ON THE RELATIONSHIP BETWEEN CONDITIONS OF THE DIFFERENTIABILITY AND EXISTENCE OF A GENERALIZED GRADIENT

L. BANTSURI

ABSTRACT. It is proved that if admissible increments have property of anisotropic density, then there exists a continuous function $f: \mathbb{R}^n \to \mathbb{R}$ which is differentiable almost everywhere but does not has the generalized gradient with respect to the given increments almost nowhere.

რეზიუმე. დამტკიცებულია, რომ თუ დასაშვებ ნაზრდებს აქვთ ანიზოტროპული სიმკვრივის თვისება, მაშინ არსებობს $f:\mathbb{R}^n \to \mathbb{R}$ ფუნქცია, რომელიც დიფერენცირებადია თითქმის ყველგან, მაგრამ თითქმის არსად არა აქვს განზოგადებული გრადიენტი განსახილავი ნაზრდების მიმართ.

1. Definitions and notation. Below everywhere we will assume that $n \in \mathbb{N}$ and n > 2.

For $h \in \mathbb{R}^n$ and $i \in \overline{1,n}$, denote by h(i) the point in \mathbb{R}^n such that $h(i)_j = h_j$ for every $j \in \overline{1,n} \setminus \{i\}$ and $h(i)_i = 0$. For $i \in \overline{1,n}$, by L_i will be denoted the hyperplane $\{h \in \mathbb{R}^n : h_i = 0\}$.

By Π_i $(i \in \overline{1,n})$ denote the class of all sets $\Delta \subset \mathbb{R}^n$ with the following properties: $\Delta \cap L_i = \emptyset$ and the origin 0 is a limit point for Δ .

Let $i \in \overline{1, n}$, $\Delta \in \Pi_i$ and f be a function defined in a neighborhood of a point $x \in \mathbb{R}^n$. If there exists the limit

$$\lim_{\Delta\ni h\to 0}\frac{f(x+h)-f(x+h(i))}{h_i},$$

then we call its value the partial (i, Δ) -derivative of f at x and denote it by $D_{i,\Delta}f(x)$.

A basis of gradient generating (briefly, basis) will be defined as an n-tuple $\Delta = (\Delta_1, \ldots, \Delta_n)$, where $\Delta_i \in \Pi_i$ for every $i \in \overline{1, n}$.

If for a basis $\Delta = (\Delta_1, \dots, \Delta_n)$ a function f has finite partial (i, Δ_i) -derivative for every $i \in \overline{1, n}$ at x then we will say that f has the Δ -gradient at x.

²⁰¹⁰ Mathematics Subject Classification. 26B05.

Key words and phrases. Differentiability, gradient, functions of several variables.

For an interval $I = I_1 \times \cdots \times I_n$ denote

$$r_i(I) = \frac{\max\limits_{j \neq i} |I_j|}{|I_i|} \quad (i \in \overline{1, n}).$$

A set $E \subset \mathbb{R}^n$ let us call anisotropically dense at point 0 with respect to *i-th variable*, if there exist a number $\alpha > 0$ and a sequence of *n*-dimensional intervals $(I_k)_{k \in \mathbb{N}}$ such that:

$$\begin{aligned} \operatorname{diam} I_k &\to 0 \quad (k \to \infty), \\ 0 \ \ \text{is a center of} \ \ I_k \quad (k \in \mathbb{N}), \\ r_i(I_k) &\to \infty \quad (k \to \infty), \\ \frac{|E \cap I_k|}{|I_k|} &\ge \alpha \quad (k \in \mathbb{N}). \end{aligned}$$

Remark 1. In two-dimensional case, any convex set with point 0 on its boundary and axis Ox_2 as a tangent line is anisotropically dense at point 0 with respect to the first variable. In particular, such is the set $E_{\varepsilon} = \{(t, \tau) : t > 0, 0 \le |\tau| \le t^{\varepsilon} \}$ for any $\varepsilon \in (0, 1)$.

A basis $\Delta = (\Delta_1, \dots, \Delta_n)$ let us call anisotropically dense if at least one among its components Δ_i is anisotropically dense at point 0 with respect to a corresponding *i*-th variable.

