Ir

(
ρj(x)

β
p/q
j (x)

)q/(q−p)

dx

)(q−p)/q

≤ Cp
1

n∏

i=2

{
Anp

p,p′

( i∏

j=1

mj

Mj

)}
< ∞

or

sup
r>0

n∏

j=1

∥∥∥∥
ρj

β
p/q
j

∥∥∥∥
Lq/(q−p)(Ir)

< ∞

and the result is proved. ¤

Remark 3.3. If ρj = βj in Theorem 3.2, then we can allow p = q as well
and the corresponding inequality extends Theorem A as well as inequality
(1.5). Thus Theorem 3.2 is much more general than the similar existing
results.

Remark 3.4. It is of interest to investigate the case q ≤ p when βj 6= ρj .

4. Reverse Inequality

In this section, we shall prove some reverse convolution inequalities. We
shall be using the following version of reverse Hölder’s inequality [8] (see
also [8-11]):

Theorem C. Let p > 1, 1
p + 1

p′ = 1, p be a weight function and f be a
positive function defined on Ω ⊆ Rm satisfying

0 < m1/p ≤ f(x) ≤ M1/p < ∞.

Then the inequality
( ∫

Ω

|f(x)|pρ(x)dx

)1/p( ∫

Ω

ρ(x)dx

)1/p′

≤ An
p,p′

( m

M

) ∫

Ω

f(x)ρ(x)dx

holds with

Ap,p′(t) = p−
1
p p
′− 1

p′
t
− 1

pp′ (1− t)
(
1− t

1
p
) 1

p
(
1− t

1
p′

) 1
p′

.

We begin with the following lemma:
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Lemma 4.1. Let 1 < q < p < ∞, ρj , βj , j = 1, 2 be weights on Rm and
F1, F2 be measurable functions satisfying

0 < m
1/p
1 ≤ F1 ≤ M

1/p
1 < ∞, 0 < m

1/p
2 ≤ F2 ≤ M

1/p
2 < ∞.

If

D := sup
r>0

∥∥∥∥
β

p/q
1

ρ1

∥∥∥∥
L

q
p−q (Ir)

∥∥∥∥
β

p/q
2

ρ2

∥∥∥∥
L

q
p−q (Ir)

< ∞ (4.1)

then, the inequality

D1

∥∥∥
(
(F1ρ1) ∗ϕ (F2ρ2)

)
(ρ1 ∗ϕ ρ2)

1/p−1
∥∥∥

Lp(Rm)
≥

≥ ‖F1‖Lq(Rm,β1)‖F2‖Lq(Rm,β2) (4.2)

holds for all functions Fj ∈ Lq(Rm, βj), j = 1, 2 with D1 =

An
p,p′

(
m1m2
M1M2

)
D1/p.

Proof. We have, by applying Hölder’s inequality for p/q > 1, Fubini’s the-
orem and change of variables,

‖F1‖p
Lq(Rm,β1)

‖F2‖p
Lq(Rm,β2)

=

=
(∫

Rm

∫

Rm

|F1(ξ)|q|F2(ϕ(ξ, η))|qβ1(ξ)β2(ϕ(ξ, η)) |ϕη(ξ, η)| dξdη

)p/q

≤

≤
∫

Rm

∫

Rm

|F1(ξ)|p|F2(ϕ(ξ, η))|pρ1(ξ)ρ2(ϕ(ξ, η)) |ϕη(ξ, η)| dξdη×

×
( ∫

Rm

∫

Rm

(
β1(ξ)β2(ϕ(ξ, η))

ρ
q/p
1 (ξ)ρq/p

2 (ϕ(ξ, η))

)p/(p−q)

|ϕη(ξ, η)| dξdη

)(p−q)/q

=

=
2∏

j=1

( ∫

Rm

(
β

p/q
j (η)
ρj(η)

)q/(p−q)

dη

)(p−q)/q

×

×
∫

Rm

∫

Rm

|F1(ξ)|p|F2(ϕ(ξ, η))|pρ1(ξ)ρ2(ϕ(ξ, η)) |ϕη(ξ, η)| dξdη. (4.3)

Let us consider

f(ξ) = F p
1 (ξ)F p

2 (ϕ(ξ, η))ρ1(ξ)ρ2(ϕ(ξ, η)) |ϕη(ξ, η)|
and

g(ξ) = ρ1(ξ)ρ2(ϕ(ξ, η)) |ϕη(ξ, η)| .
Then for all ξ ∈ Rm, we find, by using the hypothesis, that

