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ON THE RELATIONSHIP BETWEEN CONDITIONS OF
THE DIFFERENTIABILITY AND EXISTENCE OF A

GENERALIZED GRADIENT

L. BANTSURI

Abstract. It is proved that if admissible increments have property
of anisotropic density, then there exists a continuous function f :
Rn → R which is differentiable almost everywhere but does not has
the generalized gradient with respect to the given increments almost
nowhere.

îâäæñéâ. áŽéðçæùâĲñèæŽ, îëé åñ áŽïŽöãâĲ êŽäîáâĲï Žóãå Žêæ-
äëðîëìñèæ ïæéçãîæãæï åãæïâĲŽ, éŽöæê ŽîïâĲëĲï f : Rn → R òñ-
êóùæŽ, îëéâèæù áæòâîâêùæîâĲŽáæŽ åæåóéæï õãâèàŽê, éŽàîŽé åæåó-
éæï ŽîïŽá ŽîŽ Žóãï àŽêäëàŽáâĲñèæ àîŽáæâêðæ àŽêïŽýæèŽãæ êŽäî-
áâĲæï éæéŽîå.

1. Definitions and notation. Below everywhere we will assume that
n ∈ N and n ≥ 2.

For h ∈ Rn and i ∈ 1, n, denote by h(i) the point in Rn such that
h(i)j = hj for every j ∈ 1, n\{i} and h(i)i = 0. For i ∈ 1, n, by Li will be
denoted the hyperplane {h ∈ Rn : hi = 0}.

By Πi (i ∈ 1, n) denote the class of all sets ∆ ⊂ Rn with the following
properties: ∆ ∩ Li = ∅ and the origin 0 is a limit point for ∆.

Let i ∈ 1, n, ∆ ∈ Πi and f be a function defined in a neighborhood of a
point x ∈ Rn. If there exists the limit

lim
∆3h→0

f(x + h)− f(x + h(i))
hi

,

then we call its value the partial (i,∆)-derivative of f at x and denote it
by Di,∆f(x).

A basis of gradient generating(briefly, basis) will be defined as an n-tuple
∆ = (∆1, . . . , ∆n), where ∆i ∈ Πi for every i ∈ 1, n.

If for a basis ∆ = (∆1, . . . , ∆n) a function f has finite partial (i, ∆i)-
derivative for every i ∈ 1, n at x then we will say that f has the ∆-gradient
at x.
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For an interval I = I1 × · · · × In denote

ri(I) =
max
j 6=i

|Ij |
|Ii| (i ∈ 1, n).

A set E ⊂ Rn let us call anisotropically dense at point 0 with respect to
i-th variable, if there exist a number α > 0 and a sequence of n-dimensional
intervals (Ik)k∈N such that:

diam Ik → 0 (k →∞),

0 is a center of Ik (k ∈ N),

ri(Ik) →∞ (k →∞),

|E ∩ Ik|
|Ik| ≥ α (k ∈ N).

Remark 1. In two-dimensional case, any convex set with point 0 on its
boundary and axis Ox2 as a tangent line is anisotropically dense at point 0
with respect to the first variable. In particular, such is the set Eε = {(t, τ) :
t > 0, 0 ≤ |τ | ≤ tε} for any ε ∈ (0, 1).

A basis ∆ = (∆1, . . . , ∆n) let us call anisotropically dense if at least one
among its components ∆i is anisotropically dense at point 0 with respect
to a corresponding i-th variable.

2. Result. In the case ∆ = (Rn \L1, . . . ,Rn \Ln) the ∆-gradient is called
the strong gradient and was introduced by O. Dzagnidze [1]. In [1] it was
proved that if a function f has the strong gradient at a point x, then f is
differentiable at x and the converse assertion is not true. G. G. Oniani [2]
constructed a continuous function f : Rn → R such that f is differentiable
almost everywhere but f does not has the strong gradient almost nowhere.
The following generalization of this result is true.

Theorem 1. If a basis ∆ is anisotropically dense, then there exists a
continuous function f : Rn → R such that:

1) f is differentiable almost everywhere;
2) f has no ∆-gradient almost nowhere.