2. Result. In the case $\Delta = (\mathbb{R}^n \setminus L_1, \dots, \mathbb{R}^n \setminus L_n)$ the Δ -gradient is called the strong gradient and was introduced by O. Dzagnidze [1]. In [1] it was proved that if a function f has the strong gradient at a point x, then f is differentiable at x and the converse assertion is not true. G. G. Oniani [2] constructed a continuous function $f: \mathbb{R}^n \to \mathbb{R}$ such that f is differentiable almost everywhere but f does not has the strong gradient almost nowhere. The following generalization of this result is true.

Theorem 1. If a basis Δ is anisotropically dense, then there exists a continuous function $f: \mathbb{R}^n \to \mathbb{R}$ such that:

- 1) f is differentiable almost everywhere;
- 2) f has no Δ -gradient almost nowhere.

Remark 2. A function f will be constructed so as the condition 2) will be satisfied in the following context: $\varlimsup_{\Delta_i\ni h\to 0} \frac{f(x+h)-f(x+h(i))}{h_i} = \infty$ almost everywhere, where i is an index for which the component Δ_i of the basis Δ is anisotropically dense at point 0 with respect to i-th variable.

3. Auxiliary statements. We shall note that the construction of desirable function is carried out by modification of G. G. Oniani's [2] scheme.

For simplicity, we consider the two-dimensional case.

Afterwards, without restriction of generality, we shall suppose that Δ_1 is anisotropically dense at zero with a parameter $0 < \alpha \le 1$.

For simplicity, we shall make one more agreement. Suppose that (I_k) is a sequence of intervals from the property of anisotropic density of the set Δ_1 . Denote by $I_k^{(p)}$ $(p \in \overline{1,4})$ the intersection of the interval $I_k^{(p)}$ with a corresponding coordinate quarter. It is obvious that there exists such a $p \in \overline{1,4}$ that

$$\frac{|I_k^{(p)} \cap \Delta_1|}{|I_k^{(p)}|} \ge \alpha$$

for infinite number of k. We shall assume that this condition is satisfied when p = 1, i.e. for the first coordinate quarter.

Let us introduce the following three maximal operators: for a continuous function $f: \mathbb{R}^2 \to \mathbb{R}$, a point $x \in \mathbb{R}^2$ and numbers $0 < \delta < \eta$ set:

$$M(f)(x) = \sup_{h \neq 0} \frac{|f(x+h) - f(x)|}{\|h\|},$$

$$S_{\eta}(f)(x) = \sup_{h \in \Delta_{1}, \|h\| < \eta} \frac{|f(x+h) - f(x+h(1))|}{h_{1}},$$

$$S_{\delta,\eta}(f)(x) = \sup_{h \in \Delta_{1}, \|h\| < \eta, |h_{1}| > \delta} \frac{|f(x+h) - f(x+h(1))|}{h_{1}}.$$

Basic construction. Suppose that $k \in \mathbb{N}$. Let us consider numbers $0 < t_1(k) < t_2(k)$ such that:

$$t_1(k)$$
 and $t_2(k)$ are numbers of the form $\frac{1}{2^m}$ $(m \in \mathbb{N})$,
$$\frac{t_2(k)}{t_1(k)} \ge 2^{5k+2},$$

$$t_2(k) \le \frac{1}{2^k},$$

$$\frac{|\Delta_1 \cap I_k|}{|I_k|} \ge \alpha, \text{ where } I_k = [0, t_1(k)] \times [0, t_2(k)].$$

The existence of such numbers $t_1(k)$ and $t_2(k)$ follows from the assumption of anisotropic density of Δ_1 .

Let us introduce the following notation:

$$t(k) = (t_1(k), t_2(k));$$

$$B_k = B \left[t(k), \frac{\alpha t_1(k)}{2} \right],$$

i.e. B_k is a closed disc with the center at t(k) and with the radius $\frac{\alpha t_1(k)}{2}$;

$$\widetilde{B}_k = B\left[t(k), 2^{2k+1}t_1(k)\right].$$

Let $f_k : \mathbb{R}^2 \to \mathbb{R}$ be a continuously differentiable function with the properties:

$$\operatorname{supp} f_k \subset B_k,$$

$$f_k(t(k)) = 2^k t_1(k),$$

$$0 \le f_k(x) \le 2^k t_1(k) \quad (x \in B_k).$$

It is easy to check that the function f_k has the following properties:

1)
$$\left\{ M(f_k) > \frac{1}{2^k} \right\} \subset \widetilde{B}_k;$$

2) $\left| \left\{ S_{2t_1(k)}(f_k) > 2^k \right\} \cap I_k \right| \ge \frac{\alpha}{2} |I_k|.$

