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ON YOUNG TYPE INEQUALITIES FOR GENERALIZED
CONVOLUTION

P. JAIN AND S. JAIN

ABSTRACT. A generalized convolution is introduced using which new
iterated convolution inequalities have been obtained in a general fra-
mework of Lebesgue spaces with different indices and with different
weights. In each case, a characterization has been given for the corre-
sponding inequality to hold. These inequalities include several of the
known such inequalities.
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1. INTRODUCTION

By a weight function or simply a weight, we shall mean a function which
is positive, measurable and finite a.e. For @ CR™, 1 < p < co and a weight
p, we shall denote by LP(€, p), the weighted Lebesgue space which is the
space of all measurable functions f for which

1/p
T ( / f(f)I”p(f)dé) < .
Q

When p = 1, the corresponding non-weighted Lebesgue space will be de-
noted by LP(£2). According to Young’s inequality

1F1 #1 Foll ey < 1Pl oy 1 P2l oy, F1 € LP(R),  F2 € LY(R),

where p,q,r > 0, % +1= % + % and F; %1 Fy is the Fourier convolution
defined by

(Fy 1 Fy) (1) = / Fy(€)Faln — £)de. (L1)

R
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Inspired by Young’s inequality, several authors have studied more general
versions of it: sometimes by considering different type of convolutions and
sometimes by introducing weights in the corresponding inequalities. One
may refer to [2-10] and references there in.

Castro and Saitoh [2] considered the following three convolutions in ad-
dition to (1.1):

(Fy 2 Fy) () = / Fi(&)F2€ — n)de, (1.2)
R
(Fy %5 Fy) () = / Fr @) F (€ + n)de, (1.3)
R
(Fuowa Fa) () = [ Q@ Fa(—€ — g (1.4)
and proved the inequality R
fm {I((Fip1) = (Fapa)) () b dn

<( 7 RO nin ) 7 Rt ). (15)

where * denotes any one of the convolutions 1, *9, *3, *4 defined above and
p1,p2 are weights. Further, in [7], the authors introduced the so called
p-convolution which is a generalization of the standard convolution. The
@-convolution of F; and Fy, denoted by Fy *, F5 is defined by

(F1 %o F2) () = /F1(€)F2(<P(£ﬂ)))I(%(ﬁm))ld& (1.6)

Rm

if the integral on the right exists. Here ¢ is a mapping from R™ x R™ to
R™ and

(pn(E.m))]| = det a%«o(e, m)-

In the framework of the yp-convolution, Nhan, Duc and Tuan [7] proved
the following:

Theorem A. Consider the iterated @-convolution H;.Lzl *,F; defined by

n—1

f[l*son(f) = < 11 *¢Fj) s, Fu(€), €€R™,

J=1
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Let pj,5 = 1,2,...,n be weights such that the iterated @-convolution
H?:l x,p; exists. Then, for 1 <p < oo, the inequality

| < ﬁ *w(Fij)> ( ﬁ *ij) o

j=1 j=1
holds for all F; € LP(R™, p;), 1 < j < n.

<ITIEl s m s (LT)

Lp(Rm™) j=1

For ¢(&,m) = n — &, the convolution *, is the standard convolution *;
given by (1.1). This case of Theorem A was studied by Andersen [1].

Further, note that the convolutions %5, *3 and %4 can not be obtained as
special cases of *,. Thus, it is natural to consider the generalized versions
of *g9, *3, x4 corresponding to *, . In this direction, we unify all these
generalizations and define the following:

Definition 1.1. Define ®,-convolution of F; and F, by

(Fy ®, Fy) (n) = / FL(€) ® Fy (p(&,m)) Loy (€. 1)) dE.

R™

where ¢ is the mapping as in (1.6) and ® is any one of the operations
inside the integrals of (1.1)-(1.4). For example, if ¢(§,n) = £ +n and
Fi(§) ® Fy(7) = F1(§)F2(7), then

(F1 ®, I2) (n) = (F1 *3 F2) (n).

As the first aim of this paper, we shall establish Theorem A in the frame-
work of ®,-convolution. Moreover, we shall establish this new result in a
more general setting in the sense that different sets of weights p; and 3; are
considered on two sides of the corresponding inequality and also different
indices p and ¢ are used. A characterization has been obtained for such
inequality for the case 1 < p < ¢ < 0.