Remark 2. A function f will be constructed so as the condition 2) will
be satisfied in the following context: lim

∆i3h→0

f(x+h)−f(x+h(i))
hi

= ∞ almost

everywhere, where i is an index for which the component ∆i of the basis ∆
is anisotropically dense at point 0 with respect to i-th variable.

3. Auxiliary statements. We shall note that the construction of desirable
function is carried out by modification of G. G. Oniani’s [2] scheme.

For simplicity, we consider the two-dimensional case.
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Afterwards, without restriction of generality, we shall suppose that ∆1 is
anisotropically dense at zero with a parameter 0 < α ≤ 1.

For simplicity, we shall make one more agreement. Suppose that (Ik)
is a sequence of intervals from the property of anisotropic density of the
set ∆1. Denote by I

(p)
k (p ∈ 1, 4) the intersection of the interval I

(p)
k with

a corresponding coordinate quarter. It is obvious that there exists such a
p ∈ 1, 4 that

|I(p)
k ∩∆1|
|I(p)

k |
≥ α

for infinite number of k. We shall assume that this condition is satisfied
when p = 1, i.e. for the first coordinate quarter.

Let us introduce the following three maximal operators: for a continuous
function f : R2 → R, a point x ∈ R2 and numbers 0 < δ < η set:

M(f)(x) = sup
h6=0

|f(x + h)− f(x)|
‖h‖ ,

Sη(f)(x) = sup
h∈∆1, ‖h‖<η

|f(x + h)− f(x + h(1))|
h1

,

Sδ,η(f)(x) = sup
h∈∆1, ‖h‖<η, |h1|>δ

|f(x + h)− f(x + h(1))|
h1

.

Basic construction. Suppose that k ∈ N. Let us consider numbers 0 <
t1(k) < t2(k) such that:

t1(k) and t2(k) are numbers of the form
1

2m
(m ∈ N),

t2(k)
t1(k)

≥ 25k+2,

t2(k) ≤ 1
2k

,

|∆1 ∩ Ik|
|Ik| ≥ α, where Ik = [0, t1(k)]× [0, t2(k)].

The existence of such numbers t1(k) and t2(k) follows from the assumption
of anisotropic density of ∆1.

Let us introduce the following notation:

t(k) = (t1(k), t2(k)) ;

Bk = B

[
t(k),

αt1(k)
2

]
,

i.e. Bk is a closed disc with the center at t(k) and with the radius αt1(k)
2 ;

B̃k = B
[
t(k), 22k+1t1(k)

]
.
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Let fk : R2 → R be a continuously differentiable function with the prop-
erties:

supp fk ⊂ Bk,

fk (t(k)) = 2kt1(k),

0 ≤ fk(x) ≤ 2kt1(k) (x ∈ Bk).

It is easy to check that the function fk has the following properties:

1)
{

M(fk) >
1
2k

}
⊂ B̃k;

2)
∣∣{S2t1(k)(fk) > 2k

} ∩ Ik

∣∣ ≥ α

2
|Ik|.

Lemma A (see [2]). Suppose that for continuous functions fk : R2 → R
(k ∈ N), a point x ∈ R2 and a number λ > 0 there are satisfied the following
conditions:

supp fi ∩ supp fj = ∅ (i 6= j),

x /∈
∞⋃

k=1

supp fk,

M(fk)(x) ≤ λ (k ∈ N).

Then

M

( ∞∑

k=1

fk

)
(x) ≤ λ.

Lemma 1. For each m ∈ N there exists a function νm : R2 → R such
that:

1) νm is a continuously differentiable and 1-periodic,

2) 0 ≤ νm(x) ≤ 1
2m (x ∈ R2),

3)
∣∣{M(νm) > 1

2m

} ∩ [0, 1]2
∣∣ < 1

2m ,

4)
∣∣{S1/2m(νm) > 2m

} ∩ [0, 1]2
∣∣ > α

2 .

Proof. For each number k ∈ N we shall consider parameters t1(k), t2(k),
Ik, Bk, B̃k and fk existing due to the basic construction.