Lemma A (see [2]). Suppose that for continuous functions $f_k : \mathbb{R}^2 \to \mathbb{R}$ $(k \in \mathbb{N})$, a point $x \in \mathbb{R}^2$ and a number $\lambda > 0$ there are satisfied the following conditions:

$$\operatorname{supp} f_i \cap \operatorname{supp} f_j = \varnothing \quad (i \neq j),$$
$$x \notin \bigcup_{k=1}^{\infty} \operatorname{supp} f_k,$$
$$M(f_k)(x) \leq \lambda \ (k \in \mathbb{N}).$$

Then

$$M\left(\sum_{k=1}^{\infty} f_k\right)(x) \le \lambda.$$

Lemma 1. For each $m \in \mathbb{N}$ there exists a function $\nu_m : \mathbb{R}^2 \to \mathbb{R}$ such that:

- 1) ν_m is a continuously differentiable and 1-periodic,
- 2) $0 \le \nu_m(x) \le \frac{1}{2^m} \ (x \in \mathbb{R}^2),$
- 3) $\left| \left\{ M(\nu_m) > \frac{1}{2^m} \right\} \cap [0,1]^2 \right| < \frac{1}{2^m},$
- 4) $|\{S_{1/2^m}(\nu_m) > 2^m\} \cap [0,1]^2| > \frac{\alpha}{2}$.

Proof. For each number $k \in \mathbb{N}$ we shall consider parameters $t_1(k)$, $t_2(k)$, I_k , B_k , \tilde{B}_k and f_k existing due to the basic construction.

Let us divide the unit square $[0,1]^2$ into the intervals $I_{k,p,q}$ $(1 \le p \le 1/t_1(k), 1 \le q \le 1/t_2(k))$ congruent to the interval I_k . Let for indexes

$$1 \le p \le 1/t_1(k) - 1$$
 and $1 \le q \le 1/t_2(k) - 1$

 $T_{p,q}$ be the shift which moves I_k into $I_{k,p,q}$. Let us introduce the following notation:

$$f_{k,p,q} = f_k \circ T_{p,q}, \quad B_{k,p,q} = T_{p,q}(B_k), \quad \widetilde{B}_{k,p,q} = T_{p,q}(\widetilde{B}_k).$$

Let ν_m be the 1-periodic function such that

$$\nu_m(x) = \sum_{p=1}^{1/t_1(k)-1} \sum_{q=1}^{1/t_2(k)-1} f_{k,p,q}(x) \text{ for each } x \in [0,1]^2.$$

If we take a sufficiently large k, the function ν_m defined in such a way will satisfy all four required conditions. Actually, 1) and 2) are obvious. Property 4) directly follows from the invariance of the operator $S_{1/2^m}$ with respect to shifts, as well as on the basis of property 2) of a function f_k ensured by a basic construction. In order to check property 3) we have to take into account: i) invariance of the operator M with respect to shifts; and ii) property 1) of f_k ensured by a basic construction. Due to this properties and Lemma A the set

$$\left\{ M(\nu_m) > \frac{1}{2^m} \right\} \cap [0,1]^2$$

will be contained in the union of strips Γ_q $(1 \le q \le 1/t_2(k) - 1)$, where Γ_q denotes the minimal horizontal strip containing the discs $\widetilde{B}_{k,p,q}$ $(1 \le p \le 1/t_1(k) - 1)$. Further noting that the union of the strips, for a sufficiently large k, cuts off from the square $[0,1]^2$ a subset of the measure smaller than $1/2^m$, we conclude the validity of the property 3).

Remark 3. Taking into account that $\lim_{\delta \to 0} S_{\delta,\eta}(f)(x) = S_{\eta}(f)(x)$ for each $f \in C(\mathbb{R}^2)$, $\eta > 0$ and $x \in \mathbb{R}^2$, by applying continuity of measure we shall see that for any sufficiently small number $\delta_m \in (0, \frac{1}{2^m})$ there is satisfied the following condition that is stronger than 4) one

4')
$$|\{S_{\delta_m,1/2^m}(\nu_m) > 2^m\} \cap [0,1]^2| > \frac{\alpha}{2}$$
.

The set $E \subset \mathbb{R}^n$ is called *l-periodic* (l > 0), if its characteristic function χ_E is *l*-periodic with respect to each variable.

The following lemma belongs to A. Calderón (see e.g. [3, Ch. XIII, Section 1]).