Further, in a different paper [8], Nhan, Duc and Tuan studied the reverse
of the inequality (1.7). Precisely, they proved the following:

Theorem B. Let p;,j =1,2,...,n be weights such that the p-convolution
H;—;l *op; exists and the function F;’s satisfy 0 < m;/p <F; < Mjl/p < 0.
Then, for 1 < p < oo, the inequality

n n 1/p—1
< I (Fjpj)) < 11 *ij) >
j=1 j=1 p(Rm)
n . 3 m;
2 H{Ap,p'(HM]>}H|IF Lo g (1.8)
=2 j=1
holds for all Fj € LP(R™,p;),1 <j<mn



48 P. JAIN AND S. JAIN

In the present paper, we also extend Theorem B by taking different sets of
weights and different indices on two sides of the inequality (1.8) and obtain a
characterization for the corresponding inequality to hold for 1 < ¢ < p < oc.

2. ®,-CONVOLUTION INEQUALITY: THE CASE p = ¢

We begin with the following lemma which will be used in the subsequent
result:

Lemma 2.1. Let 1 < p < oo and p;,j = 1,2 be weights on R™. Then
the inequality

H (Fip1) ®p (Fapa)) (pr ®4 p2) /77 ’ Lr(R™)

holds for all functions F; € LP(R™, p;).

< |[Fillze@m o) 1 F2l Lo (R o)

Proof. By applying Holder’s inequality, Fubini’s theorem and change of vari-
ables, we have

H((Flpl) ®, (Fapa)) (p1 ®, p2)" /77" ‘ ! <

Lp(R™)

: /|((F1/)1) @ (Fop2)) ()" |(p1r @4 p2) ()| 7 dn =

_ / ' / (Fup1)(€) ® (Fap2) (2(6,m)) o (&,m)

% |(p1 ®y p2) ()|' P dyp=
/!me (FL(€) ® Fa(p(&m) (p1(&) ® pa(ip(&,m)) len(& m)l de]”
(1 ®, p2) ()P

< / / IFL(6) ® (Fa(o(€m) " 101(€) @ palplEsm)| |ion€, )| dédin <

< / / FL O Fa(o m)IP pr(€)p2(0(€,m)) Lo (E,m)| dédn =

R™ R™
- / |F1(£)|”p1(£)( / |F2(<p(§,n))|pp2(<ﬂ(§m))|wn(§,n)|dn>d§=
R™ Rm™

- (/ R ()i (/ AP pa(r)ar ) =

= HFlH]Zp(Rmm)HFZHZZp(Rm,,JZ)

and we are done. O
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Now, we prove the following:

Theorem 2.2. Let 1 < p < oo and pj,j = 1,2,...,n be weights such
that the convolution H?:l ®,p; ewists. Then the inequality

n n 1/p—1
( II ®¢(Fjﬂj)) ( 11 ®sapj>
Jj=1 j=1 Lp(R™)

holds for all functions F; € LP(R™,p;), 7 =1,2,...,n.

n
<TTIE N gy (21)
j=1

Proof. We will prove it by the induction. By Lemma 2.1, the result holds
for n = 2. For n = k+ 1, by applying Holder’s inequality, Fubini’s theorem,
change of variables and induction hypothesis, we have

<ﬁ®¢(Fjpj)) <ﬁ®¢pj> 1/p—1
) / ‘<lﬁ®¢(Fjpj))(m kﬁ@m(n)
oo j=1

< / LRZ

RmM

p
<
Lr(R™)

1-p
dn <

P

k p
<H®w(Fij)>(§)®(Fkﬂpkﬂ)(@(fﬂ?)) |¢n<s,n>d§} X
j=1

g [/ ‘(ljl%pj)(f)@Pkﬂ (sﬂ(ﬁ,n))’l%(&n)ldi]l_p <

R™

S//‘(H@)w(Fij))(f)

R™ R™ Jj=1

® |(Frr1pn41) (9(€m) [ x

g (fll®ij) 9 - @ ’karl (p(&m) ’1_p ln (& m)| dsdn =
b P k 1—p
- / Kj_l@“(m))(g) ( 11 sons )6

) {/ |(Fiprpe1) (&) [P (orsr (0(&m) ) 7| (@nl&,m)) |dn| dg =

R™
p

||Fk+1 ||113,P(Rm,pk+1) <
Lr(R™)

k k 1/p—1
( H ®<P(Fjpj)> ( H ®<ppj>
j=1 j=1
k+1
< H HFjle,p(Rm,pj)

Jj=1
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and the assertion follows. O

Remark 2.3. If the functions F} are real valued then F; = F; and there-
fore inequality (2.1) reduces to (1.7). Consequently, Theorem 2.2 extends
Theorem A. At the same time, the convolution ®, in inequality (2.1) is
more general than o, %3 and x4 as well, and so (2.1) also extends (1.5)
given by Castro and Saitoh [2].