Let us divide the unit square [0, 1]2 into the intervals Ik,p,q (1 ≤ p ≤
1/t1(k), 1 ≤ q ≤ 1/t2(k)) congruent to the interval Ik. Let for indexes

1 ≤ p ≤ 1/t1(k)− 1 and 1 ≤ q ≤ 1/t2(k)− 1

Tp,q be the shift which moves Ik into Ik,p,q. Let us introduce the following
notation:

fk,p,q = fk ◦ Tp,q, Bk,p,q = Tp,q(Bk), B̃k,p,q = Tp,q(B̃k).
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Let νm be the 1-periodic function such that

νm(x) =
1/t1(k)−1∑

p=1

1/t2(k)−1∑
q=1

fk,p,q(x) for each x ∈ [0, 1]2.

If we take a sufficiently large k, the function νm defined in such a way
will satisfy all four required conditions. Actually, 1) and 2) are obvious.
Property 4) directly follows from the invariance of the operator S1/2m with
respect to shifts, as well as on the basis of property 2) of a function fk

ensured by a basic construction. In order to check property 3) we have to
take into account: i) invariance of the operator M with respect to shifts; and
ii) property 1) of fk ensured by a basic construction. Due to this properties
and Lemma A the set

{
M(νm) >

1
2m

}
∩ [0, 1]2

will be contained in the union of strips Γq (1 ≤ q ≤ 1/t2(k)− 1), where Γq

denotes the minimal horizontal strip containing the discs B̃k,p,q (1 ≤ p ≤
1/t1(k) − 1). Further noting that the union of the strips, for a sufficiently
large k, cuts off from the square [0, 1]2 a subset of the measure smaller than
1/2m, we conclude the validity of the property 3). ¤

Remark 3. Taking into account that lim
δ→0

Sδ,η(f)(x) = Sη(f)(x) for each

f ∈ C(R2), η > 0 and x ∈ R2, by applying continuity of measure we shall
see that for any sufficiently small number δm ∈ (0, 1

2m ) there is satisfied the
following condition that is stronger than 4) one

4′)
∣∣{Sδm,1/2m(νm) > 2m

} ∩ [0, 1]2
∣∣ > α

2 .

The set E ⊂ Rn is called l-periodic (l > 0), if its characteristic function
χE is l-periodic with respect to each variable.

The following lemma belongs to A. Calderón (see e.g. [3, Ch. XIII,
Section 1]).

Lemma B. Let (Ek)k∈N be a sequence of measurable and l-periodic sub-
sets of Rn such that

∞∑

k=1

|Ek ∩ [0, l]n| = ∞.

Then there exist points xk ∈ Rn such that lim
k→∞

(xk + Ek) is a set of full

measure in Rn.
The following theorem belongs to V. Stepanov (see e.g. [4, Ch. IX,

Section 14]).



10 L. BANTSURI

Theorem A. Let f : Rn → R be a measurable function and

lim
h→0

|f(x + h)− f(x)|
‖h‖ < ∞

at every point x of a set E. Then f is differentiable at almost every point
of the set E.

4. Proof of Theorem 1. Assume that the functions νm and the numbers
δm are chosen in accordance with Lemma 1.

We choose the sequence of the indexes m(1) < m(2) < · · · so that for
each i ≥ 2 the following conditions are satisfied:

2m(i)−1 > i +
i−1∑

j=1

max
x∈R2

∣∣D1νm(j)(x)
∣∣ , (1)

where D1 denotes the partial derivative with respect to the first variable;

ω

(
D1νm(j),

1
2m(i)

)
< 1 for every j ∈ 1, i− 1, (2)

where ω(F, t) denotes the modulus of continuity of a function F ;

1
min{δm(1), . . . , δm(i)}2m(i+1)

<
1
2i

. (3)

Let us use Lemma B and find values of shifts xi such that the upper limit
of the sequence of the sets

xi +
{

Sδm(i),1/2m(j)(νm(i)) > 2m(i)
}

(4)

to be of full measure in R2.
Let ν̃m(i) be the xi shift of the function νm(i), that is

ν̃m(i)(·) = νm(i)(· − xi) (i ∈ N).