Lemma B. Let $(E_k)_{k\in\mathbb{N}}$ be a sequence of measurable and l-periodic subsets of \mathbb{R}^n such that

$$\sum_{k=1}^{\infty} |E_k \cap [0, l]^n| = \infty.$$

Then there exist points $x_k \in \mathbb{R}^n$ such that $\overline{\lim}_{k\to\infty}(x_k + E_k)$ is a set of full measure in \mathbb{R}^n .

The following theorem belongs to V. Stepanov (see e.g. [4, Ch. IX, Section 14]).

Theorem A. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a measurable function and

$$\overline{\lim_{h\to 0}} \frac{|f(x+h) - f(x)|}{\|h\|} < \infty$$

at every point x of a set E. Then f is differentiable at almost every point of the set E.

4. Proof of Theorem 1. Assume that the functions ν_m and the numbers δ_m are chosen in accordance with Lemma 1.

We choose the sequence of the indexes $m(1) < m(2) < \cdots$ so that for each $i \ge 2$ the following conditions are satisfied:

$$2^{m(i)-1} > i + \sum_{j=1}^{i-1} \max_{x \in \mathbb{R}^2} |D_1 \nu_{m(j)}(x)|, \qquad (1)$$

where D_1 denotes the partial derivative with respect to the first variable;

$$\omega\left(D_1\nu_{m(j)}, \frac{1}{2^{m(i)}}\right) < 1 \text{ for every } j \in \overline{1, i-1},$$
 (2)

where $\omega(F,t)$ denotes the modulus of continuity of a function F;

$$\frac{1}{\min\{\delta_{m(1)},\dots,\delta_{m(i)}\}2^{m(i+1)}} < \frac{1}{2^i}.$$
 (3)

Let us use Lemma B and find values of shifts x_i such that the upper limit of the sequence of the sets

$$x_i + \left\{ S_{\delta_{m(i)}, 1/2^{m(j)}}(\nu_{m(i)}) > 2^{m(i)} \right\}$$
 (4)

to be of full measure in \mathbb{R}^2 .

Let $\widetilde{\nu}_{m(i)}$ be the x_i shift of the function $\nu_{m(i)}$, that is

$$\widetilde{\nu}_{m(i)}(\cdot) = \nu_{m(i)}(\cdot - x_i) \quad (i \in \mathbb{N}).$$

Using invariance of the operators M and $S_{\delta,n}$ with respect to shifts, we have

$$\left\{ M(\widetilde{\nu}_{m(i)}) > \frac{1}{2^{m(i)}} \right\} = x_i + \left\{ M(\nu_{m(i)}) > \frac{1}{2^{m(i)}} \right\},\tag{5}$$

$$\left\{ S_{\delta_{m(i)},1/2^{m(i)}}(\widetilde{\nu}_{m(i)}) > 2^{m(i)} \right\} = x_i + \left\{ S_{\delta_{m(i)},1/2^{m(i)}}(\nu_{m(i)}) > 2^{m(i)} \right\}. \quad (6)$$

Note that by the invariance of D_1 with respect to shifts, the conditions analogous to (1) and (2) will be satisfied for functions $\widetilde{\nu}_{m(i)}$.

The function f let us define in the following way

$$f = \sum_{i=1}^{\infty} \widetilde{\nu}_{m(i)}.$$

It is obvious that the function f is continuous and 1-periodic.

Denote

$$\begin{split} E_1 &= \varlimsup_{i \to \infty} \left\{ S_{\delta_{m(i)}, 1/2^{m(i)}} \big(\widetilde{\nu}_{m(i)} \big) > 2^{m(i)} \right\} \cap (0, 1)^2, \\ E_2 &= \varlimsup_{i \to \infty} \left\{ M(\widetilde{\nu}_{m(i)}) > \frac{1}{2^{m(i)}} \right\} \cap (0, 1)^2. \end{split}$$

We have that (by Lemma 1, (4),(5) and (6))

$$|E_1| = 1$$
 and $|E_2| = 0$. (7)

Suppose $i \ge 2$ and

$$x \in \left\{ S_{\delta_{m(i)}, 1/2^{m(i)}}(\widetilde{\nu}_{m(i)}) > 2^{m(i)} \right\} \cap (0, 1)^2.$$