3. ®,-CONVOLUTION INEQUALITY: THE CASE p < ¢
Throughout, for » > 0, we shall denote

I, = (—rr) X (=rr) X - x(=rr).

m—times

In this section, we shall study inequality (2.1) for different sets of weights
and for different indices on both sides of it. A weight characterization has
been obtained for the corresponding inequality. We prove a lemma first:

Lemma 3.1. Let 1 <p < g < oo and pj, 5,7 = 1,2 be weights on R™.

If
p P2
C :=sup pl/q p/q _a_ < 00, (3:1)
>0 || 5] Lis (1) La=p(I)
then the inequality
H((F1p1) ®y (F2p2)) (p1 ®, P2)1/p_1‘ Loy =

< ClFull Lo g P2l La@m,62) (32)
holds for all functions F; € L4(R™, 3;), j = 1,2.

Proof. By applying Holder’s inequality, Fubini’s theorem, change of vari-
ables and (3.1), we have

| (Fo) @ Fap)) (1 @p o)) <

LoRm)

< / [(Fap) ® (Pop) () (01 ©4 o) ()]' iy =

/’/ Fip1)(€) @ (Fap2)((&,m)) ln (€5 m)

R™m R™

x |(p1 @y p2) ()| 7P dy =

/ | Jom (F1(§) ® Fa(p(£,m))) (p1() ® pa(p(€,m) |0q (&, )| d€|”
|(p1 @ p2) ()P~

dn <
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s//ﬁu@@&w@mm%mo®mw@mm%@mmwm;
R™ R™

S//Iﬂ(&)lp |Ea(0(&,m)I” p1(E)pale(€,m)) (B1(€)Bap(€,m)))P x

R™ R™

X (B1(6)Ba(p(€,m))) P | (€, m)| dEdn <
p/q
s(//ﬁm@ﬂ&w@mwm@mwmmnwmmmw@ .

Rm Rm

P (©)pa(p(&,m)) YO > —
n 57 dgd §
) <R[R/ <(ﬂl(€)6z(s0(§,n)))”/“) lon (€, m)| d€dn

p/q
SC(//'Fl(f)q|F2(90(§ﬂ7))qﬁl(ﬁ)ﬁg(w(é,n))Iwn(«sm)ldgdn> _

RmM RmM

r/q
:O<E/|F1(§)|qﬁl(€)(/|F2(<P(§777))|q62(§0(§v77>)|90n(§777)|d77>d§> =

RWL
=C ||F1||I£q(Rm751) HF2||€<1(Rm752)
and the inequality (3.2) is obtained. O

Now, we prove the following:

Theorem 3.2. Let1 <p < g <oo and p;, 55,7 =1,2,...,n be weights
such that the convolution H;.Lzl ®,p; exists. Then the inequality

‘ <jf[1®90(Fij)) (jﬁl®woj>l/pl

holds for some constant C1 > 0 and for all functions F; € LY(R™, (),
i=1,2,....,n, if and only if

< G [T IE a5,y (3:3)
LP(Rm) Jj=1

< 0. (3.4)
(Ir)

q

Proof. Assume first that (3.4) holds. We shall apply induction procedure.

For n = 2, the assertion follows from Lemma 3.1. For n = k + 1, we apply

Holder’s inequality for ¢/p > 1, Fubini’s theorem, change of variables and

induction hypothesis, and obtain
k+1 k+1 1/p—1||P

( 11 ®w(Fjpj)> ( 11 @%Pj) <
j=1 j=1

Lp(R™)
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k
i )efmensonisins] -
[/‘(f[@m) ‘pkm (f,n)mson(&,n)df] "<
J (jll@w(Fij))(ﬁ)p
% (o1 (&) ) lip(&m)| dgdn =
:Rm (f{ ou(Eip))E] <ﬁ1 o) ©
(P (&))" |‘Pn(€777)|d77] ¢ =

k k 1/p—1
H H (Fjpj) )(H@%Pj)
j=1

1-p
X

|(Fry1pr41) (9(€,m))

' (1_1 o0t )(©

[ [ 1Fessenoten
R’ﬂl

P
X
Lr(R™)