Using invariance of the operators M and Sδ,η with respect to shifts, we have
{

M(ν̃m(i)) >
1

2m(i)

}
= xi +

{
M(νm(i)) >

1
2m(i)

}
, (5)

{
Sδm(i),1/2m(i)(ν̃m(i)) > 2m(i)

}
= xi +

{
Sδm(i),1/2m(i)(νm(i)) > 2m(i)

}
. (6)

Note that by the invariance of D1 with respect to shifts, the conditions
analogous to (1) and (2) will be satisfied for functions ν̃m(i).

The function f let us define in the following way

f =
∞∑

i=1

ν̃m(i).

It is obvious that the function f is continuous and 1-periodic.
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Denote

E1 = lim
i→∞

{
Sδm(i),1/2m(i)(ν̃m(i)) > 2m(i)

}
∩ (0, 1)2,

E2 = lim
i→∞

{
M(ν̃m(i)) >

1
2m(i)

}
∩ (0, 1)2.

We have that (by Lemma 1, (4),(5) and (6))

|E1| = 1 and |E2| = 0. (7)

Suppose i ≥ 2 and

x ∈
{

Sδm(i),1/2m(i)(ν̃m(i)) > 2m(i)
}
∩ (0, 1)2.

Let h ∈ ∆1 be such that |h1| > δm(i), ‖h‖ < 1/2m(i) and
∣∣∣∣
ν̃m(i)(x + h)− ν̃m(i)(x + h(1))

h1

∣∣∣∣ > 2m(i). (8)

From (2) and (3), by using Lagrange formula, we conclude that for every
j ∈ 1, i− 1 ∣∣∣∣

ν̃m(i)(x + h)− ν̃m(i)(x + h(1))
h1

∣∣∣∣ ≤ |D1ν̃m(i)(x)|+ 1. (9)

By (8), (9), (1), (2) and (3) we write
∣∣∣∣
f(x + h)− f(x + h(1))

h1

∣∣∣∣ ≥
∣∣∣∣
ν̃m(i)(x + h)− ν̃m(i)(x + h(1))

h1

∣∣∣∣−

−
i−1∑

j=1

∣∣∣∣
ν̃m(j)(x + h)− ν̃m(j)(x + h(1))

h1

∣∣∣∣−

−
∞∑

j=i+1

∣∣∣∣
ν̃m(j)(x + h)− ν̃m(j)(x + h(1))

h1

∣∣∣∣ >

> 2m(i) −
i−1∑

j=1

(
D1(ν̃m(j)(x) + 1)

)−
∞∑

j=i+1

1
δm(i)

· 2
2m(j)

> 2m(i)−1.

Consequently

lim
∆13h→0

f(x + h)− f(x + h(1))
h1

= ∞ (10)

for every x ∈ E1. Now, if we take into account (7) and 1-periodicity of
the function f we can conclude that the condition (10) is satisfied almost
everywhere on R2.

Suppose x ∈ (0, 1)2 and x /∈ E2. It is obvious that there exists i ≥ 2 such
that

x /∈
{

M(ν̃m(i)) >
1

2m(i)

}
∩ (0, 1)2, when j ≥ i.
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Therefore

M

( ∞∑

j=i

ν̃m(j)

)
(x) ≤

∞∑

j=i

M(ν̃m(j))(x) ≤
∞∑

j=i

1
2m(j)

< 1. (11)

On the other hand, by using Lagrange formula we obtain that

M

( i−1∑

j=1

ν̃m(j)

)
(x) ≤

≤
i−1∑

j=1

[
max
y∈R2

|D1ν̃m(j)(y)|+ max
y∈R2

|D2ν̃m(j)(y)|
]

< ∞. (12)

(11) and (12) imply that M(f)(x) < ∞. Now, taking into account (7) and
1-periodicity of the function f we have

M(f)(x) < ∞ almost everywhere on R2.

Therefore, by virtue of Theorem A, f is differentiable almost everywhere on
R2. This proves the theorem. ¤
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