0 < m1m2 ≤ f(ξ)
g(ξ)

≤ M1M2 < ∞.
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Now, in view of Theorem C, we obtain

An
p,p′

(
m1m2

M1M2

) ∫

Rm

F1(ξ)ρ1(ξ)F2(ϕ(ξ, η))ρ2(ϕ(ξ, η)) |ϕη(ξ, η)| dξ ≥

≥
( ∫

Rm

|F1(ξ)|pρ1(ξ)|F2(ϕ(ξ, η))|pρ2(ϕ(ξ, η)) |ϕη(ξ, η)| dη

)1/p

×

×
( ∫

Rm

ρ1(ξ)ρ2(ϕ(ξ, η)) |ϕη(ξ, η)| dξ

)1−1/p

or
∥∥∥ ((F1ρ1) ∗ϕ (F2ρ2)) (ρ1 ∗ϕ ρ2)

1/p−1
∥∥∥

p

Lp(Rm)
≥ A−np

p,p′

(
m1m2

M1M2

)
×

×
∫

Rm

∫

Rm

|F1(ξ)|pρ1(ξ)|F2(ϕ(ξ, η))|pρ2(ϕ(ξ, η)) |ϕη(ξ, η)| dξdη

which on using (4.3) gives

‖F1‖Lq(Rm,β1)‖F2‖Lq(Rm,β2) ≤
2∏

j=1

∥∥∥∥
β

p/q
j

ρj

∥∥∥∥
1/p

L
q

(p−q) (Rm)

An
p,p′

(
m1m2

M1M2

)
×

×
∥∥∥((F1ρ1) ∗ϕ (F2ρ2)) (ρ1 ∗ϕ ρ2)

1/p−1
∥∥∥

Lp(Rm)
≤

≤ D1

∥∥∥((F1ρ1) ∗ϕ (F2ρ2)) (ρ1 ∗ϕ ρ2)
1/p−1

∥∥∥
Lp(Rm)

and the assertion is proved. ¤

Now, we prove the following characterization:

Theorem 4.2. Let 1 < q < p < ∞ and ρj , βj , j = 1, 2, . . . , n be weights
such that the convolution

∏n
j=1 ∗ϕρj exists. Let Fj be functions satisfying

0 < m
1/p
j ≤ Fj ≤ M

1/p
j < ∞, j = 1, 2, . . . , n.

Then the inequality

D2

∥∥∥∥∥
( n∏

j=1

∗ϕ(Fjρj)
)( n∏

j=1

∗ϕρj

)1/p−1
∥∥∥∥∥

Lp(Rm)

≥
n∏

j=1

‖Fj‖Lq(Rm,βj) (4.4)

holds for some constant D2 > 0 and for all functions Fj ∈ Lq(Rm, βj),
j = 1, 2, . . . , n, if and only if

D := sup
r>0

n∏

j=1

∥∥∥∥
β

p/q
j

ρj

∥∥∥∥
L

q
p−q (Ir)

< ∞, j = 1, 2, . . . , n. (4.5)
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Proof. Assume first that (4.5) holds. We shall apply induction procedure.
For n = 2, the assertion follows from Lemma 4.1. For n = k + 1, we
apply induction hypothesis, Hölder’s inequality for p/q > 1 and change of
variables, and obtain

k+1∏

j=1

‖Fj‖Lq(Rm,βj)
=

k∏

j=1

‖Fj‖Lq(Rm,βj)
‖Fk+1‖Lq(Rm,βj)

≤

≤
k∏

j=1

∥∥∥∥
β

p/q
j

ρj

∥∥∥∥
1/p

Lq/(p−q)(Rm)

k∏

i=2

{
An

p,p′

( i∏

j=1

mj

Mj

)}
×

×
∥∥∥∥∥
( k∏

j=1

∗ϕ(Fjρj)
)( k∏

j=1

∗ϕρj

)1/p−1
∥∥∥∥∥

Lp(Rm)

‖Fk+1‖Lq(Rm,βj)
=

=
k∏

j=1

∥∥∥∥
β

p/q
j

ρj

∥∥∥∥
1/p

Lq/(p−q)(Rm)

k∏

i=2

{
An

p,p′

( i∏

j=1

mj

Mj

)}
×

×
( ∫

Rm

∣∣∣∣
( k∏

j=1

∗ϕ(Fjρj)
)

(ξ)
∣∣∣∣
p∣∣∣∣

( k∏

j=1

∗ϕρj

)
(ξ)