/ Fiess (0) g (0)557]%(0) 32/ (0)dor <
R'm

<11

p/a
HHF Za(mm ;) (/|Fk+1(o)|qﬁk+1(a)da> X
Lq/(q*P)(Rm »_1

p/q
B; .
/(a—p) (a—p)/a
pr+1(0) \* -
X (/ (,Bp/q (cr)) da) =
R™ k+1
k+1 k+1 k41
-1l W O | LT AEREE | LA

a/\qa—p m j 1

j=1

and (3.3) follows.
r>0 L‘I ? (1)

with CY = sup H HIBP/‘I ‘

Conversely, assume that (3.3) holds. For j = 1,2,...,n, we use the a.e.
finiteness of the weights ;. There exist sets A; with m(A;) = 0 such that
B; are finite on R™ \ A;. Similarly, there exist sets B; with m(B;) = 0
such that p; are finite on R™ \ B;. If we write E; = A; U Bj;, then clearly
measure of Ej is zero, i.e., m(E;) = 0. Now, define the function

B 1/(p—q)
Fj = Xlrij (pj> . (35)
J
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In view of the above arguments, we find that F} is a positive, measurable,
finite and bounded function. Then there exist m;, M; such that

0<m/” < Fy < MP < oo
It was proved in ([8], p. 82) that the following inequality holds:

(fw o) ((f1))

>H{ o (H )}(ﬁ F%) ), neER™  (3.6)

Note that if F;’s in (3.6) are taken as defined by (3.5), then (3.6) also holds
with the operation *, replaced by ®,, since these functions are real valued.
Thus, the following holds:

((Jﬁ ®p (Fjpj))(n))p«jf[l@ij)(n))1_p >
>H{ <Hmj>}<ﬁl®“"wfﬂj)>(ﬂ)7 neR™.  (3.7)

Jj=1
By using (3.7), the inequality (3.3) reduces to

H{ p,p( )}/ Fp] d’7<CPHHFHL(Rmﬁ),
=2 j= 1 i o
ie.,
“np my .
(15} /| ] (ewe)io-

Rm RmMm

< (P2p) (A€ lonlEml el < O TT IR e
=1

which by Fubini’s theorem and change of variables gives

f[ {AMZI” ( H X}j) } / (1_111 %(Ffm)) (§)dg / (Frpn)(0)do <

=2 j=1 Rm

< Cf H ||Fj||1£q(Rm7gj) :

j=1
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By using the definition of convolution, then Fubini’s theorem and change of
variables (n — 2) times on the last inequality, we get

n

. i o n n
[{a (1152 ) LT [ (o) @e < et TR
J=1gpm J=

i=2 j=1

In view of the fact that m(E;) = 0, the last inequality, for F}’s given by
(3.5), becomes

0/ Goy) ™)™ et (05 ) <~

j=1
or
j
sup < 0
T>0j1;[1 ﬂp/q La/(a=P)(I,.)
and the result is proved. O

Remark 3.3. If p; = 3; in Theorem 3.2, then we can allow p = ¢ as well
and the corresponding inequality extends Theorem A as well as inequality
(1.5). Thus Theorem 3.2 is much more general than the similar existing
results.

Remark 3.4. It is of interest to investigate the case ¢ < p when §; # p;.

4. REVERSE INEQUALITY

In this section, we shall prove some reverse convolution inequalities. We
shall be using the following version of reverse Holder’s inequality [8] (see
also [8-11]):

Theorem C. Let p > 1, % + z% =1, p be a weight function and f be a
positive function defined on 2 C R™ satisfying

0<ml/? < f(z) < MY?P < .

Then the inequality

( / f(w)l”p(m)dx)l/p( / p(m)dm)l/p < Ap (%) / f(@)p(x)de
Q

Q Q
holds with

We begin with the following lemma:
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Lemma 4.1. Let 1 < q <p < o0, p;,B;,j = 1,2 be weights on R™ and
Fy, Fy be measurable functions satisfying

O<m1/p§F1§M11/p<oo, O<m§/p§F2§M21/p<oo.