Let $h \in \Delta_1$ be such that $|h_1| > \delta_{m(i)}$, $||h|| < 1/2^{m(i)}$ and

$$\left| \frac{\tilde{\nu}_{m(i)}(x+h) - \tilde{\nu}_{m(i)}(x+h(1))}{h_1} \right| > 2^{m(i)}.$$
 (8)

From (2) and (3), by using Lagrange formula, we conclude that for every $j \in \overline{1, i-1}$

$$\left| \frac{\widetilde{\nu}_{m(i)}(x+h) - \widetilde{\nu}_{m(i)}(x+h(1))}{h_1} \right| \le |D_1 \widetilde{\nu}_{m(i)}(x)| + 1. \tag{9}$$

By (8), (9), (1), (2) and (3) we write

$$\left| \frac{f(x+h) - f(x+h(1))}{h_1} \right| \ge \left| \frac{\tilde{\nu}_{m(i)}(x+h) - \tilde{\nu}_{m(i)}(x+h(1))}{h_1} \right| - \sum_{j=1}^{i-1} \left| \frac{\tilde{\nu}_{m(j)}(x+h) - \tilde{\nu}_{m(j)}(x+h(1))}{h_1} \right| - \sum_{j=i+1}^{\infty} \left| \frac{\tilde{\nu}_{m(j)}(x+h) - \tilde{\nu}_{m(j)}(x+h(1))}{h_1} \right| >$$

$$> 2^{m(i)} - \sum_{j=1}^{i-1} \left(D_1(\tilde{\nu}_{m(j)}(x) + 1) \right) - \sum_{j=i+1}^{\infty} \frac{1}{\delta_{m(i)}} \cdot \frac{2}{2^{m(j)}} > 2^{m(i)-1}.$$

Consequently

$$\overline{\lim_{\Delta_1 \ni h \to 0}} \frac{f(x+h) - f(x+h(1))}{h_1} = \infty \tag{10}$$

for every $x \in E_1$. Now, if we take into account (7) and 1-periodicity of the function f we can conclude that the condition (10) is satisfied almost everywhere on \mathbb{R}^2 .

Suppose $x \in (0,1)^2$ and $x \notin E_2$. It is obvious that there exists $i \geq 2$ such that

$$x\notin\left\{M(\widetilde{\nu}_{m(i)})>\frac{1}{2^{m(i)}}\right\}\cap(0,1)^2,\quad\text{when }\,j\geq i.$$

Therefore

$$M\left(\sum_{j=i}^{\infty} \widetilde{\nu}_{m(j)}\right)(x) \le \sum_{j=i}^{\infty} M(\widetilde{\nu}_{m(j)})(x) \le \sum_{j=i}^{\infty} \frac{1}{2^{m(j)}} < 1.$$
 (11)

On the other hand, by using Lagrange formula we obtain that

$$M\left(\sum_{j=1}^{i-1} \widetilde{\nu}_{m(j)}\right)(x) \le$$

$$\le \sum_{j=1}^{i-1} \left[\max_{y \in \mathbb{R}^2} |D_1 \widetilde{\nu}_{m(j)}(y)| + \max_{y \in \mathbb{R}^2} |D_2 \widetilde{\nu}_{m(j)}(y)| \right] < \infty. \quad (12)$$

(11) and (12) imply that $M(f)(x) < \infty$. Now, taking into account (7) and 1-periodicity of the function f we have

$$M(f)(x) < \infty$$
 almost everywhere on \mathbb{R}^2 .

Therefore, by virtue of Theorem A, f is differentiable almost everywhere on \mathbb{R}^2 . This proves the theorem.

References

- 1. O. P. Dzagnidze, On the differentiability of functions of two variables and of indefinite double integrals. *Proc. A. Razmadze Math. Inst.* **106** (1993), 7–48.
- G. G. Oniani, On the inter-relation between differentiability conditions and the existence of a strong gradient. (Russian) Mat. Zametki 77 (2005), No. 1, 93–98; translation in Math. Notes 77 (2005), No. 1-2, 84–89.
- A. Zygmund, Trigonometric series: Vol. II. Second edition, Cambridge University Press, London-New York, 1968.
- S. Saks, Theory of the integral. Second revised edition. Dover Publications, Inc., New York, 1964.

 $\left(\text{Received } 29.11.2013 \right)$

Author's address:

Department of Mathematics Akaki Tsereteli State University 59, Tamar Mepe St., Kutaisi 4600 Georgia

E-mail: bantsuri@mail.ru