∣∣∣∣
1−p

dξ

)1/p

×

×
( ∫

Rm

|Fk+1|p (σ)ρk+1(σ)dσ

)1/p

×

×
( ∫

Rm

(
β

p/q
k+1(σ)

ρk+1(σ)
dσ

)q/(p−q)

dσ

)(p−q)/pq

=

=
k+1∏

j=1

∥∥∥∥
β

p/q
j

ρj

∥∥∥∥
1/p

Lq/(p−q)(Rm)

k∏

i=2

{
An

p,p′

( i∏

j=1

mj

Mj

)}
×

×
( ∫

Rm

∫

Rm

∣∣∣∣
( k∏

j=1

∗ϕ(Fjρj)
)

(ξ)
∣∣∣∣
p∣∣∣∣

( k∏

j=1

∗ϕρj

)
(ξ)

∣∣∣∣
1−p

×

× |Fk+1|p (ϕ(ξ, η))ρk+1(ϕ(ξ, η)) |ϕη(ξ, η)| dξdη

)1/p

. (4.6)

Let us consider

fp
η (ξ) =

( k∏

j=1

∗ϕ(Fjρj)
)p

(ξ)×

×
( k∏

j=1

∗ϕρj

)1−p

(ξ)
(
F p

k+1ρk+1

)
(ϕ(ξ, η)) |ϕη(ξ, η)| ,
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and

gp′
η (ξ) =

( k∏

j=1

∗ϕρj

)
(ξ)ρk+1(ϕ(ξ, η)) |ϕη(ξ, η)| .

Then, for all ξ ∈ Rm

0 <

k+1∏

j=1

mj ≤
fp

η (ξ)

gp′
η (ξ)

≤
k+1∏

j=1

Mj < ∞.

Now, in view of Theorem C, we obtain

An
p,p′

( k+1∏

j=1

mj

Mj

) ∫

Rm

fη(ξ)gη(ξ)dξ ≥
( ∫

Rm

fp
η (ξ)dξ

)1/p( ∫

Rm

gp′
η (ξ)dξ

)1/p′

i.e.,

An
p,p′

( k+1∏

j=1

mj

Mj

) ∫

Rm

( k∏

j=1

∗ϕ(Fjρj)
)

(ξ) (Fk+1ρk+1) (ϕ(ξ, η)) |ϕη(ξ, η)| dξ ≥

≥
( ∫

Rm

( k∏

j=1

∗ϕ(Fjρj)
)p

(ξ)
( k∏

j=1

∗ϕρj

)1−p

(ξ)×

× (
F p

k+1ρk+1

)
(ϕ(ξ, η)) |ϕη(ξ, η)| dξ

)1/p

×

×
( ∫

Rm

( k∏

j=1

∗ϕρj

)
(ξ)ρk+1(ϕ(ξ, η)) |ϕη(ξ, η)| dξ

)1−1/p

or
∫

Rm

( k∏

j=1

∗ϕ(Fjρj)
)p

(ξ)
( k∏

j=1

∗ϕρj

)1−p

(ξ)×

× (
F p

k+1ρk+1

)
(ϕ(ξ, η)) |ϕη(ξ, η)| dξ ≤

≤ Anp
p,p′

( k+1∏

j=1

mj

Mj

)( k+1∏

j=1

∗ϕ(Fjρj)
)p

(η)
( k+1∏

j=1

∗ϕρj

)1−p

(η). (4.7)

By using (4.7) in (4.6), we obtain
k+1∏

j=1

‖Fj‖Lq(Rm,βj)
≤

k+1∏

j=1

∥∥∥∥
β

p/q
j

ρj

∥∥∥∥
1/p

Lq/(p−q)(Rm)

k+1∏

i=2

{
An

p,p′

( i∏

j=1

mj

Mj

)}
×

×
( ∫

Rm

∣∣∣∣
( k+1∏

j=1

∗ϕ(Fjρj)
)

(η)
∣∣∣∣
p∣∣∣∣

( k+1∏

j=1

∗ϕρj

)
(η)

∣∣∣∣
1−p

dη

)1/p

.



ON YOUNG TYPE INEQUALITIES FOR GENERALIZED CONVOLUTION 59

Taking supremum over r > 0, we find that the inequality (4.4) holds with

D2 :=
n∏

i=2

{
An

p,p′

( i∏

j=1

mj

Mj

)}
D1/p.