If

ﬁp/q D/ q

D :=sup ||=2— . =2 . < (4.1)
>0 [l P1 llps=a )l P2 llpe—a(1,)
then, the inequality
Dl‘ ((Fip1) o (F2pa)) (o1 % p2) /77 ’ Lp(R™) S

> ||F1||L<I(]Rmﬁl)HFQHL‘?(Rmﬂz) (4'2)
holds for all functions F; € LI(R™, 3;), j = 1,2 with Dy =
Az, () D,

Proof. We have, by applying Holder’s inequality for p/q > 1, Fubini’s the-
orem and change of variables,

HFl||§q(Rm751)||F2||'2q(Rm,52) =
p/q
( / / R O]9 Faio(€.m)) |71 (€) Balio(Em)) Iwn(&n)ldidn) <
RmR™

< / / FL O Balo(€.m) P o1 (€)p2(0(€, 1)) Lo €, m)| ded x

R™ R™

" <RZ RZ ( pegffif(z . )p/(p_Q) (6ol ded S

St

x / / F €)1 Fa( o€, m) P01 (€)p2(e0(€.m)) o (€.m)| déd. (4.3)

Rm Rm

Let us consider

f(&) = FY (&) FY ((&,m)p1(&)p2(e(€,m) len(€,m)]
and

9(&) = p1(§)p2(p(&,m)) ln (&, m)] -
Then for all £ € R™, we find, by using the hypothesis, that

i)

0<mme < —= < MiM; < .

9(§) —
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Now, in view of Theorem C, we obtain

ALy (mlm) /Fl(&)m(é“)Fz(so(&n))pz(so(f,n)) lpn (&) dE >
R™

M, M,

1/p
> ( [1F©Pn©IFs( el mIFpa(oten) Iwn(é,n)ldn> x
]Rm

< ([ m@tetc.n eatenl d§>1—1/p

]Rm
or

p _ mimso
> AP X
Le®m) — PP <M1M2)

x / / FL ()P o1 (&) | Falo (€, 1) P2 (6, m)) |0 (€ )] ddly

Rm Rm

H (F1p1) *p (F2p2)) (p1 % p2) /77! ‘

which on using (4.3) gives

I@p/q l/p An (mlmg) y
Pi L oa mm) PP\ My M,

) /pfl‘

2
IF1 Nl am ) |1 P2l a@@m g,) < H

<
Lr(Rm) —

= Dy H((Flpl) *o (F2p2)) (p1 %o pz)l/p—l)

< |[((Fipn) % (Fapa)) (01 %, 2

LP(R™)
and the assertion is proved. O
Now, we prove the following characterization:

Theorem 4.2. Let1 < g <p < oo and p;, 55,7 =1,2,...,n be weights
such that the convolution H;.L:l x,p; exists. Let F; be functions satisfying

0<m/? <F;<M" <00, j=12...,n.
Then the inequality

(fTitr) (1)

i=1 i=1

D,y

HHF [La@m,p,) (4.4)

LP(R™)

holds for some constant Dy > 0 and for all functions F; € LY(R™,j;),
j=1,2,...,n, if and only if
P/ q
J

Pj

n

D :=sup
r>0j];[1

. <oo, j=1,2,...,n. (4.5)
Lot (1)
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Proof. Assume first that (4.5) holds. We shall apply induction procedure.
For n = 2, the assertion follows from Lemma 4.1. For n = k + 1, we
apply induction hypothesis, Holder’s inequality for p/q > 1 and change of
variables, and obtain

k+1 k

H HFj”Lq(Rmﬂj) = H ||FjHLq(Rmﬁj) ||Fk+1||LfI(]RM,ﬂj) <
j=1 j=1

e I (1152}

La/(r=a)(R™) ;_o

(i) 1)

Jj=1

ﬁf/q

IN

ANz

J

||Fk+1||Lq(Rm,[3j) =

Lr(R™)
ﬂf/q 1/p k {An ( i m])}x
Pi /- D (R™) ;—o PP 1 Mj

(I

([ 1Bl >pk+1<a>da)l/px

m

p/q 4/ (p—q) (p—q)/pq
/ <6k+1 (o) da) do _
J, pr+1(0)

Il
||‘zpr

X

/\/\/\

p/q1/p m;
-1 T (1)
P k 1-p
(//!( ot Jof |(ILomr )]
X [ Fip1]” (0(&m)) pr1(0(€,m)) lon (€ m) dﬁdn> 1/1’. (4.6)

Let us consider
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and

(1_1 ) @presle(e ) lon(enl.

Then, for all £ € R™

k+1 k+1
G
0< II < < M, <
i =20 i

Now, in view of Theorem C, we obtain

k+1 1/p 1/p'
a5, (11 ) 1(©)anl ds>( o) ([ o @)
4 L2 / n(€)9n / R/ n

ie.,

2 (TL22) [ (TLo0tE00)(© (Furapon) (o) ot il 2

1 B Vi=1

k

- </ (ﬁ*wjpj))p(@( Hmpj)l_p@)x

R™ j=1 j=1

1/p
X (Fpprer) (9(&m) lon(&,n) dE) X

k 1-1/p
x ( [ (TLvoms ) @pratioten) |<Pn(£ﬂ7)|d£>
R™

Jj=1
or

/<ﬁl**" (F3p3) )p (ﬁ%w)lp(&)x

X (Fk+1pk+1) (p(&m) lpn(&m)|dE <
k+1

<am, (ﬁ ) (ﬁ om0} (T *ij)l_pm). (17)

j=1""7 j=1 j=1

By using (4.7) in (4.6), we obtain

k+1 k41 ﬁp/q 1/p k41 m;
i (s (113}
jl;[l JWLa(R™,B;) J]._[l pj Lq/(p_q)(Rm)g 1:.[ M;
k+1 py s k+1 1— 1/p
X ( / < H *W(Fjpj)) (n) (H sopg> () d"7> .
g N i=1 j=1
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Taking supremum over r > 0, we find that the inequality (4.4) holds with

n %

i (15

i=2 j=1

Conversely, assume that (4.4) holds. We shall be using the following in-

equality proved in ([7], Lemma 2.7):
For n € R™, we have
n — n
‘(H m) n) ((H*go IFIPJ>?7))
i e

‘ (ﬁ *o(Fjp;5) )

j=1

using which (4.4) gives

ﬁ'Fjﬁq(Rmﬁj) /<<ﬁ (1751 p; > n))dn

R™ =

=1 [ [ ((Tmron)o)-

R™m Rm

X ([Enl?pn) (¢ (&) [(0n (&) dEdn =

n—1

- D@R[ ((TLwtmr0) (f))dﬁkl (EalPp) (0)do

j=1

By applying the definition of convolution, then Fubini’s theorem and change
of variables (n — 2) times on the last inequality, we get

HHFJHLq(ng)SD”H/\FIpJ o)da. (45)
j=1

J= 1]Rm.
For j =1,2,....,n, consider the functions as defined in (3.5), i.e
(r—a)
8\
Fj = erij (pj .

Then, for these functions, (4.8) gives

ﬁ ( / (ﬂ”/q( >>” v i) O e

Taking supremum over r > 0, the necessity follows. (]

Remark 4.3. In Theorem 4.2, ¢ < p. However, if 3; = p;, then we
can allow p = g as well. In that case, 4.5 is automatically satisfied. The
corresponding inequality (4.4) is the one proved in [8].
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Remark 4.4. Tt is of interest to investigate the remaining case p < ¢ when

B # pj-

5. SPECIAL CASES

The inequalities proved in this paper include several known convolutions
such as Fourier convolution, Mellin convolution, Laplace convolution. As
an example, we derive Mellin convolution inequality, as a special case, from
Theorem 2.2 that has very recently been proved in [6]. Note that the in-
equalities proved in the previous sections in the framework of R™ are also
valid for R’

Example 5.1. Let n = 2, F} ®, Fy = Fy x, 5, ¢(§,1) = £n and replace

p; by pg/p, j = 1,2 in the inequality (2.1). Here 1 < p < co and %+ % =1

Then, we get the following inequality
| (£ *p Fy) HLP(RT,/)*I) < ||F1||LP(]RT,p;1)HFz‘lLP(RT7p;1)’ (5.1)
which holds for all functions F; € LP(RT, p}l),j = 1,2, where

p(n) = [(p‘f/ Py pl p) (n)]p/q

The inequality (5.1) is exactly the one proved in ([6], (1.4)), *, being the
Mellin convolution used there.

, neRT.

The reverse of the inequality (5.1) can also be derived easily by Theorem
4.2 (in view of Remark 4.3) or directly by using Theorem B. Precisely, we
have the following:

Example 5.2. Let n = 2, Fi ®, F> = F *, F5, ¢(&,n) = &n and p;

replaced by p?/ P

% + % = 1. Then, we get the following inequality

j = 1,2 in the inequality (1.8). Here 1 < p < oo and

[(F1 %, F2)||L¢J(]Rj},p—1) Z

—n mims
S G L P P X

which holds for all functions F; € LP(R7", p;!),j = 1,2, where

}p/q

p(n) = KP’{/’) *p pg/p) (m| . neRT.
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