Conversely, assume that (4.4) holds. We shall be using the following in-
equality proved in ([7], Lemma 2.7):

For η ∈ Rm, we have
∣∣∣∣
( n∏

j=1

∗ϕ(Fjρj)
)

(η)
∣∣∣∣
p

≤
∣∣∣∣
( n∏

j=1

∗ϕρj

)
(η)

∣∣∣∣
p−1(( n∏

j=1

∗ϕ(|Fj |pρj)
)

(η)
)

using which (4.4) gives
n∏

j=1

‖Fj‖p
Lq(Rm,βj)

≤ Dp
2

∫

Rm

(( n∏

j=1

∗ϕ(|Fj |pρj)
)

(η)
)

dη =

= Dp
2

∫

Rm

∫

Rm

(( n−1∏

j=1

∗ϕ(|Fj |pρj)
)

(ξ)
)
×

× (|Fn|pρn) (ϕ (ξ, η)) |(ϕη (ξ, η))| dξdη =

= Dp
2

∫

Rm

(( n−1∏

j=1

∗ϕ(|Fj |pρj)
)

(ξ)
)

dξ

∫

Rm

(|Fn|pρn) (σ)dσ.

By applying the definition of convolution, then Fubini’s theorem and change
of variables (n− 2) times on the last inequality, we get

n∏

j=1

‖Fj‖p
Lq(Rm,βj)

≤ Dp
2

n∏

j=1

∫

Rm

(|Fj |pρj) (x)dx. (4.8)

For j = 1, 2, . . . ., n, consider the functions as defined in (3.5), i.e.,

Fj = χIr−Ej

(
βj

ρj

)1/(p−q)

.

Then, for these functions, (4.8) gives

n∏

j=1

( ∫

Ir

(
βp/q(x)

ρ(x)

)q/(p−q)

dx

)(p−q)/q

≤ Dp
2 .

Taking supremum over r > 0, the necessity follows. ¤

Remark 4.3. In Theorem 4.2, q < p. However, if βj = ρj , then we
can allow p = q as well. In that case, 4.5 is automatically satisfied. The
corresponding inequality (4.4) is the one proved in [8].
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Remark 4.4. It is of interest to investigate the remaining case p ≤ q when
βj 6= ρj .

5. Special Cases

The inequalities proved in this paper include several known convolutions
such as Fourier convolution, Mellin convolution, Laplace convolution. As
an example, we derive Mellin convolution inequality, as a special case, from
Theorem 2.2 that has very recently been proved in [6]. Note that the in-
equalities proved in the previous sections in the framework of Rm are also
valid for Rm

+ .

Example 5.1. Let n = 2, F1 ~ϕ F2 = F1 ∗ϕ F2, ϕ(ξ, η) = ξη and replace
ρj by ρ

q/p
j , j = 1, 2 in the inequality (2.1). Here 1 < p < ∞ and 1

p + 1
q = 1.

Then, we get the following inequality

‖ (F1 ∗ϕ F2) ‖Lp(Rm
+ ,ρ−1) ≤ ‖F1‖Lp(Rm

+ ,ρ−1
1 )‖F2‖Lp(Rm

+ ,ρ−1
2 ), (5.1)

which holds for all functions Fj ∈ Lp(Rm
+ , ρ−1

j ), j = 1, 2, where

ρ(η) =
[(

ρ
q/p
1 ∗ϕ ρ

q/p
2

)
(η)

]p/q

, η ∈ Rm
+ .

The inequality (5.1) is exactly the one proved in ([6], (1.4)), ∗ϕ being the
Mellin convolution used there.

The reverse of the inequality (5.1) can also be derived easily by Theorem
4.2 (in view of Remark 4.3) or directly by using Theorem B. Precisely, we
have the following:

Example 5.2. Let n = 2, F1 ~ϕ F2 = F1 ∗ϕ F2, ϕ(ξ, η) = ξη and ρj

replaced by ρ
q/p
j , j = 1, 2 in the inequality (1.8). Here 1 < p < ∞ and

1
p + 1

q = 1. Then, we get the following inequality
∥∥(F1 ∗ϕ F2)

∥∥
Lp(Rm

+ ,ρ−1)
≥

≥ A−n
p,p′

(
m1m2

M1M2

)
‖F1‖Lp(Rm

+ ,ρ−1
1 )‖F2‖Lp(Rm

+ ,ρ−1
2 ), (5.2)

which holds for all functions Fj ∈ Lp(Rm
+ , ρ−1

j ), j = 1, 2, where

ρ(η) =
[(

ρ
q/p
1 ∗ϕ ρ

q/p
2

)
(η)

]p/q

, η ∈ Rm
+ .
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